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ABSTRACT. Fatou's lemmas and Lebesgue's convergence theorems are established for 
multi valued conditional expectations of random variables having values in the closed 
subsets of a separable Banach space. Strong laws of large numbers are also given for 
such multi valued random variables. 

Introduction. Two notions of convergence for closed subsets in a metric space, the 
Hausdorff distance convergence and the Kuratowski convergence, are eminently 
useful in several areas of mathematics and applications like optimization and 
control, stochastic and integral geometry, mathematical economics, etc. In an 
(infinite-dimensional) normed space, however, the Mosco convergence [22, 23] is 
known to be more tractable than the Kuratowski one. 

The convergence theorems for multivalued integrals were discussed by Aumann 
[5], Schmeidler [29], Hildenbrand and Mertens [17], and Artstein [1]. These authors 
obtained Fatou's lemma and Lebesgue's convergence theorem with the Kuratowski 
convergence for measurable multivalued functions having values in the closed 
subsets of Rd. Fatou's lemma is of some use in mathematical economics (cf. [17, 29]). 

A multivalued strong law of large numbers was first proved by Artstein and Vitale 
[4] for independent, identically distributed (i.i.d.) random variables whose values are 
compact subsets of Rd. This strong law with the Hausdorff distance convergence has 
been extended by several authors (see Cressie [8], Hess [12], Puri and Ralescu [25], 
and Gine, Hahn and Zinn [10]) and was recently completed in [2, 15]. On the other 
hand, Artstein and Hart [3] obtained a strong law of large numbers with the 
Kuratowski convergence for i.i.d. random variables having values in the closed 
subsets of Rd, and applied it to a problem of optimal allocations. 

This paper has two subjects on the convergence theory for multi valued random 
variables whose values are closed subsets of a separable Banach space. The first part 
(§2) gives several results on passage to the limit under the integration of multivalued 
random variables. The second part (§3) is concerned with strong laws of large 
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numbers for multivalued random variables. Though the two parts are rather discon-
nected in contents, we discuss them together in this paper because they relate the 
same type of convergence (the Mosco convergence) and have therefore the same 
preliminaries. 

In §1, we give definitions and preliminaries on multivalued random variables and 
the Mosco convergence. In §2, we establish Fatou's lemmas and Lebesgue's conver-
gence theorems for multivalued conditional expectations containing multi valued 
integrals. In §3, we obtain two types of multivalued strong laws of large numbers 
with the Mosco convergence. The first is the strong law for i.i.d. multi valued random 
variables, and the second is for only independent multi valued random variables with 
some additional conditions. Our main tool in §3 is the existence of identically 
distributed (resp. independent) selections of identically distributed (resp. indepen-
dent) multivalued random variables, which was presented by Hess [13,14]. 

The author wishes to express his gratitude to Professor H. Umegaki for advice and 
encouragement. He thanks Professor M. Valadier and the referee for useful com-
ments to the original version of this paper. 

1. Preliminaries. Throughout this paper, let (g, d, /L) be a probability measure 
space and X a real separable Banach space with the dual space X*. For each X c X, 
cl X, w-cl X, and co X denote the norm-closure, the weak-closure, and the closed 
convex hull of X, respectively. Let f(X) (resp . .Jt;(X)) denote the family of all 
nonempty closed (resp. nonempty closed convex) subsets of X. For X, Y E f(X), 
the distance d(y, X) of X and y E X, the Hausdorff distance h(X, Y) of X and Y, 
the norm II XII of X, and the support function s( X, .) of X are defined by 

d(y, X) = inf lIy - xII, 
xEX 

h(X, Y) = max{ supd(x, Y), supd(y, X)}, 
xEX yEY 

IIXII=h(X,{O})= supllxll, 
XEX 

s( X, x*) = sup (x, x*), x* E I*. 
xEX 

Let!!Jx be the Borel a-field on I and !!Jr(X) the a-field onf(I) generated by the 
sets {X E f( I): X n 0 -=1= 0} taken for all open subsets 0 of I. A multivalued 
(set-valued) function F: g --+ f(I) is said to be measurable if Fis (d, !!Jr(x»)-mea-
surable, i.e., F-(O) = {w E g: F(w) no -=1= 0} E dfor every open 0 c I. Such a 
function F is called a multivalued (closed-valued) random variable or random closed 
set. An F: g --+ f (I) is measurable if and only if there exists a sequence {fn} of 
measurable functions fn: g --+ I such that F( w) = cl{ fn( w)} for all w E g. Such a 
sequence {fn} is called a Castaing representation of F. If F: g --+ f (I) is measur-
able, then the graph Gr(F) = {(w, x) E g X I: x E F(w)} of F is d® !!Jx-
measurable. Also the converse holds if (g, d, /L) is complete. The proofs of these 
results are found in [7, 18]. We denote by .A[g; f(I)] the family of all multivalued 
random variables F: g --+ f (I ). 
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For 1 :s:; P < 00, LP(O, d, p.; I) = LP(O; I) denotes the Banach space of 
(equivalence classes of) measurable functions I: 0 ~ I such that the norm 1I/IIp = 

E(II/IIP)l/P = (foll/(w)II P dp.)I/p is finite, and LP(O; R) is denoted by LP. For 
F E A[O; .Jf"( I )], let 

S} = {IE Ll(O; I):/{w) E F{w) a.s.} 
which is a closed subset of Ll(O; I) and is nonempty if and only if d(O, F(·)) = 

infxEF(o)IIxil is in Ll. If S} =i= 0, then there is a Castaing representation of F 
contained in S} (cf. [16, Lemma 1.1]). The integral or mean E[F] of F is defined by 

E[F] = foFdp. = { E(f) = 101 dp.: I E S}}, 

where E(f) = fol dp. is the usual Bochner integral. This multivalued integral was 
introduced by Aumann [5]. For A Ed, let fA F dp. be the integral of F restricted on 
A. 

Given a sub-(J-field!14 of dand a !14-measurable F E A[O; .Jf"( I)], besides S} and 
E[F] taken on (0, d, p.), we define on (0, !14, p.) 

S}{!14) = {IE L 1{0,!14, p.; I):/(w) E F{w) a.s.}, 

E[F,!14] = !PA)FdP. = {E(f):/E S}(!14)}. 

For IE Ll(O; I), the conditional expectation of I relative to !14 is given as a function 
E(fI!14) E L1(0, !14, p.; I) such that fBE(fI!14) dp. = fBI dp. for all B E !14. If FE 
A[O; .Jf"(I)] with S} =i= 0, then it is seen (cf. [16, Theorem Sol]) that there exists a 
unique (in the a.s. sense) !14-measurable<f[FI!14] E A[O; .Jf"(I)] satisfying 

s,i[ FIPA] ( !14) = cl { E (f 1!14 ) : I E S} } , the closure in L 1 ( 0; I). 
We call <f[FI!14] the (multivalued) conditional expectation of F relative to !14. This 
conditional expectation <f[FI!14] has the properties analogous to those of the usual 
conditional expectation (see [16, §5]). For example, we have 

cl t PA )<f[FI!14] dp. = cl j Fdp., 
B B 

BE !14, 

and if F( w) E ~(I) a.s., then 

clj<f[FI!14] dp. = cl j Fdp., 
B B 

BE !14. 

Though we assumed in [16] that FE A[O; .Jf"(I)] is integrably bounded, i.e., 
IIF(')II = SUPxEF(o)IIxil is in L1, most of the results and the proofs there remain valid 
for FEA[O; .Jf"(I)] with S}=i= 0. Note that <f[FI!14](w) = clE[F] when!14= 
{ 0,0}. We refer to [7, 9, 16, 18] for detailed expositions on multivalued random 
variables and their integrals and conditional expectations. 

Let {Xn} be a sequence in .Jf"(I). We write Xn ~ X if h(Xn' X) ~ 0 for some 
X E .Jf"(I). Rather than this Hausdorff distance convergence, we use in this paper 
another notion of convergence introduced by Mosco [22, 23] following the Kuratow-
ski convergence (cf. [21, p. 339]). Let s-lim inf Xn be the set of all x E I such that 
IIxn - xII ~ 0 for some xn E Xn, i.e., d(x, Xn) ~ 0, and w-lim sup Xn be the set of 
all x E I such that x k ~ x (i.e., x k converges weakly to x) for some x k E Xnk and 
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some subsequence {Xnk } of {Xn}. Clearly s-lim inf Xn c w-lim sup Xn holds, and 
s-lim infXn EJt'"(I) (EJt;.(I) if {Xn} c~(I» unless it is empty. We write 
simply Xn --+ X if 

s-lim inf Xn = X = w-lim sup Xn. 
Concerning the Mosco convergence, see also Salinetti and Wets [26, 27] and Tsukada 
[31,32]. 

We give here some elementary facts on w-lim sup Xn for later use. 

LEMMA 1.1. Let { Xn} and { Yn} be sequences in Jt'" (I ). 
(1) If X E Jt;.(I) and lim sup s(Xn' x*) ~ s(X, x*) for every x* E I*, then 

w-lim sup Xn c X. 
Suppose that I is reflexive. Then: 
(2) If supil Xnll < 00, then w-lim sup Xn is nonempty weakly compact and 

lim sup s( Xn, x*) ~ s(w-lim sup Xn, x*), 
(3) If sup II Xnll < 00, then 

x* E I*. 

w-lim sup cl( Xn + Yn) c w-lim sup Xn + w-lim sup Yn. 
(4) Ifw-lim sup Xn andw-lim sup Yn are nonempty, then 

h (cl(w-lim sup Xn ), cl(w-lim sup Yn )) ~ lim sup h( Xn, Yn). 

PROOF. (1) If x E w-lim sup X n , then X k ~ x for some X k E Xnk and hence 
(x, x*) = lim(xk' x*) ~ lim sup s( Xn, x*) 

~ s(X, x*), x* E P, 
which implies x E X. 

(2) Let r = supllXnl1 < 00. Since {x E x: Ilxll ~ r} is compact and metrizable in 
the weak topology, we have 

w-lim sup Xn = m~l w-clC9m Xn ) * 0. 

Given x* E x*, a sequence {xd of x k E Xnk can be chosen so that (Xk' x*) --+ 

lim sup s(Xn' x*) and x k ~ x for some x E x. Hence x E w-lim sup Xn and 
lim sup s( Xn, x*) = (x, x*) ~ s(w-lim sup Xn, x*). 

(3) If z E w-lim supcl(Xn + Yn), then Xk + Yk ~ z with x k E Xnk and Yk E Ynk 

We may assume x k ~ x and so Yk ~ Y = z - x. Hence z = x + yEw-lim sup Xn 
+ w-lim sup Yn• 

(4) Assume lim suph(Xn' Yn) < 00. Let x E w-lim sup Xn, i.e., x k ~ x with 
Xk E Xnk For each k ~ 1, we select aYk E Ynk such that IIXk - hll ~ h(Xnk, Yn.) + 
k -1. Since {x d and hence {y d are bounded, assuming Y k ~ Y we have Y E 

w-lim sup Yn and 

d(x,cl(w-lim sup Yn)) ~ Ilx - yll ~ liminfllxk - Ykll 
~ lim sup h ( Xn , Yn). 

Thus (4) is proved. Q.E.D. 
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2. Convergence of multivalued conditional expectations. In this section, we estab-
lish several convergence theorems for multivalued conditional expectations (particu-
larly for multivalued integrals). We notice that the proofs of convergence theorems 
in [1, 5, 17, 29] for multivalued integrals are essentially dependent on the finite 
dimension ali ty. 

Throughout this section, let j6' be a fixed sub-a-field of J1I and {Fn} a sequence in 
vH[~; f(1:)]. We first show the monotone convergence theorem. The same result for 
multivalued integrals was given in [14]. 

THEOREM 2.1. Suppose that Fl(W) C F2(w) C ... a.s. with Sjl =1= 0 and let F(w) 
= cl(U~=lFn(w)),w E~. ThenFEvH[~;f(1:)]and 

cf[FIj6'](w) = clC9lcf[Fnlj6'](W)) a.s. 

PROOF. Let G(w) = cl(U~=l cf[Fnlj6'](w)), W E ~. Then F, G E vH[~; f(1:)] and 
G is Yd-measurable. Obviously, 

sj C sj c ... C Sj, 
1 2 

S.i[F11~1{j6') C S.i[F21~1{j6') C ... c SJ{j6'). 

For any f E sj, using [16, Theorem 2.2] we have 

inf IIf- gill = E(d(j{·), Fn {·))) ~ 0 
gES}" 

since d(f(·), Fn(·)) ELl and d(f(w), Fn(w)HO a.s. Hence sj = cl(U~=lSj) and 
similarly SJ(Yd) = cl(U~=lS.i[Fnl~l(j6')). Thus n 

S.i[FI~l (j6') = cl( n9l { E (j1j6'): f E SA,} ) = sJ( j6'), 

which implies cf[FIj6']( w) = G( w) a.s. Q.E.D. 
Before giving Fatou's lemmas, we state the following theorem concerning the 

measurability of s-lim inf and w-lim sup of {Fn} as the infinite dimensional 
extension of [28, Theorem 3.1]. 

THEOREM 2.2. (1) If s-liminfFn(w) =1= 0 a.s., there exists an F E vH[~; f(1:)] 
such that 

F{w) = s-liminfFn{w) a.s. 

(2) Suppose that 1: is reflexive. If suPllFn(w)1I < 00 a.s., then there exists an 
F E vH[~; f(1:)] such that 

F{w) = w-limsupFn{w) a.s. 

PROOF. (1) Let G(w) = s-lim inf Fn(w). We may assume that G(w) =1= 0 for all 
w E ~. Since 

Gr{ G) = {{ w, x) E ~ X 1:: d ( x, Fn ( w)) ~ O} E J1I ® j6':f.' 



618 FUMIO HIAI 

there is a sequence {gn} of d-measurable functions gn: ~ --+ I such that G( w) = 
cl{ gn( w)} for all w E ~, whered is the completion of dwith respect to 11.. Choosing 
.#-measurable functions fn: ~ --+ I with fn( w) = gn( w) a.s., we define F( w) = 
cl{ fn(w )}, w E ~. Then F E .J([~; f(I)] and F(w) = G(w) a.s. 

(2) We may assume that liFn(w)1I ~ r « 00) for all w E ~ and n ~ 1. Let 
Ir = {x E I: IIxll ~ r} which is a compact metric space in the weak topology. 
~w(Ir) denotes the family of all nonempty weakly closed (i.e., weakly compact) 
subsets of I r • Now let F(w) = w-lim supFn(w) and Gm(w) = w-cl(U~=mFn(w)), 
m ~ 1. We then have F(w) = n:=lGm(W) =F 0 for all w E~. Since each Gm is 
measurable as a multivalued function Gm: ~ --+ ~w(Ir)' F is measurable as F: 
~ --+ <Cw(Ir) by [7, Proposition I1I.4]. Hence it is seen from [7, Theorem 11-10] that 

F- ( C) = ~ \ { w E ~: F( w) c I r \ C} E d 

for every C E ~w(Ir). For each open 0 c I, taking a sequence {~} of closed balls 
with 0 = Ui=l~' we have 

00 

F- ( 0) = U F- ( I r n ~) E d. 
)=1 

Thus FE Jt[Q; f(I)]. Q.E.D. 
REMARK. If sup I iFn ( w ) II < 00 for every w E ~ in Theorem 2.2(2), then the above 

proof shows that w-lim sup Fn (·) itself is in.J([~; f(I)]. This remark, together with 
the improvement of the above proof (2), is due to M. Valadier. 

In the subsequent theorems, we always assume that F E .J([~; f(I)]. We now 
prove two types of Fatou's lemmas. 

THEOREM 2.3. Suppose that there exists a ~ E L1 with d(O, Fn( w)) ~ ~(w) a.s. for 
all n ~ 1. If F( w) = s-lim inf Fn( w) a.s. and S}. =F 0, then 

t![FI8I]( w) c s-lim inf t![FnI8l]( w) a.s. 

PROOF. For eachf E S}. and n ~ 1, define Gn : ~ --+ f(I) by 

Gn(w) = {x E Fn(w): IIf(w) - xII ~ d(J(w), Fn(w) + n-1 }, w E~. 

Since Gr(Gn ) E d® 81x' we can select a measurable function fn: ~ --+ I with 
fn( w) E Gn( w) a.s. Since d(f( w), Fn( w)) --+ 0 a.s. and 

Ilf(w) - fn(w)11 ~ d(J(w), Fn(w) + n-1 

~lIf(w)II+Hw)+l a.s., 

we havefn E S;." and IIf(w) - fn(w)II--+ 0 a.s. By Lebesgue's convergence theorem 
for usual conditional expectations, it follows that 

d(EUI8I)(w),t![FnI8l ](w) ~ IIEUI8I)(w) - EUnI8l )(w)11 

~E(llf(-)-fn(-)III81)(w)--+O a.s., 

and hence 

E(f18l)(w) E s-liminft![FnI8l](w) a.s. 
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For any g E S;[FI~J(.9I), there is a sequence {fj} in S} with IIE(fjl.9l)(w) - g(w)1I 
~ 0 a.s., so that g( w) E s-lim inf 6"[Fnl.9l]( w) a.s. Taking a Castaing representation 
of 6"[FI.9I] contained in S;[FI~J(.9I), we obtain the desired conclusion. Q.E.D. 

THEOREM 2.4. Suppose that l: is reflexive and there exists a ~ E Ll with liFn(w)11 ~ 
g( w) a.s. for all n ~ 1. If F( w) = w-lim sup Fn( w) a.s., then 

w-limsup6"[Fnl.9l](w) C 6"[ coFI.9I](w) a.s., 

where co F E Jt[g;.Jf"( l:)] is given by (co F)( w) = co F( w). 

PROOF. We get also liF(w)11 ~ g(w) a.s. Let x* E P, then s(F(·), x*) ELI. 
Using [16, Theorem 2.2], we have 

!.E(s{F(-),x*)I.9I)(w)dJL= !.s(F(w),x*)dJL= sup !.U(w),x*)dJL 
B B ~~ B 

Hence 

= suP!. (E(jI.9l)(w), x*) dJL 
JES} B 

sup !. (g(w), x*) dJL 
gEsi[FI~I(~) B 

BE .91. 

E(s(F{')' x*)I.9I)(w) = s(6"[FI.9I](w), x*) a.s. 

and similarly 

E{s(F,,(-), x*)I.9I)(w) = s{6"[Fnl.9l](w), x*) a.s., 

Further, by [16, Theorem 5.2(4°)], 

6"[ coFI.9I](w) = co6"[FI.9I·](w) a.s. 

n ~ 1. 

Thus, by Fatou's lemma for usual conditional expectations and Lemma 1.1(2), we 
have 

lim sup s ( 6" [ Fn 1.91 ] ( w ), x *) ~ E {lim sup s { Fn ( . ), x * ) 1.91 ) ( w ) 

~ E(s(F(-), x*)I.9I)(w) = s(6"[ coFI.9I](w), x*) a.s. 

Because of the separability of l:*, there exists a JL-null set N E Silsuch that 

lim sup s {6" [Fnl.9l]( w), x*) ~ s( 6" [ co FI.9I] (w), x*), x* E l:*, w E g \ N. 

This shows the theorem from Lemma 1.1(1). Q.E.D. 
An A Ed is called a .9I-atom if for each A' E dwith A' C A, there exists aBE .91 

satisfying JL«A n B) ~ A') = O. According to Valadier [33], if (g, SiI, /L) has no 
.9I-atom, then 

6"[ coFI.9I](w) = 6"[FI.9I](w) a.s. 

for every FE Jt[g; .Jf"(l:)] with S} =fo 0. 
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By Theorems 2.3 and 2.4 and the result stated just now, we obtain the following 
Lebesgue's convergence theorem. 

THEOREM 2.5. Suppose that X is reflexive and there exists a ~ EO Ll with IlFn( w )11 ~ 
~(w) a.s. for all n ;;;. 1. If Fn(w) -+ F(w) a.s. and if (Q,.!4', p,) has no ffI-atom or 
F( w) EO J(.( X) a.s. (this is the case when Fn( w) EO J(.( X) a.s. for all n ;;;. 1), then 

6"[Fnlffl](w) -+ 6"[FlffI](w) a.s. 

To prove Lebesgue's convergence theorem in the Hausdorff distance, we need 

LEMMA 2.6. For each integrably bounded F, G EO A[Q; reX)], 

h(6"[FlffI](w),6"[GlffI](w)) ~ E(h(F(·),G(-))lffI)(w) a.s. 

PROOF. Since h(F(w), G(w)) ~ IIF(w)11 + IIG(w)ll, we get h(F(·), G(·)) EO Ll. As 
is seen from the last part of the proof of Theorem 2.3, there exists a sequence { fn} in 
sj such that 6"[FlffI](w) = cl{EUnlffl)(w)} a.s. For each n;;;. 1, we select a se-
quence {gn/ j ;;;. I} in SJ such that Ilfn( w) - gn/ w )II! dUne w), G( w)) a.s. as 
j -+ 00. We then have 

sup d(x, 6"[GlffI]{w)) ~ sup infIIEUnlffl)(w) - E(gn)ffI)(w)11 
x E<f[ FI.s1?]( w) n 1 

~ sup infE(llfn(·) - gnj(-)lllffI)(w) 
n / 

= supE(dUn(-)' G(- ))lffI)(w) 
II 

~ E( sup dUn(-), G(-)) IffI)( w) 
n 

~ E(h(F(-),G(-))lffI)(w) a.s. 
Thus the lemma is proved. Q.E.D. 

We write Fn ~ F in probability if h(Fn(·), F(·)) -+ 0 in probability. 

THEOREM 2.7. Suppose that there exists a ~ EO Ll with IlFn( w )11 ~ ~(w) a.s. for all 
n;;;. 1. If Fn(w) ~ F(w) a.s. (resp. Fn ~ Finprobability), then 

6"[Fnlffl]( w) ~ 6"[FlffI]( w) a.s. 

(resP.6"[Fnlffl] ~ 6"[FlffI] in probability ). 

PROOF. Since h(Fn(w), F(w)) ~ 2g(w) a.s. and h(Fn(w), F(w)) -+ 0 a.s., by 
Lemma 2.6 we have 

The assertion for the convergence in probability is verified by the argument of 
selecting a.s. convergent subsequence. Q.E.D. 

Particularly when ffI = {0, Q}, the above theorems give the corresponding con-
vergence theorems for multivalued integrals. Indeed we obtain more than those as 
follows. 
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THEOREM 2.8. (1) Suppose that {d(O, Fn(·))} is uniformly integrable. If F(w) = 
s-lim inf Fn( w) a.s. and S} *" 0, then 

cl E[F] c s-lim inf cl E[Fn]. 

(2) Suppose that I is reflexive and {llFn(· )II} is uniformly integrable. If F( w) = 
w-lim sup Fn( w) a.s. and S} *" 0, then 

w-lim sup cl E[FJ c cl E[F]. 

(3) Suppose that I is reflexive and {llFn(· )II} is uniformly integrable. If Fn( w) --+ 

F( w) a.s., then 

cl E[Fn] --+ cl E[F]. 

(4) Suppose that {llFn(· )II} is uniformly integrable. If Fn .! F in probability, then 
h 

cl E[FnJ --+ cl E[F]. 

PROOF. First recall that Fatou's lemma and Lebesgue's convergence theorem for 
usual integrals hold under the uniform integrability condition. So the proofs of (1) 
and (4) are analogous to those of Theorems 2.3 and 2.7. 

(2) To prove this, it suffices in view of Lemma 1.1(3) to show the nonatomic case 
and the purely atomic case. If (~, d, J.L) has no atom, then cl E[F] is convex (cf. 
[16, Theorem 4.2]). Letf E S} and define Fnj E .A[~; Jt"(I)], n,} ~ 1, by Fn/w) = 
Fn(w) if IlFn(w)11 ~}, Fn/w) = {/(w)} otherwise. Since {llFn(·)II} is uniformly 
integrable, we have 

suph(cl E [Fnj]' cl E[Fn]) ~ supE( h{Fn/·), Fn(· »)) 
n n 

~ sup f (1IFn(w)11 + Ilf(w)IO dJ.L --+ 0 as) --+ 00. 
n {1IF,,(w)lI>j} 

Hence Lemma 1.1(4) implies 

(2.1) w-lim sup cl E [Fnj] .! w-lim sup cl E[Fn] as} --+ 00. 
n 

Moreover, for each} ~ 1, {llFn/·)II: n ~ 1} is uniformly integrable, sUPnllFn/w)11 
< 00 for all w E ~ and w-lim supn Fn/ w) C F( w) a.s. By Lemma 1.1(2) and 
Theorem 2.2(2), we have 

lim sup s ( cl E [ Fnj] , x*) ~ E ( lim sup s ( Fn/ . ), x*) ) 
n n 

~ E( s( w-li~ supFn/·), x*)) 

~ s(cl E[F], x*)' x* E I*,} ~ 1, 

as in the proof of Theorem 2.4. Hence, by Lemma 1.1(1), 

(2.2) w-limsupclE[FnJCclE[F], }~l. 
n 

Thus the desired conclusion follows from (2.1) and (2.2). 
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If (Q, d, J.L) is purely atomic, then there are countable disjoint atoms Aj Ed, 
) ~ 1, with Q = UjAj. Hence F and Fn are given by F(w) = L j l A/w)XJ and 
Fn{w) = LjlAj(w)Xnj' where lAj is the characteristic function of Aj and Xj' Xnj E 
reX) with Xj = w-lim SUPnXnj' Since {llEn(')II} is uniformly integrable, we have 
sUPnllXnjl1 < 00 for all) ~ 1 and 

SUPh(clL J.L(Aj)Xnj,clE[Fnl).::;; sup .L J.L(AJIIXn)l-+ 0 asm -+ 00. 
n .I::S;;;;m n J>m 

Hence Lemma 1.1(4) implies 

(2.3) w-lim sup cl L J.L(Aj)Xnj ~ w-lim sup cl E[Fnl as m -+ 00. 
n j~m 

Moreover it follows from Lemma 1.1(3) that 

(2.4) m~l. 

Now let x E w-lim sup cl E[Fn]. Then, by (2.3) and (2.4), Ilxm - xii -+ 0 for some 
xm E Lj.;;;m J.L(A)Xj. From S} =1= 0, we get LjJ.L(Aj)IIY)1 < 00 with Yj E Xj,) ~ 1. 
Since 

j>m 

Ilxm + j~mJ.L(AJYj - xll-+ 0 as m -+ 00, 

we obtain x E cl E[F]. Thus (2) is proved. 
(3) Since IIF(w)ll.::;;liminfllEn(w)11 a.s., we get IIF(·)IIELI. Hence (3) is im-

mediate from (1) and (2). Q.E.D. 
REMARK. It is obvious that the convergence theorems (1)-(4) in Theorems 2.8 for 

multivalued integrals are true on a a-finite measure space (Q, d, J.L) when 
{d(O, Fn( .))} (resp. {llEn(' )II}) is dominated by an LI-function. Here the term a.s. is 

h 
replaced by a.e. and (4) holds if Fn -+ F a.e. or in measure. 

3. Multivalued strong laws of large numbers. There are two types of strong laws of 
large numbers. The first is the strong law for i.i.d. random variables, and the second 
is for independent random variables with the same mean and some LP-norm 
condition. The first is generally valid for Banach space-valued random variables (cf. 
[24]). On the other hand, the second is not necessarily valid for the Banach 
space-valued case and is closely connected with some geometric conditions of a 
Banach space (see below). In this section, we obtain two types of strong laws of large 
numbers for multivalued random variables. The same strong laws were considered in 
[15] for weakly compact convex-valued random variables. 

Given FE A[Q; reX)], we define a sub-a-field d F of dby d F = {F-I(OJI): 
OJI E !Jd %(l:)}' where F -I( OJI) = {w E Q: F( w) E OJI}, i.e., d F is the smallest sub-a-
field of dwith respect to which F is measurable. The distribution of F is a probability 
measure J.LF on !JB%(l:) defined by J.LF(OJI) = J.L(F-I(d/I», OJIE !JB%(l:)' Multivalued 
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random variables F; E .A[n; f(I)], i E I, are said to be independent if .Si1'Fj' i E I, 
are independent, identically distributed if all J.LFj are identical, and i.i.d. if they are 
independent and identically distributed. 

In the following lemma, we state a part of the results in [14] (see also [3, 11] for 
the case I = Rd ). We give the short proof for convenience. 

LEMMA 3.1. (1) For each F E .A[n; f(I)] with sj =1= 0, 
coE[F] = coE[F, .Si1'F]' 

(2) Let F, G E .A[n; f(I)] be identically distributed. For each f E Sj(.Si1'F)' there 
exists agE SJ( .Si1'G) such that f and g are identically distributed. 

(3) For each identically distributed F, G E .A[n; f(I)] with sj =1= 0, 
E[F, .Si1'F] = E[G, .Si1'G]' 

PROOF. (1) Since co F is .Si1'F-measurable (cf. [16, Theorem 1.5]), by [16, (5.5)] we 
have 

SkF(.Si1'F) = {E(fI.Si1'F):f E SkF}' 

Moreover Sk,F = co sj and SkF (.Si1'F) = co Sj(.Si1'F) by [16, Theorem 1.5]. Hence 

coE[F] = clE[coF] = cl{E(E(fI.Si1'F)):fE SkF} 

= cl{ E(f):fE SkF(.Si1'F)} = coE[F, .Si1'F]· 
(2) Since I is separable and f is.Si1' F-measurable, it is not hard to show that there 

exists a (~%(1:)' ~1:)-measurable function ell: f(I) ~ I satisfyingf(w) = eIl(F(w)) 
for every wEn. Now define g( w) = ell ( G( w )), wEn. Since F and G are identically 
distributed, f and g are also. We have 

111g(w )11 dJ.L = j IleIl(X)1I dJ.LG = j IleIl(X)11 dJ.LF = 111f(w )11 dJ.L < 00. 
n %(1:) %(x) n 

Because the function (x, X) >-+ d(x, X) of I X f(I) into R is ~1: ® ~%(1:f 
measurable, dU('), F(·)) and d(g(·), G(·)) are identically distributed. Hence 
dU( w), F( w)) = ° a.s. implies d(g( w), G( w)) = ° a.s. Thus g E SJ( .Si1'G) follows. 

(3) is immediate from (2). Q.E.D. 
REMARK. If F(w) E Jf;,(I) a.s. in Lemma 3.1(1), then E[F] = E[F, .Si1'F] since 

Sj(.Si1'F) = {EUI.Si1'F): f E sj} as in the above proof (1). Hence E[F] = E[G] holds 
if F( w), G( w) E .x:.( I) a.s. in (3). These are not true generally. In fact, let 
n = no U {wd, where J.L(n o) = J.L({ wd) = 1/2 and no is nonatomic. Define F, 
G E .A[n; feR)] by F( w) = G( ( 1) = {a, I}, F( ( 1) = G( w) = {a}, w E no. Then 
F and G are identically distributed, but E[F] = [0,1/2] and E[F, .Si1'F] = E[G] = 

{0,1/2}. 
We now establish the infinite dimensional version of multi valued strong law of 

large numbers given in [3, Theorem 3.2]. 

THEOREM 3.2. If {Fn} is a sequence ofi.i.d. random variables in.A[n; f(I)] and 
S}, =1= 0, then 

1 
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PROOF. Let X = co E[Fd and Giw) = n-1clI:7=1F;(w), wE U, n ~ 1. For any 
x E X and E > 0, by Lemma 3.1(1) and (3) we can choose/i· E S}(.9Ip ), 1 ~} ~ m, 

J J 

such that Ilm-1I:~1 E(ij) - xII < E. By Lemma 3.1(2), there exists a sequence {In} 
of In E S}n(.9IF,) such that l(k-1)m+j' k ~ 1, are identically distributed for each 
} = 1, .. . ,m. Let Xj = E(ij), 1 ~} ~ m. If n = (k - l)m + /, where 1 ~ / ~ m, 
then 

11
1 n 1 m II -L/;(w)--LXj 
n i=l m )=1 

For 1 ~) ~ m, since {/(k-1)m+i k ~ I} is a sequence of i.i.d. random variables in 
Ll(U; I), it follows that 

II ~ it/(i-l)m+j( w) - Xjll--+ 0 a.s. as k --+ 00 

and hence k-111J(k_l)m+/w)11 --+ 0 a.s. as k --+ 00. Therefore 

II ! t li( w) - ~ f:. Xjll--+ 0 a.s. as n --+ 00. 
n i=1 m )=1 

Since n-1I:7=1/;(W) E Gn(w) a.s., we have m-1I:~lXj E s-liminfGn(w) a.s. Thus 
Xes-lim inf Gn( w) a.s. 

Next let {xj } be a sequence dense in I \ x. By the separation theorem, there 
exists a sequence {xj} in I* with Ilxjll = 1 such that 

(x)' xj) - d(xj , X) ~ s(X, xj), } ~ 1. 
Then x E X if and only if (x, xj) ~ s(X, xj) for all} ~ 1. Because the function 
X>-+ s(X, xj) of.Jf"(I) into (-00 , 00] is 9itr(xfmeasurable and 

E(s(Fl(-),Xj))=S(X,xj) < 00, }~1, 
{s( Fn(· ), xj): n ~ I} is a sequence of i.i.d. random variables in Ll for each} ~ 1. So 
there exists a p,-null set N E.9I such that, for every w E U \ N and} ~ 1, 

1 n 
s( Gn(w), xj) = - L s(F;(w), xj) --+ s(X, xj) as n --+ 00. 

n i=1 

If x E w-lim sup Gn( w) for w E U \ N, then xk ~ x for some xk E Gnk( w) and 
hence 

(x, xj) = lifI(xk, xj) ~ lifI s( Gnk(w), xj) = s(X, xj), 

which implies x E X. Thus w-lim sup Gn ( w) c X a.s. Q.E.D. 

} ~ 1, 
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REMARK. C. Hess (Lai forte des grands nombres pour des ensembles aleatoires non 
bomes a valeurs dans un espace de Banach separable, C. R. Acad. Sci. Paris Ser. 1300 
(1985), 177-180) independently proved Theorem 3.2 for the pairwise independent, 
identically distributed case. 

We finally obtain another type of multivalued strong laws of large numbers. 
Concerning strong laws for only independent Banach space-valued random varia-
bles, the main results are as foHows (cf. [6, 19,20,34]): x is B-convex (resp. of type 
p, where 1 ~ p ~ 2) if and only if IIn-II::?_I/;( W )11 -+ 0 a.s. for any sequence {fn} of 
independent random variables in L2(0; x) (resp. LP(O; x» with EUn) = 0 and 
sup E(lIfnIl 2) < 00 (resp. I::~=l n-PE(lIfnIl P) < 00). Note that x is B-convex if and 
only if x is of type p for some p > 1. We refer to [30, 34] for B-convexity and types 
of Banach spaces. 

THEOREM 3.3. Suppose that x is of type p, where 1 < P ~ 2. If {Fn} is a sequence of 
independent random variables in vIt[O; £(x)] such that I::~=ln-PE(liFn(·)IIP) < 00 

and if there exists an X E £ (x) such that 
(3.1) Xes-lim inf cl E [Fn' dFJ, 

(3.2) limsups(clE[Fn],x*)~s(X,x*), x*EP, 
then 

1 n 
-cl L 1';(w) -+ coX a.s. 
n i=1 

PROOF. Let G(w) = n-\:II::7=1 1';(w). For any x E co Xand E > 0, select Xl'··. 'Xm 
E X such that IIm-1I::j=IXi - xII < E. By condition (3.1), there exists a sequence 
{In} of fn E S}'<dF) such that IIEU(k-l)m+) - xiII -+ 0 as k -+ 00 for each 
j = 1, ... ,m. LetYn = EUn)' n ~ 1. If n = (k - l)m + I, where 1 ~ I ~ m, then 

II ~ .I: f;(w) - ! f. Xiii ~ II~ .I: (/;(w) - y;)11 + II~ .I: Y; - ! f. Xiii 1=1 J=1 1=1 1=1 J=1 

II I n II k m 1 k. 
~ -;; i~1 U;(w) - Y;) + -;; i~1 k i~IIIY(i-I)m+i - x)1 

+~ i~IIIY(k-l)m+ill+(~- !)t~IXill· 
Since {fn} is a sequence of independent random variables in LP(O; x) with 
I::~=l n-PE(lIfnIl P) < 00, it follows that IIn-II::7_1(/;(W) - y;)11 -+ 0 a.s. Therefore 

Il l. I: /;( w) - ~ f. Xill-+ 0 a.s. as n -+ 00, 
n i=1 m i=1 

so that m-II::j=1 xi E s-lim infGn(w) a.s. Thus co Xes-lim infGn(w) a.s. 
Let {x;} be as in the proof of Theorem 3.2 taken for co X. Then {s( Fn( . ), xn: 

n ~ I} is a sequence of independent random variables in L P with 
I::~_l n-PE(ls(Fn(·), xnl P) < 00. Further, by (3.1), (3.2) and Lemma 3.1(1), 

E{s{Fn(·), x;)) = s{cl E[Fn], x;) -+ s(X, x;) asn -+ 00. 
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Hence, for each j ~ 1, we have s(Gn(w),xJ) ~ s(X,xJ) a.s. as n ~ 00. Thus 
w-lim sup Gn( w) C co X a.s. follows as in the proof of Theorem 3.2. Q.E.D. 

COROLLARY 3.4. Suppose that I is B-convex. If {Fn} is a sequence of independent 
random variables in vi( [n; Jf' (I) 1 such that sup E (I iFn ( . ) 112) < 00 and if there exists 
an X E Jf'(I) satisfying (3.1) and (3.2) in Theorem 3.3, then 

1 n _ 
-cl L ~(w) ~ coX a.s. 
n ;=1 

REMARK. Condition (3.1) in Theorem 3.3 seems somewhat unpleasant. However 
cl E[Fn' d F 1 may be replaced by cl E[Fnl if F,,(w) E ~(I) a.s. for all n ~ 1 (see 
remark to Lemma 3.1). If cl E[Fn' dFJ ~ X, then (3.1) and (3.2) are satisfied. 
Condition (3.2) implies 

w-lim sup cl E[Fn1 c co X, 

and vice versa when I is reflexive and, as in Corollary 3.4, sup E(liFn(' )11) < 00 (see 
Lemma 1.1(1) and (2)). 
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