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ABSTRACT. Fatou’s lemmas and Lebesgue’s convergence theorems are established for
multivalued conditional expectations of random variables having values in the closed
subsets of a separable Banach space. Strong laws of large numbers are also given for
such multivalued random variables.

Introduction. Two notions of convergence for closed subsets in a metric space, the
Hausdorff distance convergence and the Kuratowski convergence, are eminently
useful in several areas of mathematics and applications like optimization and
control, stochastic and integral geometry, mathematical economics, etc. In an
(infinite-dimensional) normed space, however, the Mosco convergence [22, 23] is
known to be more tractable than the Kuratowski one.

The convergence theorems for multivalued integrals were discussed by Aumann
[5], Schmeidler [29], Hildenbrand and Mertens [17], and Artstein [1]. These authors
obtained Fatou’s lemma and Lebesgue’s convergence theorem with the Kuratowski
convergence for measurable multivalued functions having values in the closed
subsets of RY. Fatou’s lemma is of some use in mathematical economics (cf. [17, 29]).

A multivalued strong law of large numbers was first proved by Artstein and Vitale
[4] for independent, identically distributed (i.i.d.) random variables whose values are
compact subsets of RY. This strong law with the Hausdorff distance convergence has
been extended by several authors (see Cressie [8], Hess [12], Puri and Ralescu [25],
and Giné, Hahn and Zinn [10]) and was recently completed in [2, 15]. On the other
hand, Artstein and Hart [3] obtained a strong law of large numbers with the
Kuratowski convergence for i.i.d. random variables having values in the closed
subsets of R?, and applied it to a problem of optimal allocations.

This paper has two subjects on the convergence theory for multivalued random
variables whose values are closed subsets of a separable Banach space. The first part
(82) gives several results on passage to the limit under the integration of multivalued
random variables. The second part (§3) is concerned with strong laws of large
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614 FUMIO HIAI

numbers for multivalued random variables. Though the two parts are rather discon-
nected in contents, we discuss them together in this paper because they relate the
same type of convergence (the Mosco convergence) and have therefore the same
preliminaries.

In §1, we give definitions and preliminaries on multivalued random variables and
the Mosco convergence. In §2, we establish Fatou’s lemmas and Lebesgue’s conver-
gence theorems for multivalued conditional expectations containing multivalued
integrals. In §3, we obtain two types of multivalued strong laws of large numbers
with the Mosco convergence. The first is the strong law for i.i.d. multivalued random
variables, and the second is for only independent multivalued random variables with
some additional conditions. Our main tool in §3 is the existence of identically
distributed (resp. independent) selections of identically distributed (resp. indepen-
dent) multivalued random variables, which was presented by Hess [13, 14].

The author wishes to express his gratitude to Professor H. Umegaki for advice and
encouragement. He thanks Professor M. Valadier and the referee for useful com-
ments to the original version of this paper.

1. Preliminaries. Throughout this paper, let (£, &7, u) be a probability measure
space and X a real separable Banach space with the dual space X*. For each X C %,
cl X, w-cl X, and co X denote the norm-closure, the weak-closure, and the closed
convex hull of X, respectively. Let 2 (X) (resp. #.(X)) denote the family of all
nonempty closed (resp. nonempty closed convex) subsets of X. For X, Y € J'(X),
the distance d(y, X) of X and y € X, the Hausdorff distance h(X,Y) of X and Y,
the norm || X|| of X, and the support function s( X, -) of X are defined by

d(y, X) = inf ||y — x|,
xeX

h(X,Y)= max{ supd(x,Y), supd(y, X)},

xeX yeY

| Xl = h(X,{0}) = sup||x]|,

xeX
s(X, x*) = sup (x, x*), x* € Xx*
xeX

Let # be the Borel o-field on X and % 4, the o-field on #'(X) generated by the
sets { X € A (X): XN O+ T} taken for all open subsets O of X. A multivalued
(set-valued) function F: £ — X'(X) is said to be measurable if Fis (<, B x,)-mea-
surable, i.e., F(0) = {w € Q: F(w) N O # @} € o/ for every open O C X. Such a
function F is called a multivalued ( closed-valued) random variable or random closed
set. An F: Q@ — J'(X) is measurable if and only if there exists a sequence { f, } of
measurable functions f,: € — X such that F(w) = cl{ f,(w)} for all w € . Such a
sequence { f,} is called a Castaing representation of F. If F: @ — X(X) is measur-
able, then the graph Gr(F)= {(w,x)€ 2 X X: x € F(w)} of F is A/ ® By
measurable. Also the converse holds if (R, &7, p) is complete. The proofs of these
results are found in [7, 18). We denote by #[Q; " (X)] the family of all multivalued
random variables F: @ — X '(X).
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For 1 <p <oo, LP(Q, &, pn; X)=LP(Q; X) denotes the Banach space of
(equivalence classes of) measurable functions f: € — X such that the norm ||f]|, =
E(FIDY? = (follf(w)||? dp)/? is finite, and L?(Q; R) is denoted by L?. For
F e A2 (X)), let

Sp={fe L2 %X): f(v) € F(w) as.}
which is a closed subset of L'(2; X) and is nonempty if and only if d(0, F(-)) =
inf, ¢ p,llx|| is in L'. If S;# @, then there is a Castaing representation of F
contained in S (cf. [16, Lemma 1.1]). The integral or mean E[F] of F is defined by

ELF) = [Fau={E(f) = [ fduss e s},

where E(f) = [ofdp is the usual Bochner integral. This multivalued integral was
introduced by Aumann [5]. For 4 € &, let [, Fdp be the integral of F restricted on
A.

Given a sub-o-field # of o/ and a #-measurable F € #[Q; #'(X)], besides S} and
E[F]taken on (£, &, p), we define on (2, %, 1)

SH#B)={feL'(Q B, p; %) f(v) € F(w) as.},
“Fdp = (E(1):f € SH(#)).

E[F,%#] =
Q

For f € L'(Q; X), the conditional expectation of f relative to % is given as a function
E(f|%) € L\(Q, B, p; X) such that [LE(f|®B)dp= [pfduforall BE B. If Fe
M[Q2; H°(X)] with S} #+ &, then it is seen (cf. [16, Theorem 5.1]) that there exists a
unique (in the a.s. sense) #-measurable &[ F|#] € A [Q; X (X)] satisfying

Siira(#) = A{E(f|#):f€ St}, theclosurein L'(Q; X).
We call &[F|#] the (multivalued) conditional expectation of F relative to %. This
conditional expectation &[ F|#] has the properties analogous to those of the usual
conditional expectation (see [16, §5]). For example, we have

o f(g)é"[FW] dp=c [Fdp, Be®,
B B
and if F(w) € X (X) a.s., then
clfg[F|g] dp = cldeu, Be .
B B

Though we assumed in [16] that F € #[Q; X' (X)] is integrably bounded, i.e.,
IECI = sup, e r,llx]l is in L', most of the results and the proofs there remain valid
for F € #[Q; X' (X)] with S} # &. Note that &[F|#)(w) = cl E[F] when % =
{2,9Q}. We refer to [7, 9, 16, 18] for detailed expositions on multivalued random
variables and their integrals and conditional expectations.

Let { X,,} be a sequence in X' (X). We write X, 5 x if h(X,, X) — 0 for some
X € X' (X). Rather than this Hausdorff distance convergence, we use in this paper
another notion of convergence introduced by Mosco [22, 23] following the Kuratow-
ski convergence (cf. [21, p. 339]). Let s-lim inf X, be the set of all x € X such that
llx, — x|| = O for some x, € X,, i.e., d(x, X,,) = 0, and w-lim sup X, be the set of
all x € ¥ such that x, > x (i.e., x, converges weakly to x) for some x, € X, and
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some subsequence { X, } of { X,}. Clearly s-lim inf X, C w-lim sup X, holds, and
s-lim inf X, € X (X) (€ X (X) if {X,} € H.(X)) unless it is empty. We write
simply X,, = X if
s-lim inf X, = X = w-lim sup X,,.
Concerning the Mosco convergence, see also Salinetti and Wets [26, 27] and Tsukada
[31, 32].
We give here some elementary facts on w-lim sup X, for later use.

LeMMA 1.1. Let { X} and {Y,} be sequences in A (X).

1) If XeX(X) and lim sup s(X,,, x*) < s(X, x*) for every x* € X*, then
w-lim sup X, C X.

Suppose that X is reflexive. Then:

(2) If sup|| X,,|| < oo, then w-lim sup X, is nonempty weakly compact and

lim sups( X,, x*) < s(w-lim sup X, x*),  x* € ¥*.
(3) If sup|| X,,|| < oo, then

w-lim sup cl( X, + ¥,) € w-lim sup X, + w-limsup Y,,.
(4) If w-lim sup X,, and w-lim sup Y, are nonempty, then

h(cl(w-lim sup X, ), cl(w-lim sup Y,)) < limsup #( X,,, ,,).
PROOF. (1) If x € w-lim sup X,, then x, — x for some x, € X, and hence
(x, x*y = hm(xk, x*) < lim sup s( X, x*)
<s( X, x*), x*ex*
which implies x € X.

(2) Let r = sup|| X,|| < co. Since {x € X: ||x|| < r} is compact and metrizable in
the weak topology, we have

w-lim sup X, = [ w-cl( U x,

n=m

m=1
Given x* € X*, a sequence {x,} of x, € X, can be chosen so that (x,, x*) —
lim sup s( X,,, x*) and x, — x for some x € X. Hence x € w-lim sup X, and
lim sup s( X, x*) = (x, x*) < s(w-lim sup X, x*).
(3) If z € w-lim supcl(X, + Y,), then x, + y, > z with x, € X, and y, €7,

We may assume x, — x and so Vi 5 y=2z—x Hence z = x + y € w-lim sup X,
+ w-limsup ¥,,.

(4) Assume lim suph(X,,Y,) < co. Let x € w-lim sup X,,, ie, x, 5 x with

« € X,,. For each k > 1, we select a y, € Y, such that ||x, — ykn h(X,,Y,)+
k -1 Slnce {x,} and hence {y,} are bounded assuming y, 5 ) we have y €
w-lim sup Y, and

d(x,cl(w-limsup Y,)) < ||x — y|| < liminf|lx, — y,||
< limsuph(X,,Y,).

Thus (4) is proved. Q.E.D.
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2. Convergence of multivalued conditional expectations. In this section, we estab-
lish several convergence theorems for multivalued conditional expectations (particu-
larly for multivalued integrals). We notice that the proofs of convergence theorems
in [1, 5, 17, 29] for multivalued integrals are essentially dependent on the finite
dimensionality.

Throughout this section, let % be a fixed sub-o-field of «7and { F,} a sequence in
M[Q; A (X)). We first show the monotone convergence theorem. The same result for
multivalued integrals was given in [14].

THEOREM 2.1. Suppose that Fi(w) C F(w) C --- a.s. with S}l # @ and let F(w)
=cl(UP | F(w)),w € Q. Then F € M[Q; # (X)) and

EFI12)(w) = cl( f_jlé’[wa](w)) as.

PROOF. Let G(w) = (U5, €[ F,|#)(w)), w € Q. Then F, G € A[Q; H#(X)] and
G is #-measurable. Obviously,
S}"]CSFI}C CS}-,

S}[m.@](g) c S}[FZWZ](Q) c - CSi(2B).

For any f € S}, using [16, Theorem 2.2] we have

inf |If = glh = E(d(f(-),F,(-)) —0

since d(f(-), F,(+)) € L' and d(f(w), F,(w))|0 as. Hence Si = cl(Uy_, St ) and
similarly S(#) = cl(U%_, S 7 ,(#)). Thus

[ee]

Shra(B) =cll U (E(f18):fe S} }| = S5(4),

n=1

which implies [ F|#)(w) = G(w) as. Q.E.D.

Before giving Fatou’s lemmas, we state the following theorem concerning the
measurability of s-lim inf and w-lim sup of {F,} as the infinite dimensional
extension of [28, Theorem 3.1].

THEOREM 2.2. (1) If s-liminf F,(w) # @ a.s., there exists an F € M[Q; A (X)]
such that

F(w) = s-liminf F,(w) a.s.

(2) Suppose that X is reflexive. If sup||F,(w)| < oo a.s., then there exists an
F € H[Q; A (X)) such that

F(w) = w-limsup F,(w) a.s.

PRrOOF. (1) Let G(w) = s-lim inf F,(w). We may assume that G(w) # & for all
w € Q. Since

Gr(G) = {(w,x) € @ x X:d(x, F,(w)) = 0} € #® By,
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there is a sequence {g,} of #/-measurable functions g,: & — ¥ such that G(w) =
cl{ g,(w)} for all w € Q, where o/ is the completion of «/with respect to p. Choosing
#measurable functions f,: @ — X with f (w)=g,(w) as., we define F(w)=
cl{ f,(w)}, w € Q. Then F € #[Q; ¥ (X)] and F(w) = G(w) a.s.

(2) We may assume that ||F,(w)|| <7 (< o0) for all w € € and n > 1. Let
X, = {x € X: ||x|| < r} which is a compact metric space in the weak topology.
%,(X,) denotes the family of all nonempty weakly closed (i.e., weakly compact)
subsets of X,. Now let F(w) = w-lim sup F,(w) and G,(w) = w-cl(U%_,, F,(w)),
m > 1. We then have F(w)=N%_,G, (w)# @ for all w € . Since each G,, is
measurable as a multivalued function G,: @ — %,(X,), F is measurable as F:
Q — % (X,)by|[7, Proposition II1.4]. Hence it is seen from [7, Theorem II-10] that

F(C)=0\{wveQ Flo)cX \C}led
for every C € €,(X,). For each open O C X, taking a sequence {V;} of closed balls
with O = U%_,V,, we have

J=1"j

F~(0) = G F(X,nV)esd.

Thus F € #[Q; 4 (X)]. Q.E.D.

REMARK. If sup||F,(w)|| < oo for every w € & in Theorem 2.2(2), then the above
proof shows that w-lim sup F, (-) itself is in #[Q; 2" (X)]. This remark, together with
the improvement of the above proof (2), is due to M. Valadier.

In the subsequent theorems, we always assume that F € #[Q; X' (X)]. We now
prove two types of Fatou’s lemmas.

THEOREM 2.3. Suppose that there exists a ¢ € L' with d(0, F(w)) < £(w) a.s. for
alln > 1. If F(w) = s-liminf F,(w) a.s. and S} # @, then

E[F|%#])(w) C s-liminf &[ F,|B)(w) a.s.
PROOF. For each f € S} and n > 1, define G,: @ — X#'(X) by
G,(0) = {x € F(w):1If(0) x| < d(f(w), F(«)) +n7'}, w9

Since G1(G,) € &/ ® %, we can select a measurable function f,: £ — X with
f(w) € G, (w)as. Since d( f(w), F,(w)) = 0 a.s. and

I1f(@) = fu(@)]l < d(f(w), F,(@)) +n!
<lf(e)l +é(0) +1 as.,

we have f, € S}" and || f(w) — f,(w)|| = 0 a.s. By Lebesgue’s convergence theorem
for usual conditional expectations, it follows that

d(E(f1%)(w),6[F|%](«)) <IE(f128)(w) — E(f|B)()l
<E(IFC) = £ON2)w) =0 as.,
and hence

E(f|%#)(w) € s-liminf &[F|ZB](w) a.s.
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For any g € S r,4)(#), there is a sequence { f;} in S¢ with || E(f|B)«) — g(w)|
— 0 a.s., so that g(w) € s-lim inf &[F,|#])(w) a.s. Taking a Castaing representation
of &[ F| %) contained in Sj z,5,(#), we obtain the desired conclusion. Q.E.D.

THEOREM 2.4. Suppose that X is reflexive and there exists a £ € L' with ||F,(w)|| <
{(w)a.s. foralln > 1. If F(w) = w-lim sup F(w) a.s., then

w-lim sup &[F,|%](w) € &[ co F|%](w) a.s.,
where co F € M[Q; X (X)) is given by (co F)(w) = co F(w).
PrROOF. We get also ||F(w)|| < é(w) as. Let x* € ¥*, then s(F(-), x*) € L.
Using [16, Theorem 2.2], we have

fBE(S(F(~),X*)I%‘)(w)du =[Bs<F<w),x*) dp = sup fB<f(w),X*>du

/€St

= sup /B<E(f|9a’)(w),x*> dp

fe st

sup [ (g(w), x*) dp
gGS}[F@](g)

st((f[sz](w),x*)du, Be 4.
Hence
E(s(F(-), x*)|#)(w) = s(6[F|Z](w), x*) as.
and similarly
E(s(F,(-), x*)|B)(w) = s(E[F|#](w), x*) as. n
Further, by [16, Theorem 5.2(4°)],
&[co F|#](w) = co &[F|#](w) as.

Thus, by Fatou’s lemma for usual conditional expectations and Lemma 1.1(2), we
have

limsup s(&[F,|Z)(w), x*) < E(limsup s(F,(-), x*)|# )(w)
< E(s(F(-), x*)|2)(w) = s(&[ co F|2B](w), x*) as.
Because of the separability of X*, there exists a p-null set N € &/such that
lim sup s(&[F,|B](w), x*) < s(&[co F|2B](w), x*), x*€¥* weQ\N.

This shows the theorem from Lemma 1.1(1). Q.E.D.

An A € & is called a #-atom if for each A’ € /with A’ C A, there existsa B € #
satisfying u((4 N B) A A’) = 0. According to Valadier [33], if ({2, &7, n) has no
F-atom, then

\%
—

&lcoFIB|(w) =&[FIB)(w) as.
for every F € #[Q; X' (X)) with S} # &.
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By Theorems 2.3 and 2.4 and the result stated just now, we obtain the following
Lebesgue’s convergence theorem.

THEOREM 2.5. Suppose that X is reflexive and there exists a ¢ € L' with ||F,(w)|| <
&(w) a.s. for all n > 1. If F(0) > F(w) a.s. and if (2, &, p) has no %B-atom or
F(w) € X (X) a.s. (this is the case when F,(w) € X (X) a.s. for alln > 1), then

S[F\%B](w) > 6[FIB](w) a.s.
To prove Lebesgue’s convergence theorem in the Hausdorff distance, we need
LEMMA 2.6. For each integrably bounded F, G € M [$¥; A (X)],
h(&[F|%)(w),€[GI12])(w)) < E(h(F(-),G(-))IZ)(w) as.

PROOF. Since h(F(w), G(w)) < ||F(w)|| + ||G(w)]l, we get h(F(-), G(+)) € L*. As
~ is seen from the last part of the proof of Theorem 2.3, there exists a sequence { f, } in
S; such that §[F|%B)(w) = cl{ E(f,|%)(w)} as. For each n > 1, we select a se-

quence {g,: j>1} in S¢ such that ||f,(w) — 8. (@) d(f(w), G(w)) as. as
Jj = oo. We then have

sup  d(x, ¢[G|B](w)) < sup mfIIE(fI«”é’)(w) E(g,,|%)(w)]
XEE[F| B w)
< sup -n}fE(uf,,(-) — 8, ()%B) ()

=supE(d(f,(-),G(-))|%)()

E(supd(£,(),6())i#)(e)

E(h(F(-),G(-))|%)(w) as.
Thus the lemma is proved. Q.E.D.
We write F, X Fin probability if h(E,(-), F(-)) — 0 in probability.
THEOREM 2.7. Suppose that there exists a £ € L' with | F(w)| < é(w) a.s. for all
n>1.IfF(w) 4 F(w)a.s. (resp. F, 4 F in probability), then

E[F,|B)(w) > E[FIB)(w) aus.
(resp.éa[Fn|Q] 4 E[F|%B]in probability).
ProoF. Since h(F,(w), F(w)) < 2é(w) as. and h(F(w), F(w)) > 0 as., by
Lemma 2.6 we have
h(E[F,|8](w), 6[F|#](w)) < E(h(F,(-), F(-))|#)(«) > 0 as.

The assertion for the convergence in probability is verified by the argument of
selecting a.s. convergent subsequence. Q.E.D.

Particularly when # = { @, 2}, the above theorems give the corresponding con-
vergence theorems for multivalued integrals. Indeed we obtain more than those as
follows.
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THEOREM 2.8. (1) Suppose that {d(0, F,(-))} is uniformly integrable. If F(w) =
s-lim inf F,(w) a.s. and S} + &, then

cl E[F] C s-liminfcl E[E,].
(2) Suppose that X is reflexive and {||F,(-)||} is uniformly integrable. If F(w) =
w-lim sup F,(w) a.s. and S} # @, then
w-limsup cl E[F,] c cl E[ F].
(3) Suppose that X is reflexive and {||F,(-)||} is uniformly integrable. If F,(w) —
F(w)a.s., then
clE[E,] - clE[F].

(4) Suppose that {||F,(-)||} is uniformly integrable. If F, L Fin probability, then
E[F]5cE[F].

PROOF. First recall that Fatou’s lemma and Lebesgue’s convergence theorem for
usual integrals hold under the uniform integrability condition. So the proofs of (1)
and (4) are analogous to those of Theorems 2.3 and 2.7.

(2) To prove this, it suffices in view of Lemma 1.1(3) to show the nonatomic case
and the purely atomic case. If (£, &, u) has no atom, then cl E[ F] is convex (cf.
[16, Theorem 4.2]). Let f € S} and define F,, € MG A (X)],n,j>1byF,(0)=
F(w) if |F(w)|| <, F,(w)={f(w)} otherwise. Since {||F,(-)||} is uniformly
integrable, we have

suph(cl E[F, |, E[F,]) < sup E(h(E,, (), F,(")))

< sup (1E, (@)l + 11/ (@)]) dp > 0 asj = oo.

n ‘/;][F;,(w)ll>j}

Hence Lemma 1.1(4) implies

(2.1) w-lim sup clE[F, ] % w-lim supcl E[F,] asj— co.

1]

Moreover, for each j > 1, {||F,;(-)|l: » > 1} is uniformly integrable, sup,| £, («)||
< oo for all w € and w-lim sup, F, (w) C F(w) a.s. By Lemma 1.1(2) and
Theorem 2.2(2), we have

lim sups(cl E[F,,j], x*) < E(lim sups(F,,j(-), x*))

< E(s(w-lim sup F,,;(+), x*))

<s(lE[F], x*), x*e€Xx*j>1,
as in the proof of Theorem 2.4. Hence, by Lemma 1.1(1),
(2.2) w-lim sup clE[Fnj] CcE[F], j=1.

Thus the desired conclusion follows from (2.1) and (2.2).
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If (2, o7, p) is purely atomic, then there are countable disjoint atoms 4 ,E S,
Jj =1, with € =U;4, Hence F and F, are given by F(w)=1X,1,(w)X; and
F,(w)=X;1, (w)X,;, where 1, is the characteristic function of 4; and X, X, , €
X'(X) with X; = w-lim sup, X, .. Since {||F,(-)||} is uniformly integrable, we have

sup,|| X, || < oo forallj > 1 and
suph(cl > w(4,)X,,,dE[F,]| <sup X u(A4,)IX,|>0 asm— .
n j<m no j>m
Hence Lemma 1.1(4) implies
(2.3) w-limsup ¢l ) u(4,)X,; % w-lim supcl E[F,] asm — 0.
n j<m
Moreover it follows from Lemma 1.1(3) that

(2.4) w-limsup cl )} p(4,)X,, c 2 p(4,)X,, m>1
n j<m Jj<m
Now let x € w-lim sup cl E[F,]. Then, by (2.3) and (2.4), ||x,, — x|| — 0 for some
X, €L ., m(4,)X,. From S} # @, we get £ pu(4))[|yll < oo with y, € X, j > 1.
Since
x, + 2 n(4,)y € E[F],

j>m

Xt 2 N(Aj)Yj X

J=m

’—>O asm — o0,
1

we obtain x € cl E[F]. Thus (2) is proved.

(3) Since ||F(w)|| < liminf||F,(w)|| a.s., we get ||[F(-)|| € L. Hence (3) is im-
mediate from (1) and (2). Q.E.D.

REMARK. It is obvious that the convergence theorems (1)—(4) in Theorems 2.8 for
multivalued integrals are true on a o-finite measure space (£, %/, p) when
{d(0, F,(-))} (resp. {||F,()II}) is dgminated by an L!-function. Here the term a.s. is

replaced by a.e. and (4) holds if F, — F a.e. or in measure.

3. Multivalued strong laws of large numbers. There are two types of strong laws of
large numbers. The first is the strong law for i.i.d. random variables, and the second
is for independent random variables with the same mean and some L”-norm
condition. The first is generally valid for Banach space-valued random variables (cf.
[24]). On the other hand, the second is not necessarily valid for the Banach
space-valued case and is closely connected with some geometric conditions of a
Banach space (see below). In this section, we obtain two types of strong laws of large
numbers for multivalued random variables. The same strong laws were considered in
[15] for weakly compact convex-valued random variables.

Given F € #[Q; X (X)], we define a sub-o-field o/ of &7 by o/ = { F X (¥):
UE By} where FF{(U) = {w e Q: F(w) € %}, ie., & is the smallest sub-o-
field of =/ with respect to which F is measurable. The distribution of F is a probability
measure p, on B, defined by p (%)= p(F (%)), % € By, Multivalued
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random variables F;, € #[Q; X (X)], i € I, are said to be independent if o/, i € 1,
are independent, identically distributed if all pp are identical, and i.i.d. if they are
independent and identically distributed.

In the following lemma, we state a part of the results in [14] (see also [3, 11] for
the case ¥ = RY). We give the short proof for convenience.

LeMMA 3.1. (1) For each F € M [Q; X (X)) with S} + &,
COE[F] = coE[F, #,].
(2) Let F, G € M[Q; KA (X)) be identically distributed. For each f € S}(s/}), there
exists a g € SE(g) such that f and g are identically distributed.
(3) For each identically distributed F, G € M [Q; X (X)) with S} + @,
E|F, o] = E[G, #;].

PrOOF. (1) Since co Fis &/ -measurable (cf. [16, Theorem 1.5]), by [16, (5.5)] we
have

Sor( ) = {E(f|#p):f € S r )
Moreover SL., = co S} and S, (7;) = co SL(#;) by [16, Theorem 1.5]. Hence
COE[F]=c E[coF] = c{ E(E(f|5;)):f € Sk}

= E(f):f€ S'sr(Hp)} = cOE[F, ).

(2) Since X is separable and f is &/, -measurable, it is not hard to show that there
exists a (%4 x)» #x)-measurable function ®: #'(X) — X satisfying f(w) = ®(F(w))
for every w € Q. Now define g(w) = ®(G(w)), w € Q. Since F and G are identically
distributed, f and g are also. We have

L igt@)ide= [ 10 dug= [ 1®(X)dur= [[1f()ild < o0.

Because the function (x, X) = d(x, X) of X X X#'(X) into R is By ® B 5y
measurable, d(f(-), F(-)) and d(g(-),G(-)) are identically distributed. Hence
d(f(w), F(w)) = 0 a.s. implies d(g(w), G(w)) = 0 a.s. Thus g € S}(.Z,;) follows.

(3) is immediate from (2). Q.E.D.

ReEMARK. If F(w) € X (X) a.s. in Lemma 3.1(1), then E[F]= E[F, #/] since
SH(p) = { E(f|ZF): f € S}} as in the above proof (1). Hence E[ F] = E[G] holds
if F(w), G(w)€ X (X) as. in (3). These are not true generally. In fact, let
Q=Q,U {w,}, where u(Qy) = p({w,}) =1/2 and Q, is nonatomic. Define F,
G e A[Q; X (R)] by F(w) = G(w;) = {0,1}, F(w;) = G(w) = {0}, w € &,. Then
F and G are identically distributed, but E[F] = [0,1/2] and E[F, /] = E[G] =
{0,1/2}.

We now establish the infinite dimensional version of multivalued strong law of
large numbers given in [3, Theorem 3.2].

THEOREM 3.2. If { F,} is a sequence of i.i.d. random variables in M [$2; X" (X)] and
Sk # O, then

-’1;01 Y F(w) > coE[F] a.s.

i=1
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PROOF. Let X = co E[F,] and G,(w) = n"clX" | F(w), @ € @, n > 1. For any
x € X and ¢ > 0, by Lemma 3.1(1) and (3) we can choose f; € S}/(.MF/), 1<j<m,
such that Hm“Z;”:l E(f;) — x|| < & By Lemma 3.1(2), there exists a sequence { f, }
of f, € S}-”(JJFI’) such that f,_i),.;, k> 1, are identically distributed for each
j=1,...,m. Let xj=E(fj), 1<jsm lf n=(k—1)m+ [ where 1 << m,
then

1 n 1 m
;Elﬁ(w) —;Elxj

1 m k 1 m 1 m
= n Zf(i~1)m+j(w)——; Z -f(k‘l)m+j(w)_;;l_ ij
Jj=1i=1 Jj=I1+1 j=1 I
k21 k AU
< py : % Zlf(i—l)erj(w) = x|+ Py -21 Z”f(k_l)mﬂ(w)“
Jj= i= j=

For 1 <j < m, since { f,_1)+,: kK > 1} is a sequence of i.i.d. random variables in
LY(Q; %), it follows that

-0 as.ask — o

1 K
% A‘_L_:lf(i_l)mﬂ(w) - X
and hence k‘lllj’(k_l),,,+j(w)|| - 0 a.s. as k = oo. Therefore
1 n 1 m

;Elf,-(w) - ;Elxj

Since n7'Y_, f(w) € G,(w) a.s., we have m 'L, x, € s-liminf G,(w) a.s. Thus
X C s-lim inf G, (w) a.s.
Next let {x,;} be a sequence dense in X\ X. By the separation theorem, there

exists a sequence { x¥} in X* with ||x¥|| = 1 such that

(xjpxfy —d(x;, X) > s(X,xF),  j>1.
Then x € X if and only if (x, x}) < s(X, x}) for all j > 1. Because the function
X = s(X, x¥) of #'(X)into (-0 , 0] is & (x,-measurable and

E(s(F(-),x*)) =s(X,x*) <0, j>1,
{s(F,(-), x}): n > 1} is a sequence of i.i.d. random variables in L! for eachj > 1. So
there exists a p-null set N € &7 such that, for every w € @\ Nandj > 1,

—- 0 as.asn — 0.

s(G,(w), x¥) =% Y s(F(w), x*) > s(X,x*) asn— oo.
i=1

If x € w-lim sup G,(w) for w € @\ N, then xklv»x for some x; € G, (w) and
hence

(x, x7) = lim (x;., xf) < lim s(G, (@), x*) =s(X,x¥), j=1,

which implies x € X. Thus w-lim sup G,(w) € X a.s. Q.E.D.
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REMARK. C. Hess (Loi forte des grands nombres pour des ensembles aléatoires non
bornés a valeurs dans un espace de Banach séparable, C. R. Acad. Sci. Paris Sér. I 300
(1985), 177-180) independently proved Theorem 3.2 for the pairwise independent,
identically distributed case.

We finally obtain another type of multivalued strong laws of large numbers.
Concerning strong laws for only independent Banach space-valued random varia-
bles, the main results are as follows (cf. [6, 19, 20, 34]): X is B-convex (resp. of type
p, where 1 < p < 2)if and only if ||n'X"_, f,(w)|| = O a.s. for any sequence { f,} of
independent random variables in L*(Q; X) (resp. L?(Q; X)) with E(f,) =0 and
sup E(||£,]1*) < oo (resp. 2, n"PE(]|f,II?) < o). Note that ¥ is B-convex if and
only if X is of type p for some p > 1. We refer to [30, 34] for B-convexity and types
of Banach spaces.

THEOREM 3.3. Suppose that X is of type p, where 1 < p < 2. If { F,} is a sequence of
independent random variables in M{; H (X)) such that L3 n PE(||F,()||?) < o0
and if there exists an X € X (X) such that

(3.1) X C sliminfcl E[F,, o |,
(3.2) limsup s(cl E[F,], x*) < s(X, x*),  x* € ¥*,
then

n
%cl Y F(w) > coX a.s.

i=1

PRrOOF. Let G(w) = n™clX!_, F,(w). For any x €co Xand e > 0, select x,,...,x,,

€ X such that ||m‘1Z;"=1x/ — x|| < e. By condition (3.1), there exists a sequence

{f,} of f, € Sp(g) such that |[E(f_1)ms;) — X,/ > 0 as k > oo for each

j=1....m Lety,=E(f),n=11fn= (k- 1)m +1 where 1 < / < m, then
n n m

;igl(fi(‘*’)_)’i ;iglyi ;x

1
m
n

Z( (0) =y,

|l <

i=1

:lk-
w-l’—'

k .
Z ”y(i—l)m+j - xj”
i=1

1 “ k 1 -
; Z ”)"(k 1)m+J” (_ - ',;) E X
j=1 Jj=1

Since {f,} is a sequence of independent random variables in L?({; X) with
T2 nPE(||f,lI?) < oo, it follows that ||n'L"_,(f,(w) — y,)|| = O a.s. Therefore

',; g f:(“’) - ; Elxj

so that m'IZle € s-liminfG,(w) a.s. Thus co X C s-lim infG (w)as.
Let {x}} be as in the proof of Theorem 3.2 taken for co X. Then {s(F,(-), x7):
> 1} is a sequence of independent random variables in L7 with
Z,,‘l n~PE(|s(F,(), x})|?) < co. Further, by (3.1), (3.2) and Lemma 3.1(1),

E(s(F,,(-),x}‘)) = s(cl E[F,], x*) - s(X, x¥) asn— oo.

-0 as.asn—> o0,
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Hence, for each j > 1, we have s(G,(w), x}) = s(X, x}) as. as n = oo. Thus
w-lim sup G, (w) € co X a.s. follows as in the proof of Theorem 3.2. Q.E.D.

COROLLARY 3.4. Suppose that X is B-convex. If { F,} is a sequence of independent
random variables in M[Q; K (X)] such that sup E(||F,(-)||*) < o and if there exists
an X € X' (X) satisfying (3.1) and (3.2) in Theorem 3.3, then

n
% 1Y F(w)—>coX a.s.

i=1

REMARK. Condition (3.1) in Theorem 3.3 seems somewhat unpleasant. However
cl E[F,, o/, ] may be replaced by cl E[F,] if F(w) € X (X) as. for all n > 1 (see

remark to Lemma 3.1). If cl E[F,, &/ ] 4 X, then (3.1) and (3.2) are satisfied.
Condition (3.2) implies

w-lim sup cl E[F,] € co X,

and vice versa when X is reflexive and, as in Corollary 3.4, sup E(||F,(-)|]) < oo (see
Lemma 1.1(1) and (2)).

REFERENCES

1. Z. Artstein, A note on Fatou’s lemma in several dimensions, J. Math. Econom. 6 (1979), 277-282.

2. Z. Artstein and J. C. Hansen, Convexification in limit laws of random sets in Banach spaces, Ann.
Probab. 13 (1985), 307-309.

3. Z. Artstein and S. Hart, Law of large numbers for random sets and allocation processes, Math. Oper.
Res. 6 (1981), 485-492.

4. Z. Artstein and R. A. Vitale, 4 strong law of large numbers for random compact sets, Ann. Probab. 3
(1975), 879-882.

5. R. J. Aumann, Integrals of set-valued functions, J. Math. Anal. Appl. 12 (1965), 1-12.

6. A. Beck, On the strong law of large numbers, Ergodic Theory (F. B. Wright, ed.), Academic Press,
New York, 1963, pp. 21-53.

7. C. Castaing and M. Valadier, Convex analysis and measurable multifunctions, Lecture Notes in
Math., vol. 580, Springer-Verlag, Berlin, 1977.

8. N. Cressie, A strong limit theorem for random sets, Suppl. Adv. in Appl. Probab. 10 (1978), 36-46.

9. G. Debreu, Integration of correspondences, Proc. Fifth Berkeley Sympos. on Math. Statist. and
Prob., Vol. I, Part I, Univ. of California Press, 1967, pp. 351-372.

10. E. Giné, M. G. Hahn and J. Zinn, Limit theorems for random sets: An application of probability in
Banach space results, Probability in Banach Spaces IV (A. Beck and K. Jacobs, eds.), Lecture Notes in
Math., vol. 990, Springer-Verlag, Berlin, 1983, pp. 112-135.

11. S. Hart and E. Kohlberg, Equally distributed correspondences, J. Math. Econom. 1 (1974), 167-174.

12. C. Hess, Théoréme ergodique et loi forte des grands nombres pour des ensembles aléatoires, C. R.
Acad. Sci. Paris Sér. A 288 (1979), 519-522.

13. | Loi de probabilité des ensembles aléatoires a valeurs fermées dans un espace métrique
séparable, C. R. Acad. Sci. Paris Sér. I 296 (1983), 883-886.
14. ___ | Loi de probabilité et indépendance des ensembles aléatoires a valeurs fermées dans un espace

de Banach, Séminaire d’Analyse Convexe, Montpellier, 1983, Exposé n° 7.

15. F. Hiai, Strong laws of large numbers for multivalued random variables, Multifunctions and
Integrands (G. Salinetti, ed.), Lecture Notes in Math., vol. 1091, Springer-Verlag, Berlin, 1984, pp.
160-172.

16. F. Hiai and H. Umegaki, Integrals, conditional expectations, and martingales of multivalued functions,
J. Multivariate Anal. 7 (1977), 149-182.

17. W. Hildenbrand and J.-F. Mertens, On Fatou’s lemma in several dimensions, Z. Wahrsch. Verw.
Gebiete 17 (1971), 151-155.

18. C. J. Himmelberg, Measurable relations, Fund. Math. 87 (1975), 53-72.



CONVERGENCE OF CONDITIONAL EXPECTATIONS 627

19. J. Hoffmann-Jorgensen, Probability in Banach space, Ecole d’Eté de Probabilités de Saint-Flour
VI-1976, Lecture Notes in Math., vol. 598, Springer-Verlag, Berlin, 1977, pp. 1-186.

20. , Probability and geometry of Banach spaces, Functional Analysis (D. Butkovi¢ et al., eds.),
Lecture Notes in Math., vol. 948, Springer-Verlag, Berlin, 1982, pp. 164-229.

21. K. Kuratowski, Topology, Vol. I (Transl. from French), Academic Press, New York, 1966.

22. U. Mosco, Convergence of convex sets and of solutions of variational inequalities, Adv. in Math. 3
(1969), 510-585.

23. , On the continuity of the Young-Fenchel transform, J. Math. Anal. Appl. 35 (1971), 518-535.

24. E. Mourier, L-random elements and L*-random elements in Banach spaces, Proc. Third Berkeley
Sympos. on Math. Statist. and Prob., Vol. II, Univ. of California Press, 1956, pp. 231-242.

25. M. L. Puri and D. A. Ralescu, Strong law of large numbers for Banach space valued random sets,
Ann. Probab. 11 (1983), 222-224.

26. G. Salinetti and R. Wets, On the relations between two types of convergence for convex functions, J.
Math. Anal. Appl. 60 (1977), 211-226.

27. , On the convergence of sequences of convex sets in finite dimensions, SIAM Rev. 21 (1979),
18-33.
28. , On the convergence of closed-valued measurable multifunctions, Trans. Amer. Math. Soc. 266

(1981), 275-289.

29. D. Schmeidler, Fatou’s lemma in several dimensions, Proc. Amer. Math. Soc. 24 (1970), 300-306.

30. L. Schwarz, Geometry and probability in Banach spaces, Lecture Notes in Math., vol. 852,
Springer-Verlag, Berlin, 1981.

31. M. Tsukada, Convergence of closed convex sets and o-fields, Z. Wahrsch. Verw. Gebiete 62 (1983),
137-146.

32. , Convergence of best approximations in a smooth Banach space, J. Approx. Theory 40 (1984),
301-309.

33. M. Valadier, Sur l’espérance conditionnelle multivoque non convexe, Ann. Inst. Henri Poincaré Sect.
B 16 (1980), 109-116.

34. W. A. Woyczynski, Geometry and martingales in Banach spaces— Part 11: Independent increments,
Probability on Banach Spaces (J. Kuelbs, ed.), Dekker, New York, 1978, pp. 267-517.

DEPARTMENT OF INFORMATION SCIENCES, SCIENCE UNIVERSITY OF ToKYO, Nopa City, CHIBA 278,
JAPAN

Current address: Research Institute of Applied Electricity, Hokkaido University, Sapporo 060, Japan



	0040233
	0040234
	0040235
	0040236
	0040237
	0040238
	0040239
	0040240
	0040241
	0040242
	0040243
	0040244
	0040245
	0040246
	0040247

