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For a digraph G ¼ ðV ;AÞ and a source vertex s 2 V , suppose that we wish to compute a shortest directed path
from s to every vertex v 2 V n fsg (if exists) under several arc costs. Frigioni et al. (2000) proposed a dynamic
algorithm which efficiently reuses the shortest-paths information computed for the previous arc costs. In this paper,
we experimentally evaluate how such a dynamic algorithm works efficiently for real-world networks.
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1. Introduction

One of the most fundamental problems in computer science is the (single-source) shortest-paths problem: Given an
arc-cost digraph (directed graph) G ¼ ðV ;AÞ and a source vertex s 2 V , we wish to find a shortest directed path from s

to every vertex v 2 V n fsg if exists. This problem can be solved in time Oðmþ n log nÞ by the well-known Dijkstra
algorithm [1, Section 24.3] [2] using Fibonacci heaps for its implementation [3], where n is the number of vertices in G

and m is the number of arcs in G.
The shortest-paths problem has several applications even in real-world situations. As an interesting example, the

problem is used to simulate traffic jams [5, 6]. In the simulation, each car on the street is assumed to move along a
shortest route (path) from the current location to its destination. Then, finding a shortest route for each car corresponds
to finding a shortest path in the corresponding digraph G. Note that, in the simulation, each arc cost of G corresponds to
the transit time of the street (not the length of the street), and hence it would be changed according to the traffic jam.
Therefore, the shortest routes for cars vary from hour to hour, even though the graph structure is the same. We thus
need to solve the shortest-paths problem several times in the simulation.

Frigioni et al. [4] proposed a ‘‘dynamic’’ algorithm to cope with such a situation: when an update operation (e.g., a
change of an arc cost) is applied to the graph, their algorithm maintains the shortest paths without recomputing
everything from scratch. The algorithm efficiently reuses the shortest-paths information computed for the previous arc
costs.

In this paper, we experimentally evaluate how such a dynamic algorithm works efficiently for real-world networks.
We implement a dynamic algorithm which is a simplified version of the algorithm by Frigioni et al. [4], and apply it to
the graph based on the map of Ishinomaki city, Miyagi, Japan. Therefore, the dynamic algorithm in this paper is not our
original from the theoretical viewpoint, but we will experimentally show that the dynamic algorithm works very
efficiently in practice.

2. Preliminaries

In this section, we first define some terms and notation which will be used throughout the paper. We then introduce
the well-known Dijkstra algorithm with its implementation in Section 2.3.

2.1 Definitions

Let G ¼ ðV ;AÞ be a digraph with the vertex set V and the arc set A; we sometimes denote by VðGÞ and AðGÞ
the vertex set and arc set of G, respectively. We write e ¼ ðu; vÞ if e is an arc from a vertex u to a vertex v. For a
vertex v in G, let NinðG; vÞ ¼ fu 2 VðGÞ j ðu; vÞ 2 AðGÞg and NoutðG; vÞ ¼ fw 2 VðGÞ j ðv;wÞ 2 AðGÞg. Let �in ¼
maxfjNinðG; yÞj : y 2 VðGÞg, and let �out ¼ maxfjNoutðG; yÞj : y 2 VðGÞg. A directed path in G from v to w is simply
called a ðv;wÞ-path in G. We say that a vertex w is reachable in G from a vertex v if there is a ðv;wÞ-path in G.
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Let G be a digraph such that each arc ðv;wÞ 2 AðGÞ has a non-negative real number cðv;wÞ � 0, called the cost of
ðv;wÞ. For two vertices v and w in G, a ðv;wÞ-path P in G is shortest if the sum of costs of all arcs in P is minimum
among all ðv;wÞ-paths in G. For a vertex s in G, a directed subgraph T of G is called a shortest-paths tree of G rooted at
s if the following three conditions (a)–(c) hold:

(a) VðTÞ consists of all vertices in G that are reachable from s;
(b) T forms a rooted tree with root s; and
(c) for every vertex v 2 VðTÞ n fsg, the unique path in T from s to v is a shortest ðs; vÞ-path in G.

The root s is also called a source vertex. For a vertex v 2 VðTÞ n fsg, we denote by parentðvÞ the parent of v in T . Then,
the tree T can be represented by memorizing parentðvÞ for all vertices v 2 VðTÞ n fsg.

Given an arc-cost digraph G and a source vertex s 2 VðGÞ, the single-source shortest-paths problem is to find a
shortest-paths tree of G rooted at s.

2.2 Min-priority queue

We implement both the Dijkstra and our algorithms by using a well-known ‘‘min-priority queue’’ based on the heap
data structure. A min-priority queue Q is a data structure which maintains a set S such that each element in S has a
value, called the key, and it supports the following operations:

. INSERTðQ; xÞ: this operation inserts a new element x into Q, and hence S :¼ S [ fxg;

. EXTRACT-MINðQÞ: this operation removes and returns the element xmin in Q with the smallest key, and hence
S :¼ S n fxming; and

. DECREASE-KEYðQ; x; kÞ: this operation replaces the key of the element x with the new value k, which is assumed to
be at most the current key of x.

One can easily implement a min-priority queue using the heap data structure so that each of the three operations above
can be done in time Oðlog jSjÞ. We do not explain how to construct such a data structure in this paper. (See e.g., [1,
Section 6.5] for details.)

2.3 Dijkstra algorithm

In this subsection, we introduce the well-known Dijkstra algorithm.
Let G be a given digraph with an arc-cost function c, and let s be a given source vertex. In the Dijkstra algorithm, we

maintain the status of each vertex v in G by two values flagðvÞ and distðvÞ, defined as follows.
(1) flagðvÞ takes one of the three statuses ‘‘unconsidered,’’ ‘‘active’’ and ‘‘fixed,’’ which represents the current status of

v. If flagðvÞ ¼ unconsidered, then the algorithm has not taken v into account yet; if flagðvÞ ¼ active, then the
algorithm is currently calculating a shortest ðs; vÞ-path; and if flagðvÞ ¼ fixed, then the algorithm has already found
a shortest ðs; vÞ-path.

(2) distðvÞ takes a non-negative real number, which represents the current (temporary) distance from s to v; if
flagðvÞ ¼ fixed, then the value of distðvÞ represents the shortest distance from s to v.

In the Dijkstra algorithm, we maintain all the active vertices v by a min-priority queue with the values of distðvÞ as their
keys. We call the procedure DIJKSTRAðG; c;QÞ under the following initialization:

. Q ¼ fsg;

. flagðsÞ ¼ active and distðsÞ ¼ 0; and

. parentðvÞ ¼ undefined, flagðvÞ ¼ unconsidered, and distðvÞ ¼ þ1 for all vertices v 2 VðGÞ n fsg.
The procedure DIJKSTRAðG; c;QÞ correctly constructs a shortest-paths tree of G rooted at s. Furthermore, the

Algorithm 1 DIJKSTRAðG; c;QÞ
1: while Q is not empty do
2: w :¼ EXTRACT-MIN(Q)
3: flagðwÞ :¼ fixed

4: for each vertex x 2 NoutðG;wÞ such that flagðxÞ 6¼ fixed do
5: if distðxÞ > distðwÞ þ cðw; xÞ then
6: distðxÞ :¼ distðwÞ þ cðw; xÞ
7: parentðxÞ :¼ w

8: if flagðxÞ ¼ unconsidered then
9: flagðxÞ :¼ active

10: INSERTðQ; xÞ
11: else fflagðxÞ ¼ activeg
12: DECREASE-KEYðQ; x; distðxÞÞ
13: end if
14: end if
15: end for
16: end while
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procedure runs in Oðm log nÞ ¼ Oðn�out log nÞ time, where n ¼ jVðGÞj and m ¼ jAðGÞj. (See e.g., [1, Section 24.3] for
details.)

3. Algorithms for Arc-Cost Update

In this section, we explain a dynamic algorithm for maintaining a shortest-paths tree of a digraph G rooted at a source
vertex s. Assume in this paper that we can change only the cost of a single arc in G, as the update operation for G. More
formally, let ct be the arc-cost function of G which is obtained from an arc-cost function ct�1 of G by applying such an
update operation; then, we have jfðu; vÞ 2 AðGÞ : ctðu; vÞ 6¼ ct�1ðu; vÞgj ¼ 1.

3.1 Static algorithm

One of the simplest static algorithm is to solve the single-source shortest-paths problem for the arc-cost function ct
by applying the Dijkstra algorithm in Section 2.3. We employ this simple static algorithm as a benchmark of the
experimental evaluations in Section 4.

3.2 Dynamic algorithm

In this subsection, we describe a dynamic algorithm which is a simplified version of the algorithm given by Frigioni
et al. [4]. Therefore, this algorithm is not our original from the theoretical viewpoint, as we have mentioned in
Introduction.

Suppose that we have a shortest-paths tree Tt�1 of G rooted at s for an arc-cost function ct�1. We assume that each
vertex v in Tt�1 is associated with three values parentðvÞ, flagðvÞ and distðvÞ such that

(a) parentðvÞ is the parent of v in Tt�1;
(b) flagðvÞ ¼ fixed; and
(c) distðvÞ is equal to the distance of a shortest ðs; vÞ-path in G with respect to the arc-cost function ct�1.

Notice that, for the first time, we can obtain such a shortest-paths tree by the Dijkstra algorithm in Section 2.3. From the
second time, our algorithm constructs a shortest-paths tree Tt for the arc-cost function ct which satisfies the conditions
(a)–(c) above, by maintaining the current shortest-paths tree Tt�1 for ct�1.

Our algorithm takes different strategies depending on whether the updated cost is increased or decreased. To avoid
the confusion, for each vertex v in G, we sometimes denote by distt�1ðvÞ and disttðvÞ the distances of shortest
ðs; vÞ-paths for the arc-cost functions ct�1 and ct, respectively. Similarly, we sometimes denote by parentt�1ðvÞ and
parenttðvÞ the parents of v in shortest-paths trees Tt�1 and Tt, respectively.

3.2.1 Increase case

We first consider the case where the updated cost is increased. Let e ¼ ðu; vÞ be the arc such that ctðu; vÞ > ct�1ðu; vÞ.
Consider the case where e 62 AðTt�1Þ. Then, each vertex z in Tt�1 has a shortest ðs; zÞ-path (under the arc-cost function

ct�1) which does not pass through the arc ðu; vÞ. Since only the cost of ðu; vÞ is updated from ct�1 and
ctðu; vÞ > ct�1ðu; vÞ, the ðs; zÞ-path is a shortest ðs; zÞ-path also for the arc-cost function ct. We thus have Tt ¼ Tt�1.

We then consider the case where e 2 AðTt�1Þ. We denote by Tv
t�1 the subtree of Tt�1 which is rooted at v and is

induced by v and its all descendants in Tt�1. (See Fig. 1(a).) Then, the same argument above implies that, for every
vertex z in Tt�1 n Tv

t�1, the ðs; zÞ-path in Tt�1 is a shortest ðs; zÞ-path also for ct. (See the vertex z in Fig. 1.) Therefore, it
suffices to update the shortest distances only for the vertices in Tv

t�1. For each vertex w in Tv
t�1, there are the following

two possibilities to consider.
(i) The ðs;wÞ-path in Tt�1 is a shortest ðs;wÞ-path also for ct. (See the vertex w1 in Fig. 1.) In this case, the distance

from s to w is increased by � ¼ ctðu; vÞ � ct�1ðu; vÞ, that is, disttðwÞ ¼ distt�1ðwÞ þ �.
(ii) The ðs;wÞ-path in Tt�1 is not a shortest ðs;wÞ-path for ct. (See the vertex w2 in Fig. 1.) In this case, a shortest
ðs;wÞ-path for ct does not pass through the arc ðu; vÞ, and has the distance less than distt�1ðwÞ þ �. Then, such
a shortest ðs;wÞ-path can be divided into a shortest ðs; xÞ-path and a shortest ðy;wÞ-path such that x 2
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Fig. 1. Increase case.
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Algorithm 2 INCREASEðG; ct;Tt�1Þ
1: Q :¼ ;
2: Let e ¼ ðu; vÞ be the arc such that ctðu; vÞ > ct�1ðu; vÞ, and let � ¼ ctðu; vÞ � ct�1ðu; vÞ
3: for each vertex y in Tv

t�1 do
4: distðyÞ :¼ distðyÞ þ �
5: for each vertex x 2 NinðG; yÞ \ VðTt�1 n Tv

t�1Þ do
6: if distðyÞ > distðxÞ þ ctðx; yÞ then
7: distðyÞ :¼ distðxÞ þ ctðx; yÞ
8: parentðyÞ :¼ x

9: end if
10: end for
11: flagðyÞ :¼ active

12: INSERTðQ; yÞ
13: end for
14: DIJKSTRAðG; ct;QÞ

VðTt�1 n Tv
t�1Þ, y 2 VðTv

t�1Þ and there is an arc from x to y, as illustrated in Fig. 1(b).
To deal with the case (ii) above, we apply the Dijkstra algorithm to the vertices only in Tv

t�1. More formally, the
procedure INCREASEðG; ct;Tt�1Þ constructs a shortest-paths tree Tt of G rooted at s for the arc-cost function ct.

We now estimate the running time of INCREASEðG; ct;Tt�1Þ. The updated arc e ¼ ðu; vÞ can be found in time OðmÞ.
Let ninc be the number of vertices in the subtree Tv

t�1. For each vertex y in Tv
t�1, the lines 5–10 can be executed in time

Oð�inÞ, and the line 12 can be done in Oðlog nincÞ. Therefore, the lines 4–12 of INCREASEðG; ct;Tt�1Þ can be done in
time Oð�in þ log nincÞ for one vertex y in Tv

t�1. Since these lines are executed for all ninc vertices in Tv
t�1, the lines 3–13

take time Oðninc�in þ ninc log nincÞ. Then, the line 14 can be done in time Oðninc�out log nincÞ. In this way,
INCREASEðG; ct;Tt�1Þ runs in time Oðmþ ninc�in þ ninc�out log nincÞ in total.

3.2.2 Decrease case

We then consider the case where the updated cost is decreased. Let e ¼ ðu; vÞ be the arc such that ctðu; vÞ <
ct�1ðu; vÞ.

Consider the case where distt�1ðvÞ � distt�1ðuÞ þ ctðu; vÞ. Then, the ðs; vÞ-path in Tt�1 does not pass through the arc
ðu; vÞ, and hence e 62 AðTt�1Þ. Therefore, the ðs; vÞ-path in Tt�1 is a shortest ðs; vÞ-path also for ct. We thus have
Tt ¼ Tt�1.

We then consider the case where distt�1ðvÞ > distt�1ðuÞ þ ctðu; vÞ. In this case, all vertices w in Tv
t�1 decrease their

shortest distances from the previous ones. (See the vertex w1 in Fig. 2. Note that, however, this case may happen even
when the arc ðu; vÞ is not in Tt�1.) Furthermore, some vertices in Tt�1 n Tv

t�1 may change their shortest distances, too.
(See the vertex w2 in Fig. 2.) Let w be a vertex in Tt�1 n Tv

t�1 such that disttðwÞ < distt�1ðwÞ. Then, there exists an arc
ðx; yÞ from a vertex x 2 VðTv

t�1Þ to a vertex y 2 VðTt�1 n Tv
t�1Þ such that y is an ancestor of w in Tt�1. Indeed, this update

can be seen as an update in the Dijkstra algorithm: we thus apply the Dijkstra algorithm to all vertices in Tt�1, as
follows.

. We take the vertex v as the source vertex. As the initialization, we set flagðvÞ ¼ active and distðvÞ ¼ distt�1ðuÞ þ
ctðu; vÞ instead of setting distðvÞ ¼ 0.

. Since flagðwÞ ¼ fixed for all vertices w 2 VðTt�1Þ n fvg, we initialize their statuses to flagðwÞ ¼ unconsidered.
However, we do not change (initialize) the values parentðwÞ and distðwÞ ð¼ distt�1ðwÞÞ, and hence the values
depict the parent of w in Tt�1 and the shortest distance from s to w for ct�1, respectively. Therefore, the Dijkstra
algorithm updates parentðwÞ and distðwÞ only when it finds a shorter ðs;wÞ-path with respect to ct.

Then, the procedure DECREASEðG; ct;Tt�1Þ constructs a shortest-paths tree Tt of G for the arc-cost function ct. It should
be noted that the Dijkstra algorithm called in the line 9 of DECREASEðG; ct;Tt�1Þ does not always re-compute the
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Fig. 2. Decrease case.
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Algorithm 3 DECREASEðG; ct; Tt�1Þ
1: Let e ¼ ðu; vÞ be the arc such that ctðu; vÞ < ct�1ðu; vÞ
2: distðvÞ :¼ distðuÞ þ ctðu; vÞ
3: parentðvÞ :¼ u

4: flagðvÞ :¼ active

5: Q :¼ fvg
6: for each vertex w in VðTt�1Þ n fvg do
7: flagðwÞ :¼ unconsidered

8: end for
9: DIJKSTRAðG; ct;QÞ

10: for each vertex w in VðTt�1Þ n fvg such that flagðwÞ :¼ unconsidered do
11: flagðwÞ :¼ fixed

12: end for

shortest paths of all vertices in Tt�1, because disttðzÞ ¼ distt�1ðzÞ holds for a vertex z which has no vertex y 2 NinðG; zÞ
such that disttðyÞ < distt�1ðyÞ. Since the Dijkstra algorithm did not take such a vertex z into account, the vertex z

remains flagðzÞ ¼ unconsidered even after the execution of the Dijkstra algorithm in DECREASEðG; ct;Tt�1Þ. We thus
need to back the status of z to flagðzÞ ¼ fixed.

We estimate the running time of DECREASEðG; ct;Tt�1Þ. The updated arc e ¼ ðu; vÞ can be found in time OðmÞ.
Clearly, the procedure runs in time OðnÞ except for the line 9. We thus estimate the running time of DIJKSTRAðG; ct;QÞ
called in the line. Let ndec be the number of vertices y such that disttðyÞ < distt�1ðyÞ. Notice that, in the Dijkstra
algorithm in Section 2.3, only such vertices are inserted into the min-priority queue Q. Therefore, the Dijkstra
algorithm can be executed in time Oðndec�out log ndecÞ. Thus, DECREASEðG; ct;Tt�1Þ runs in time Oðmþ nþ
ndec�out log ndecÞ in total.

4. Experimental Evaluations

In this section, we experimentally evaluate the dynamic algorithm.

4.1 Machine spec and graph data

We wrote and complied both Dijkstra and dynamic algorithms by Microsoft Visual C++ 2012 under the
optimization to maximize speed (/O2). The experiments were done on a Dual Intel Xeon E5645 Processor with 24 GB
of RAM memory (DDR3-1333/PC3-10600), running Windows 7 Professional SP1 (64-bit). Each processor has 6 cores
sharing a 12 MB L3 cache, and each core has a 256 KB private L2 cache and 2.4 GHz speed; we use only one core for
experiments. We report CPU times measured with the timeGetTime function by employing the timeBeginPeriod and
timeEndPeriod functions to obtain accuracy of 1 ms. All the running times reported in our experiments were averaged
over ten different runs.

The graph data used in this paper is provided by i-Transport Lab. Co., Ltd. The graph is constructed from the map of
Ishinomaki city, Miyagi, Japan, and has 15,379 vertices and 38,680 arcs, that is, n ¼ 15;379 and m ¼ 38;680. For the
graph, �out ¼ 6 and �in ¼ 5.

We randomly chose 200 vertices from the graph as source vertices. We have assumed in this paper that we can
change only the cost of a single arc, as the update operation. For every source vertex, we applied four different update
operations to each of the 38,680 arcs: we changed the cost ct�1ðu; vÞ of a single arc ðu; vÞ to

. ctðu; vÞ ¼ þ1.

. ctðu; vÞ ¼ 2 � ct�1ðu; vÞ;

. ctðu; vÞ ¼ 0:5 � ct�1ðu; vÞ; and

. ctðu; vÞ ¼ 0,
that correspond to the situations where the road is closed, becomes crowded, gets less crowded, and becomes empty,
respectively. Therefore, the number of instances of our experiments is 200� 38;680� 4 ¼ 30;944;000 in total.

4.2 Experiments

As a preprocessing of our dynamic algorithm, we first apply the Dijkstra algorithm under the arc-cost function ct�1 to
obtain a shortest-paths tree Tt�1. Note that this preprocessing is not counted in the running time. Then, we apply the
dynamic algorithm under the arc-cost function ct with the shortest-paths tree Tt�1.

Figures A·1–A·4 and Tables A·1–A·4 show the experimental results. Note that each of figures and tables shows one
type of update operations, and hence it contains 200� 38;680 ¼ 7;736;000 instances. As a benchmark, we also apply
the Dijkstra algorithm for each instance under the arc-cost function ct.

. The x-coordinates of the figures and the ‘‘changed vertices’’ in the tables mean the numbers of vertices w such that
disttðwÞ 6¼ distt�1ðwÞ or parenttðwÞ 6¼ parentt�1ðwÞ, that is, their shortest distances under ct or their parents in the
shortest-paths tree Tt are changed from the previous ones under ct�1 by the arc-cost update operation.
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. The y-coordinates on the left side of the figures and the ‘‘Dijkstra’’ and ‘‘Ours’’ in the tables mean the running
times of algorithms in millisecond. Note that, in the tables, the running time in each cell is averaged over the
corresponding instances.

. The y-coordinates on the right side of the figures and the ‘‘integrated ratio’’ in the tables mean the integrated ratios
(%) of the numbers of instances. For example, in Fig. A·1 and Table A·1, the integrated ratio is 99.63% when the
number of changed vertices is 2,999; this means that ð7;640;943þ 46;915þ 19;766Þ=7;736;000 ¼ 99:63%
instances have at most 2,999 changed vertices.

In the figures, each blue point represents the running time of the Dijkstra algorithm, while each orange point represents
the one of our dynamic algorithm. Note that each figure contains (200� 38;680 ¼) 7,736,000 blue points and
7,736,000 orange points, but many points are placed on the same positions. The gray line indicates the integrated ratio
of instances.

4.3 Discussions

Since the Dijkstra algorithm recomputes everything from the scratch, its running time does not depend on the number
of changed vertices; this can be seen from the figures and tables. On the other hand, the running time of our dynamic
algorithm depends on the number of changed vertices as we have estimated in Section 3.2. By taking the summation
over the red numbers in Tables A·1–A·4, our algorithm runs faster than the simple Dijkstra algorithm for 99.93%
instances (among 30,944,000 total instances).

Among the four update operations, the two decrease cases shown in Tables A·3 and A·4 tend to be faster than the two
increase cases shown in Tables A·1 and A·2. This is because, although both Algorithm 2 (for the increase case) and
Algorithm 3 (for the decrease case) employ the Dijkstra algorithm, the increase case needs preprocessing steps heavier
than the decrease case: the lines 3–13 of Algorithm 2 takes time Oðninc�in þ ninc log nincÞ, while Algorithm 3 runs in
time OðnÞ except for executing the Dijkstra algorithm in the line 9.

We emphasize that 98.36% instances (among 30,944,000 total instances) have at most 999 changed vertices, and
our dynamic algorithm recomputes the shortest-paths trees for these instances much faster than the simple Dijkstra
algorithm. We note that the number of instances with small numbers of changed vertices is usually much larger than
that of instances with large numbers of changed vertices. As illustrated in Fig. 3(a), there are many arcs (and hence
many instances) that are far from the source vertex s. If we change the costs of such arcs, the numbers of changed
vertices are usually small. (See the gray subtrees in Fig. 3(a).) On the other hand, the numbers of changed vertices
would be large if we change the costs of arcs that are close to s, but there are only a few such arcs in the graph. (See
Fig. 3(b).) Therefore, we conclude that our dynamic algorithm runs faster than the Dijkstra algorithm for many cases.

5. Conclusion

In this paper, we have experimentally evaluated the dynamic algorithm when applied to a real-world network. Our
algorithm runs faster than the simple Dijkstra algorithm for 99.93% instances. It remains open to deal with the case
where more than one arc-cost is changed at the same time.
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A Experimental Results

Table A�1. The update operation ctðu; vÞ ¼ þ1.

Changed vertices Dijkstra (ms) Ours (ms) Number of instances Integrated ratio (%)

0–999 3.25 0.50 7,640,943 98.77

1,000–1,999 3.27 0.94 46,915 99.38

2,000–2,999 3.25 1.36 19,766 99.63

3,000–3,999 3.27 1.79 8,605 99.74

4,000–4,999 3.25 2.23 7,718 99.84

5,000–5,999 3.28 2.62 2,436 99.88

6,000–6,999 3.27 3.18 1,338 99.89

7,000–7,999 3.29 3.63 761 99.90

8,000–8,999 3.23 4.06 1,219 99.92

9,000–9,999 3.21 4.59 1,233 99.93

10,000–10,999 3.21 5.00 1,953 99.96

11,000–11,999 3.22 5.58 1,132 99.97

12,000–12,999 3.24 6.13 903 99.99

13,000–13,999 3.24 6.64 303 99.99

14,000–14,999 3.24 7.21 588 99.99

15,000–15,379 3.23 7.70 187 100.00

Fig. A�1. The update operation ctðu; vÞ ¼ þ1.
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Table A�2. The update operation ctðu; vÞ ¼ 2 � ct�1ðu; vÞ.

Changed vertices Dijkstra (ms) Ours (ms) Number of instances Integrated ratio (%)

0–999 3.25 0.50 7,642,339 98.79

1,000–1,999 3.27 0.89 46,047 99.38

2,000–2,999 3.25 1.27 19,664 99.64

3,000–3,999 3.27 1.66 8,528 99.75

4,000–4,999 3.25 2.07 7,628 99.85

5,000–5,999 3.29 2.41 2,411 99.88

6,000–6,999 3.24 2.91 1,312 99.90

7,000–7,999 3.27 3.36 745 99.91

8,000–8,999 3.21 3.79 1,163 99.92

9,000–9,999 3.22 4.21 1,217 99.94

10,000–10,999 3.22 4.62 1,889 99.96

11,000–11,999 3.23 5.19 1,100 99.97

12,000–12,999 3.22 5.65 893 99.99

13,000–13,999 3.24 6.07 298 99.99

14,000–14,999 3.24 6.77 581 99.99

15,000–15,379 3.21 6.92 185 100.00

Fig. A�2. The update operation ctðu; vÞ ¼ 2 � ct�1ðu; vÞ.
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Table A�3. The update operation ctðu; vÞ ¼ 0:5 � ct�1ðu; vÞ.

Changed vertices Dijkstra (ms) Ours (ms) Number of instances Integrated ratio (%)

0–999 3.25 0.50 7,604,020 98.29

1,000–1,999 3.27 0.72 64,593 99.13

2,000–2,999 3.25 0.91 27,250 99.48

3,000–3,999 3.28 1.13 11,683 99.63

4,000–4,999 3.25 1.33 10,259 99.76

5,000–5,999 3.30 1.53 3,426 99.81

6,000–6,999 3.27 1.77 2,152 99.84

7,000–7,999 3.27 2.01 1,395 99.85

8,000–8,999 3.24 2.23 1,654 99.88

9,000–9,999 3.22 2.42 1,980 99.90

10,000–10,999 3.20 2.62 2,805 99.94

11,000–11,999 3.21 2.93 1,666 99.96

12,000–12,999 3.22 3.10 1,543 99.98

13,000–13,999 3.21 3.38 483 99.99

14,000–14,999 3.25 3.75 859 99.99

15,000–15,379 3.24 3.90 232 100.00

Fig. A�3. The update operation ctðu; vÞ ¼ 0:5 � ct�1ðu; vÞ.
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Table A�4. The update operation ctðu; vÞ ¼ 0.

Changed vertices Dijkstra (ms) Ours (ms) Number of instances Integrated ratio (%)

0–999 3.24 0.50 7,551,811 97.62

1,000–1,999 3.26 0.72 90,619 98.79

2,000–2,999 3.25 0.91 37,995 99.28

3,000–3,999 3.27 1.13 16,146 99.49

4,000–4,999 3.24 1.33 13,722 99.67

5,000–5,999 3.27 1.53 5,086 99.73

6,000–6,999 3.25 1.77 2,969 99.77

7,000–7,999 3.28 2.00 2,033 99.80

8,000–8,999 3.24 2.20 1,993 99.82

9,000–9,999 3.22 2.44 3,017 99.86

10,000–10,999 3.22 2.65 3,799 99.91

11,000–11,999 3.22 2.92 2,305 99.94

12,000–12,999 3.21 3.13 2,376 99.97

13,000–13,999 3.21 3.37 689 99.98

14,000–14,999 3.25 3.74 1,140 99.99

15,000–15,379 3.23 3.89 300 100.00

Fig. A�4. The update operation ctðu; vÞ ¼ 0.

Experimental Evaluations of Dynamic Algorithm for Maintaining Shortest-Paths Trees on Real-World Networks 35


