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Abstract 

In  this paper, we present a heuristic approach to an- 
alyze a boundary of network bandwidth allocated to the 
source(s). This approach can be applied for Call Ad- 
mission Control(CAC) in A T M  Networks. Our ap- 
proach applies two characteristic functions, a time E -  
pant i le  function to characterize the source behavior 
and a function to characterize a maximum amount of 
network bandwidth served b y  the multiplexer. These 
two functions are computed independently and when 
used simultaneously, i t  allows us to obtain a new and 
useful notion of the statistical bandwidth allocation. 
Moreover, we demonstrate the use of our approach on 
stochastic and deterministic sources. For the determin- 
istic source, we apply our approach to  the source char- 
acterized by Dual Leaky Bucket-based trafic descriptor. 
Its upper bound on bandwidth requirement can be easily 
obtained for performing a CAC function in  real time 
while providing a significant improvement of network 
utilization when compared to the peak rate-based band- 
width allocation. 

1. Introduction 

Generally, when a new connection request is re- 
ceived at the ATM networks, the Call Admission Con- 
trol (CAC) function is performed to decide whether to 
accept or reject the call. A call is accepted if the net- 
work has enough resources (bandwidth) to provide the 
Quality of Service (QoS) requirements without affect- 
ing the QoS provided to existing connections[l, 21. Ac- 
cordingly, bandwidth allocation is necessary for dealing 
with determining the amount of bandwidth required 
by a new connection for the network to provide the 
required QoS. 

Bandwidth allocation generally is classified into two 
types, a deterministic and a statistical bandwidth al- 
location. In deterministic bandwidth allocation, each 
connection is allocated by its peak bandwidth. This 
causes an inefficient bandwidth allocation for bursty 
connections. On the other hands, the amount of band- 
width allocated to a bursty connection in statistical 
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bandwidth allocation is in between its average and peak 
rate. Therefore, the sum of peak rates of connections 
multiplexed onto a link can be greater than the link 
bandwidth if the sum of their statistical bandwidths is 
less than or equal to the offered link bandwidth. In gen- 
eral, statistical bandwidth allocation allows more con- 
nections to be multiplexed in the network than the de- 
terministic, thereby, allowing better utilization of net- 
work resources. 

From a practical viewpoint, the statistical band- 
width allocation has some difficulties in implementa- 
tion because the statistical bandwidth of a connec- 
tion does not only depend on its own stochastic char- 
acteristics, but also the characteristics of the exist- 
ing connections in the network. Several approaches 
have been proposed for the statistical bandwidth allo- 
cation [5, 6, 7, 81. The well recognized is the equiva- 
lent capacity approach where an amount of bandwidth 
required by a source(s) is estimated from queueing 
problems[5, 6, 91. Consider a single source input to 
a finite capacity queue. The equivalent capacity of the 
source is equal to the service rate of the queue that 
achieves a desired cell loss probability. However, there 
are some evidences for the the inaccuracy of equivalent 
capacity[9]. Moreover, another problem of the equiv- 
alent capacity approach is that an equivalent capac- 
ity of the source(s) could not be simply determined 
particularly when it can not be calculated analytically. 
Specifically, for a given the buffer capacity value, we 
have to  find by trial and error the minimum value of 
service rate such that the loss probability encountered 
by source is less or equal to  the required &OS. This it- 
erative process can be very cumbersome because each 
iteration (i.e.] for each value of service rate to try) will 
involve in general a lengthy simulation to obtain the 
loss probability. 

In this paper, we provide an alternative approach in 
order to  simply determine bandwidth allocation. We 
have adapted and extended the heuristic framework 
from source policing[4] to  statistical bandwidth alloca- 
tion. The basic concept is to compute an efficient char- 
acterization of the sources and multiplexer indepen- 
dently but whose use in conjunction leads to a new and 
useful definition for bandwidth allocation. In addition, 
we illustrate the use of our approach on the stochas- 

20 

Authorized licensed use limited to: TOHOKU UNIVERSITY. Downloaded on March 12,2010 at 01:58:16 EST from IEEE Xplore.  Restrictions apply. 

http://tohoku.ac.jp


tic source and deterministic source. For the determin- 
istic source, we consider the worst-case source pass- 
ing through Dual Leaky Bucket(DLB). Accordingly, we 
have obtained the useful formulae of bandwidth alloca- 
tion for real-time computation of bandwidth allocation. 

2. Heuristic Approach 

Source 1 ---,, FIFO Multiplexer 

Source 2 TTTi l@-  
I 7' 

L- 
Source n 

Figure 1. System Model 

To present the prominent concept of our approach, 
we consider the system as shown in Fig.1. A multi- 
plexer is modeled as a finite queue of capacity L (in- 
cluding one in server) served by a single server with 
first-in-first out (FIFO) service discipline. The service 
time 1-1 is constant, equal to the time it takes to trans- 
mit an ATM cell. Let us assume that the multiplexer 
provides a cell loss ratio(CLR) less than a given value E 
for the current traffic from the existing calls. The new 
call is accepted, if CLR would be also less than E for the 
total traffic carried by the Multiplexer. In the discus- 
sion below, p is taken as unity (p = l), which means 
that time is measured in slots with a length equal to a 
cell transmission time ( ( 5 3  x 8)/link speed(bps)). 

In order to  determine bandwidth required by the 
source(s), we provide a heuristic approach which uses 
two functions, a time E-quantile function to character- 
ize the source behavior and a function to  bound the 
amount of bandwidth served by the multiplexer. 

2.1. Source Characterization: Time E-Quantile 
Function 

To characterize the behavior of source, we apply 
the time E-quantile function associated with the ar- 
rival process[3]. Let a [ t l ,  tz] denote the number of ar- 
rivals (cells) from the source in the interarrival [tl,tz]. 
The time+ quantile function corresponding to {a[s ,  s + 
T]} ,Vs ,T ,  is defined as below. 

Let A,(T) denote the E-quantile of 
a[s , s  + T],Vs,T i.e., 

A,(T) 2 min{m : Prob.(a[s, s + T ]  > m) 5 ~}.(1) 

Specifically, A,(T) specifies the maximum number of 
arrivals from source during an interval of length T slots 
for a given probability (1 - E )  where E is related to  the 
required &OS. 

For the deterministic source, A,(T) in Eq.1 is 
adapted to the following definition. 

Definition: 

A,(T) 2 ( l -~)a(s , s+T) ,Vs ,T  ( 2 )  

It is noted that the advantage of the characteriza- 
tion of the source by time E-quantile function is that 
although the computation of A,(T) is possible analyti- 
cally for simple source models only, very efficient tech- 
niques exist for empirical estimators of A,(T)[4, 121. 

2.2. Multiplexer Characterization 

In the following, we characterize a maximum net- 
work bandwidth which can be served by multiplexer 
in any interval of time. Let m[tl, t 2 ]  denote a num- 
ber of cells served by the multiplexer in the intervals 
[tl,tz]. The maximum number of cells served by the 
multiplexer is defined as follows. 

Definition: Let M ( T )  denote the maximum Rum- 
her of cells served by the multiplexer during an interval 
of length T slots i.e., 

M[T] 1 m[s, s + T] ,Vs ,  T. (3) 
According to  the system model, M ( T )  function corre- 

sponding to the FIFO-multiplexer is given as follows. 

M ( T )  = T (4) 

2.3. New Definition of Bandwidth Allocation 

In this subsection, we illustrate how to apply these 
two functions, A,(T) and M ( T )  to obtain a new defi- 
nition of bandwidth allocation. 

To guarantee the source characterized by A,(T) the 
QoS requirement specified by loss probability E, the 
multiplexer must satisfy the following condition. 

Eq.5 can be expressed in the following form: 

According to Eq.6, an amount of bandwidth re- 

Definition: Let c, denote the amount of bandwidth 

quired by the source(s) is defined as follows. 

required by a source(s) corresponding to  E i.e., 

(7)  

In the case of n multiplexed sources, the required 
bandwidth can also determined by c, but A,(T) of the 
aggregated traffic from these n sources need to be used. 
The computation of A,(T) could be complicated. How- 
ever, we may simply calculate the bandwidth require- 
ment of the n multiplexed sources as follows. 

Definition: Let C, define the upper bound on 
bandwidth requirement of n multiplexed sources i.e., 
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where A f ( T )  is A,(T) of the connection i. 
C, in Eq.8 sometimes overestimates the actual band- 

width requirement of the multiplexed n sources. How- 
ever, it is simple and useful from a practical viewpoint 
while providing a significant improvement of network 
utilization compared to the peak rate-based allocation 
as will be shown in Numerical Results. 

By the principle of induction, we easily find that 

U -  , f L I -,p-"."*, , ,y--V.u, , 
30 0.08928 I 0.35384 1 0.44313 1 0.42424 

1 0 - ~  

for n E N , N  = {1,2, ...}. 

as follows. 
Thus, the relationship between C, and c, is obtained 

n 

1 

z=1 

f L c(p=0.03) c(p=0.3) c c  
30 0.08928 0.35384 0.44313 

lop3 50 0.06862 0.33273 0.40100 

3. Applications of Heuristic Approach 

C 
0.42424 
0.38738 

One of the advantages of heuristic approach is that 
the bandwidth allocation can be simply determined be- 
cause A,(T) and B ( T )  are computed independently. 
We first compute (in case of source models) or mea- 
sure (in case of real sources like the video VBR source) 
the A,(T) and then find max,,%. In this section, 
we illustrate the use of our approach to stochastic and 
deterministic source model. 

3.1. Stochastic Source Model 

To illustrate the use of our analysis on stochas- 
tic source, we consider here a Bernoulli source. A 
Bernoulli source is completely specified by the prob- 
ability p that the source emits a cell in a slot[l3]. 

Let f , ( x )  denote the probability that x cells from 
the call z arrive at  the queue during interval of T slots. 
The time e-quantile function of a Bernoulli source i 
with parameter p ,  is simply given by 

T 

k = n + l  

= m i n { m : I p , ( m + l , T - m ) ( e }  ( 1 2 )  

where ft(z) = *p:(l - p , I T - l  and Ip, (a, b) ,  a, b > 
0, is an incomplete beta function[l3] expressed by 

Consequently, c, and C, are expressed as follows 

cf = maxvT (14) 
min{m : I p ,  (m  + 1, T - m) 5 E }  

T + L - 1  

Note that C, in Eq.15 is the upper bound on band- 
width requirement. We can calculate the actual statis- 
tical bandwidth required by the aggregate traffic from 
c, which uses A,(T) of the aggregate traffic. For ex- 
ample, the actual A,(T) of the aggregate traffic from 
n multiplexed Bernoulli sources is expressed by 

*T 

A,(") = min{m: f i * f i *  . . .*fn( k )  < ~ } ( 1 6 )  
k=m+l 

where operator j ;  denotes the convolution of the form 
f * 9(k) = Cl f ( M k  - 0. 
3.1.1. Numerical Examples 

Fig.2 shows the behavior of c,(T) of a Bernoulli 
source with parameter p and QoS parameter E for given 
buffer size L. It  is noted that ce(T) is sensitive to 
p while relatively insensitive to E .  In addition, the in- 
crease in L will result in decrease of ce(T) in short-term 
whereas negligible decrease in the long term. 

0 1000 2000 3000 4000 5000 6000 7000 8000 900010000 
T 

Figure 2. Behavior of Bandwidth Require- 
ment of a Bernoulli Source wrt. T 

Here we show the numerical results of C, (Eq.15) 
of two multiplexed Bernoulli sources, p = 0.03 and 
p = 0.3. Table 1 shows the results of C, and C, of 
a Bernoulli source(s) for various L and E .  It  is noted 
that the sum of individual c, is greater than C, that 
can be explained by Eq.10. 

I 30 I 0.14285 1 0.41269 1 0.55555 I 0.53000 
I 50 I 0.10465 I 0.37162 I 0.47627 I 0.45664 

( 1 5 )  
min{m : I ~ ,  ( m  + 1, T - m) I E }  

T + L - l  C, = maxvT 
2=1 
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3.2. Deterministic Source Model 

To illustrate the use of our approach on determin- 
istic source model, we consider the system in Fig. 3, 
where every source is enforced by a Dual Leaky Bucket 
before entering the network. 

Source 1 -Eh FIFO Multiplexer 

Source2 -m --I I I I I IQ- 
I 
I /'-L- 

Figure 3. System Model 

The DLB is constructed with two leaky buckets 
(LB) in a series where a (single) LB is considered as 
a discrete-state LB version. The discrete-state LB al- 
gorithm (LB in the following) used in this study con- 
forms to the device initially introduced in [l l] .  The LB 
characterized by parameters ( I ,  K )  can be explained as 
follows. A copy of arriving cells is put into a queue of 
finite capacity K (including one in the server). This 
queue is served by a server with constant service time 
equal to  I .  If no space is available for the copy when 
the cell arrives, the cell is discarded. Note that the LB 
only deals with copies of actual cells: a conforming cell 
incurs no additional delay in it. The DLB consists of 
a Peak Cell Rate (PCR)-LB with parameters (I,, K p )  
and a Sustainable Cell Rate (SCR)-LB with parame- 
ters (I,,K,), where I,, the inverse of SCR' , is larger 
than Ipr  the inverse of PCR. Note that I, 2 1 and 
Is > I p  are normalized with respect to p. Let us as- 
sume that the Kp = 1 so that the inter-cell spacing of 
conforming streams is constrained to be at  most I p 2  . 

The Maximum Burst Size (MBS)3 is calculated by 
M B S ( I p ,  I s ,  K,) = [';82;1 J where 1x1 is the largest 
integer smaller than or equal to  2. The set of three 
parameters (I,: I,, K,) (or equivalently, (I,, I,, M B S ) )  
form a traffic descriptor which is negotiated in a con- 
tract between the user and the network during the call 
setup phase. To guarantee QoS the existing connec- 
tions, it is necessary to allocate network bandwidth 
for all possible cell traffic that may be originated from 
the connections and will pass through UPC. There- 
fore, A,(T) of worst case source passing through UPC 
is used for bandwidth allocation. 

According to  the LB(1,K) specification, the maxi- 
mum number of cells permitted by DLB during T slots 
is given by [TI11 + K - 1, where [zl is the smallest 

SCR is an upper bound on the mean cell rate. 
Values of K p  > 1 allow for Cell Delay Variation (CDV) at  

the customer premises. 
MBS is the maximum number of back-to-back cells that can 

be sent a t  the peak cell rate ( l / I p )  without violation of sustain- 
able cell rate (l/I,). 

integer greater than or equal to  x [4]. Thus, A,(T) of 
worst case source passing through LB is given by 

A f B ( T )  = ( 1  - E ) (  rT/I] + K - 1). (17) 

Since DLB consists of two LI3s, A,(T) of 
DLB(I,, I,, K,) is given as follows. 

Therefore, we can determine the cL of the source 
characterized by DLB(I,, I,, K,) as foll.ows. 

c, in Eq.19 can be derived from the following formu- 
lae(See proof in Appendix). 

In the case of n sources, the bandwidth requirement 
C, is given by 

Since the calculation of C, in Eq.21 is rather com- 
plicated, we provide the following approximation. 

n 

This approximation is based on two observations. 

1. c, I E;=, ct. 

2. mzn(p/ Ip l ,  [T/I,] + K, - 1) < nkin(T/Ip,T/Is + 
K ,  - 1) + 1. 

23 

Authorized licensed use limited to: TOHOKU UNIVERSITY. Downloaded on March 12,2010 at 01:58:16 EST from IEEE Xplore.  Restrictions apply. 



3.2.1. Numerical Examples 

I v 

B 

In Fig.4, we show the numerical results of c, with 
respect to  L by varying I p ,  I,, and K,, respectively. 
By setting E equal to  and 0, c, has the following 
observations. First, c, is less sensitive to  E values. Sec- 
ondly, c, decreases with the increase of L and is equal 
to a long-term value ((1 - E ) ? )  if L is greater than 
K,  x I,. Finally, c, increases with the decrease of Ip  
and Is, while it increases with the increase of K,. 

Ip =8, Ks =20$ =0,  10e-6 

eh'01: 200 400 600 800 1000 1200 1400' 
Buffer L 

mo.01 ' I 
0 200 400 600 800 1000 1200 1400 

Buffer L 

m0.01 I I 
0 200 400 600 800 1000 1200 1400 

Buffer L 

Figure 4. Effect of ( I p ,  Is, Im) to C ,  

We now apply C, in Eq.22 for performing real-time 
CAC function. The new connection characterized by 
( Ip , ,+ l ,  Is,+, , K,,,,) will be accepted if the bandwidth 
required by n + 1 connection does not exceed limited 
link load p, ( p  5 1). 

According to the system model in Fig.3, we show 
the performance of CAC function through numerical 
examples. For presentation purpose, the calls handled 
by the multiplexer are classified into F classes. In this 
paper, we limit F to 2. Every call in the same class i 
is enforced by a DLB with identical ( I p ,  I,, K,) values. 

The system parameters are chosen as follows. We set 
the required cell loss ratios at multiplexer E equal to  0 
and the limited network load p equal to  1. We consider 
the admission control of two classes where class 1 and 
class 2 traffic are characterized by a set of parameter 
values (20,100,80) and (10,50,40) respectively. 

Let us define n, as the number of admitted calls 
of class i, i=1,2, ..., F. An admission region is defined 
as the set of all combinations of calls from F classes 
(nI,n2, . . , n ~ )  for which the required E is achievable. 
In the numerical results given below, we obtain the 
outermost boundary of the regions. The admission re- 
gions obtained for the upper bound-based CAC scheme 
are shown in Fig. 5, where L is 500, 1000, 2000, or 
8000. The results show that the upper bound-based 
CAC scheme provides the admission region larger than 
peak rate-based CAC does. This suggests that the up- 
per bound-based CAC is more effective compared to  
the peak rate-based CAC. 

Upper Bound-based 
CAC Scheme 

0 20 40 60 80 100 
Class 1 Connections 

Figure 5. Admission regions 

We also show the sensitivity of the upper bound- 
based CAC scheme to  changes in buffer size L. As- 
suming that only single class i(i = 1,2) of calls are 
transported, we obtain the maximum number of ad- 
mitted calls as a function of the buffer size. The buffer 
size is increased from 1 to 10,000, while the required 
CLR is fixed at E = 0. As shown in Fig. 6, the Iarger 
the L, the larger the maximum number of calls that 
can be admitted. 

1000 2000 3000 4000 5000 6ooo 7000 8000 9000 I& 
L 

Figure 6. Maximum admitted calls vs.L 
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4. Conclusions 

In this paper, we have introduced a heuristic 
approach in order to determine an amount of network 
bandwidth allocated to a source(s). Our approach ap- 
plies two efficient functions: a time equantile func- 
tion associated with source and a function associated 
with the multiplexer. These two functions are com- 
puted independently and when used simultaneously, i t  
allows us to  obtain a new and useful notion for band- 
width allocation. In addition, we demonstrate the ap- 
plication of our approach to real-time Call Admission 
Control when source is characterized by Dual Leaky 
Bucket based traffic parameters. Numerical results in- 
dicate that significant improvement of network utiliza- 
tion caa be achieved when compared to the peak rate- 
based bandwidth allocation. 

A. Proof of Eq.19 

min(rE1, [El + K, - 1) 
Cr = (1 - €)mazvT T + L - 1  (27) 

where I, < I, and K, 2 1 

(28) 
T T Define 1-1 = X,, 1-1 = X ,  
I P  I ,  

where X,, X ,  are the integer numbers. 
Hence ( X ,  - 1)I, + a, = ( X ,  - 1)I, +as (29) 

Define T, be the maximum T that gives [fl = [E] + 

1. If T 5 T,, Eq.27 can be replaced by 

where 1 5 a, _< I, and 15 as 5 I,. 

K, - 1 

IT1 
C< = (1 - €)mazl<Tg-, (30) T + L - l  

2. If T > T,, Eq.27 can be replaced by 

From Eq. 33 and 37, we finally obtain Eq.20, where 
and 121 is computed by 

TZ Ip(Ks - 2) + I s  +I%) - 1 rz1 = 1 ---I. (39) I, - I P  
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