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The password-protected secret sharing (PPSS, for short) and its security notion, called in this paper the PPSS-
security, were proposed by Bagherzandi, Jarecki, Saxena and Lu. However, another security notion for PPSS
schemes, the pparam-security was proposed by Hasegawa, Isobe, Iwazaki, Koizumi and Shizuya, because they
pointed out an attack which can break the original protocol proposed by Bagherzandi et al. Hasegawa et al. also
showed how to enhance the protocol, and proved that the enhanced one is pparam-secure. In this paper, we prove
that the enhanced one is PPSS-secure as well.
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1. Introduction

Today a wide range of services are available via the Internet. Among those is a file-hosting service such as Google
Drive, Dropbox and iCloud Drive. This service enables us to easily store and access documents or data files from
mobile terminals as well as PC’s, and to share them with others. Although the file-hosting service is so popular in the
Internet community, we should note that there is a latent risk that we would lose the files we have stored. For example,
the server could be attacked by malware or be corrupted by some malicious attackers, and consequently the stored
documents might be destroyed, erased, fabricated or stolen.

In order to safely store some secret documents or data distributedly in several servers via insecure networks such as
the Internet, Bagherzandi et al. proposed a password-protected secret sharing (PPSS, for short) scheme [4] in 2011.
Intuitively, a PPSS scheme consists of several parties: a user, n servers and initialization algorithm. For a pair ðp; dÞ of
a password p and a document d, the initialization first sets a public parameter and secret seeds, where the public
parameter includes encryptions of p and d. Then the initialization sends the public parameter and the secret seeds to the
user and the servers, respectively. Using the password p, the user interacts with the servers, and recovers the document
d. A formal description of PPSS schemes will be given in Section 2.3. In [4], they proposed the protocol PPSS2 which
has the following three properties: (i) PPSS2 is secure against the corruption of the coalition of servers of size less than
the threshold, which means that one can obtain no useful information about the password and the document even if
some servers are corrupted, (ii) the user can be authenticated with a single password by all the servers, and (iii) there is
no useful information about the password and the document in the interaction.

We now see more on the security notion for PPSS schemes formulated in [4]. They focused on the interaction
between the user and the servers, and defined a security notion which we call the PPSS-security (Definition 2.3). A
PPSS protocol is PPSS-secure if no polynomial time adversary could determine, on any given two documents and
any public parameter, which document is stored in the public parameter, even though the adversary is allowed to
adaptively interact with the servers and the user in impersonating manner. They showed that the protocol PPSS2 is
PPSS-secure [4].

In contrast, Hasegawa et al. [7] focused on the process of generating a public parameter, and proposed another
security notion for PPSS schemes named the pparam-security (Definition 2.4). Intuitively, the pparam-security means
that any public parameter does not include any clue to the stored document in a way that an adversary could recognize.
Namely, no adversary could determine, on any given two documents and any public parameter, which document is
stored in the public parameter, even though the adversary is allowed to adaptively receive the sample pairs of the public
parameter and the stored document. The pparam-security means that the adversary could learn nothing from the sample
pairs. In [7], they showed that the protocol PPSS2 is not pparam-secure. Then they proposed an enhanced protocol
ePPSS2 (a.k.a. ‘‘Protocol 1’’ in this paper) of PPSS2, and proved that the enhanced protocol is pparam-secure.
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It should be noted that these two security notions are independent in a sense that the pparam-security does not imply
the PPSS-security in general and vice versa. As stated above, the protocol PPSS2 is PPSS-secure but not pparam-
secure. On the other hand, one can easily construct a protocol which is pparam-secure but not PPSS-secure (see
Protocol 2 in Section 4). Hence, we should say that a PPSS scheme is preferable if it is both PPSS-secure and pparam-
secure.

The purpose of this paper is to prove that the protocol ePPSS2 is PPSS-secure. The proof is similar to that of
Theorem 1 in [4] since ePPSS2 is an enhanced protocol of PPSS2. However, the latter proof lacks an estimate of a
specific statistical distance which is a key to prove the PPSS-security, and the proof does not seem to be refined in this
sense in a later version of the paper [3] (see Remark 6.1). We therefore supplement the proof in [4] and demonstrate
that ePPSS2 is rigorously PPSS-secure. The title of this paper comes from this fact.

In Section 2, we introduce notations and notions needed later. In Section 3, we recall the protocol ePPSS2, and state
our main result. Before proving the result, we give a protocol which is pparam-secure but not PPSS-secure in Section 4.
We prove our result in Sections 5 and 6. Concluding remarks are given in Section 7.

2. Preliminary

Let � be a distribution over a finite set A. We write x 2 � to denote that x is chosen from A according to the
distribution �. In particular, if � ¼ UA, the uniform distribution over A, then we write x 2r A instead of x 2 UA. N and
Z denote the set of the natural numbers and the ring of the rational integers, respectively. For any n 2 N, we use Zn and
Z
�
n to denote the residue ring Z=nZ and its group of units, respectively. Let 1k denote the string of k ones. For any finite

set V , #V denotes the cardinality of V . Let SSt;n be the Shamir ðt; nÞ-threshold secret sharing scheme [8].

2.1 Cryptographic Assumptions

Let Q be a safe prime, that is, Q is a prime of the form Q ¼ 2qþ 1 for some prime q. We note that it is not shown
that there are infinitely many safe primes. However, it is widely believed that the set of safe primes, or alternatively the
set of Sophie Germain primes is not finite [1]. Throughout this paper, we assume that there are infinitely many safe
primes.

We define the decisional Diffie-Hellman (DDH, for short) problem [2]. Let Q ¼ 2qþ 1 be a safe prime, and let Gq

denote the subgroup of Z�Q of order q. We define

DH ¼ fðQ; g; ga; gb; gabÞ j g is a generator of Gq, and a; b 2 Zqg;

and gDH ¼ fðQ; g; ga; gb; gcÞ j g is a generator of Gq, and a; b; c 2 Zqg:

The DDH problem is to determine, for a tuple w ¼ ðQ; g; ga; gb; gcÞ, whether or not w 2 DH. Let Gen be a probabilistic
polynomial-time (PPT, for short) algorithm which works as follows: On input 1k, Gen randomly chooses a safe prime
Q ¼ 2qþ 1 of length k þ 2 and a generator g 2 Gq, and outputs a pair ðQ; gÞ. For a probabilistic Turing machine A

called an adversary and a security parameter k, we define the advantage AdvDDH
A ðkÞ as follows:

AdvDDH
A ðkÞ ¼ j Pr½AðQ; g; ga; gb; gabÞ ¼ 1� � Pr½AðQ; g; ga; gb; gcÞ ¼ 1�j;

where ðQ; gÞ ¼ Genð1kÞ and a; b; c 2 Zq. The probability is taken over the random tapes of A and Gen, and the random
choice of a; b; c 2 Zq. The DDH problem is ðTddh; "ddhÞ-hard if AdvDDH

A ðkÞ < "ddh holds for any k and any adversary A

whose running time is at most Tddh.
We next define the computational Diffie-Hellman problem [2]. Set

CDH ¼ fðQ; g; ga; gbÞ j g is a generator of Gq, and a; b 2 Zqg:

The CDH problem is to compute CDHðwÞ ¼ gab for a tuple w ¼ ðQ; g; ga; gbÞ 2 CDH. The CDH problem is
ðTcdh; "cdhÞ-hard if

Pr½MðQ; g; ga; gbÞ ¼ gab� < "cdh

holds for any k and any probabilistic Turing machine M whose running time is at most Tcdh, where ðQ; gÞ ¼ Genð1kÞ
and a; b 2 Zq. The probability is taken over the random tapes of M and Gen, and the random choice of a; b 2 Zq.

We state the relationship between the DDH and CDH problems.

Lemma 2.1. If the DDH problem is ðTddh; "ddhÞ-hard, then the CDH problem is ðTddh; "ddh þ 2�kÞ-hard.

Proof. Assume that the CDH problem is not ðTddh; "ddh þ 2�kÞ-hard. Then there exist a probabilistic Turing machine M

whose running time is at most Tddh such that

Pr½MðQ; g; ga; gbÞ ¼ gab� � "ddh þ
1

2k0
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holds for some k0, where ðQ; gÞ ¼ Genð1k0Þ and the probability is taken over the random tapes of M and Gen, and the
random choice of a; b 2 Zq. We now construct a probabilistic machine A as follows: On input w ¼ ðQ; g; g1; g2; g3Þ,
(1) Simulate M on input ðQ; g; g1; g2Þ, and get an output C.
(2) If C ¼ g3, then output 1, and halt. Otherwise, output 0, and halt.

We see that the running time of A is almost the same as that of M. If ðQ; gÞ ¼ Genð1k0 Þ, then we have

Pr
w2DH
½AðwÞ ¼ 1� ¼ Pr

w2DH
½MðQ; g; g1; g2Þ ¼ g3� � "ddh þ

1

2k0

and

Pr
w2fDH

½AðwÞ ¼ 1� ¼ Pr
w2fDH

½MðQ; g; g1; g2Þ ¼ g3� ¼
X
g02Gq

Pr
w2fDH

½MðQ; g; g1; g2Þ ¼ g3 ^ g3 ¼ g0�

¼
X
g02Gq

Pr
w2fDH

½MðQ; g; g1; g2Þ ¼ g3 j g3 ¼ g0� Pr
w2fDH

½g3 ¼ g0� ¼
1

q

X
g02Gq

Pr
w2fDH

½MðQ; g; g1; g2Þ ¼ g0� ¼
1

q
:

Hence, we have

AdvDDH
A ðk0Þ � "ddhðk0Þ þ

1

2k0

� �
�

1

q
� "ddhðk0Þ:

This implies that the DDH problem is not ðTddh; "ddhÞ-hard, and the lemma follows. �

2.2 Simulation-Sound Non-Interactive Zero-Knowledge Proofs

A non-interactive proof system for a language L consists of two probabilistic polynomial-time algorithms PðLÞ and
VðLÞ:

. Prover PðLÞ produces a proof � on input an instance x and its witness w.

. Verifier VðLÞ, on input an instance x and a proof �, decides whether or not � is a correct proof of the membership
of x 2 L.

A proof � is said to be valid if � is correct. If � is not correct, then � is said to be invalid.
We give the definition of simulation-sound non-interactive zero-knowledge (SS-NIZK, for short) proof systems in

the random oracle model [4]. We consider the following two games for a non-interactive proof system ðPðLÞ;VðLÞÞ
between an adversary A and a challenger C:

Game ZK
(1) C first chooses � 2r f1; 2g.
(2) A is allowed to access a random oracle. If A queries any instance �, then C answers a hash value Hð�Þ.
(3) A is allowed to access a prover oracle. When A queries any pair ðx;wÞ of an instance x and a witness w,

a. if � ¼ 1, then C answers a proof � ¼ PðLÞðx;wÞ.
b. if � ¼ 2, then C answers a ‘‘simulated proof’’ � ¼ SðLÞðxÞ, where SðLÞ is a probabilistic algorithm called

simulator.
(4) A sends ~� 2 f1; 2g to C.

In Game ZK, A is allowed to adaptively execute Steps (2) and (3) polynomially-many times in arbitrary order.

Game SS
(1) C sets S ¼ ;.
(2) A is allowed to access a random oracle. If A queries any instance �, then C answers a hash value Hð�Þ.
(3) A is allowed to access a simulator SðLÞ. If A queries any instance x, then C answers a simulated proof

� ¼ SðLÞðxÞ, and sets S ¼ S [ fðx; �Þg.
(4) A sends a pair ðx�; ��Þ of an instance x� and a proof �� to C.

In Game SS, A is allowed to adaptively execute Steps (2) and (3) polynomially-many times in arbitrary order.
We use the following notation. Let Pr½E1� denote the probability that an event E1 occurs, and let Pr½E1jE2� denote the

conditional probability of E1 occurrence of event E2.

Definition 2.2 ([4]). A proof system ðPðLÞ;VðLÞÞ for a language L is ðTS; qSP; qSH ; "ZK; "SSÞ-SS-NIZK if there exists
a simulator algorithm SðLÞ whose running time is at most TS such that the following conditions hold for any adversary
A:
(1) ðPðLÞ;VðLÞÞ is a non-interactive proof system,
(2) In each of Game ZK and Game SS, A is allowed to access a random oracle and a prover oracle (or a simulator

SðLÞ) at most qSH and qSP times, respectively.
(3) In Game ZK, the following inequality holds for any adversary A:

j Pr½ ~� ¼ 1j� ¼ 1� � Pr½ ~� ¼ 1j� ¼ 2�j < "ZK:
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(4) In Step (4) of Game SS, the probability that A outputs ðx�; ��Þ which satisfies the following conditions is at most
"SS: (i) ðx�; ��Þ 62 S, (ii) x� 62 L, and (iii) �� is valid.

2.3 Password-Protected Secret Sharing Schemes

We now introduce a formal description of PPSS schemes [4]. There are three sorts of participants in PPSS schemes:
the initialization algorithm, the user algorithm and the algorithms for the servers. We formalize the setting for PPSS
schemes in the following way.

Let k denote a security parameter. A PPSS scheme involves a PPT algorithm Setup. This takes 1k as an input, and
outputs a setup parameter � 2 �ðkÞ, where �ðkÞ is a finite set of all possible setup parameters with respect to the
security parameter k. The setup parameter � specifies the following items:

. a set PW� of all passwords;

. a set Doc� of all documents;

. a set Pub� of all public parameters;

. a set Sec� of all secret seeds;

. a number n of the servers; and

. a number t with 0 < t � n for the ðt; nÞ-threshold secret sharing that will be employed in the PPSS scheme.
We note that the numbers n and t are at most �ðkÞ for some polynomial � since Setup is a PPT algorithm.

For the PPSS scheme, the following three items are designated in addition to the algorithm Setup:
. Init: This is the initialization algorithm that takes a tuple ð�; p; dÞ of a setup parameter � , a password p 2 PW� and

a secret document d 2 Doc� as an input, and outputs a pair ðpub; secÞ of a public parameter

pub ¼ ðpub1; pub2; pub3Þ ¼ ðpub1ð�Þ; pub2ðpub1ð�Þ; pÞ; pub3ðpub1ð�Þ; dÞÞ 2 Pub�

and a set sec ¼ fsecjgnj¼1 of the seeds of the shares, where secj 2 Sec� denotes the seed stored with the j-th server.
We assume that Init is a PPT algorithm.

. User and Server ¼ fServerjgnj¼1: The algorithms User and Serverj are PPT algorithms, and they are employed by
the user and the j-th server, respectively. The user’s algorithm User interacts with the server’s algorithm Serverj
for each j. At first, User is given a tuple ð�; p; pubÞ of a setup parameter � , a password p 2 PW� and a public
parameter pub as an input, and the algorithm Serverj for each j is given a tuple ð�; pub; secjÞ of a setup parameter
� , a public parameter pub and a seed secj 2 Sec� . Interacting with the n servers, User eventually outputs either a
document d0 or ?, where ? denotes that User has failed to recover the secret document d.

We write P ¼ ðSetup; Init;User;ServerÞ to denote a PPSS scheme. For a PPSS scheme P and ~p 2 PW� , the output of
User is denoted by Pð ~p; ðpub; fsecjgnj¼1ÞÞ on an input ð�; ~p; pubÞ, where ðpub; fsecjgnj¼1Þ ¼ Initðp; dÞ for some p 2 PW�

and d 2 Doc� . A PPSS scheme P is valid if Pðp; Initð�; p; dÞÞ ¼ d holds for any � 2 �ðkÞ, p 2 PW� and d 2 Doc� . The
PPSS schemes we consider in this paper are all valid.

2.4 A Security Notion for PPSS schemes: PPSS-security

We state the security of PPSS schemes defined in [4]. Let P ¼ ðSetup; Init;User;ServerÞ be a PPSS scheme. Then a
PPSS adversarial game for P between an adversary A and a challenger C is defined as follows:

Initialization phase: C first executes Setup on input 1k, and gets a setup parameter � . Then C sends � to A. A chooses
two documents d1; d2 2 Doc� and a subset V 0 � ½n� ¼ f1; . . . ; ng with #V 0 ¼ t0 < t, and sends a tuple ðd1; d2;V

0Þ to C. C
chooses � 2r f1; 2g and p 2r PW� . Then C executes Init on an input ð�; p; d�Þ, and gets a tuple ðpub; fsecjgnj¼1Þ. Finally,
C sends ðpub; fsecj0 gj02V 0 Þ to A.

User’s query phase: A is allowed to interact with C. In each interaction, A freely chooses the index j, and sits at the
j-th server’s position. C plays the role of the user who is given the tuple ð�; p; pubÞ. A and C follow a single round of
the scheme in each interaction. It should be noted that A may deviate from the regular protocol according to his
strategy, but C strictly follows the protocol. A may adaptively interact with C in the manner.

Server’s query phase: A is allowed to interact with C. In each interaction, A sits at the user’s position and freely
chooses a number j 2 ½n� n V 0. C plays the role of j-th server given the pair ðpub; secjÞ. A and C follow a single round
of the scheme in each interaction. It should be noted that A may deviate from the regular protocol according to his
strategy, but C strictly follows the protocol. A may adaptively interact with C in the manner.

Challenge phase: A sends �0 2 f1; 2g.

For � ¼ f1; 2g, let Pðd�; d1; d2Þ denote the probability that A sends 1 in Challenge phase of the PPSS adversarial
game under the following conditions: In Initialization phase,
(1) A chooses two documents d1 and d2, and
(2) C chooses �,

where the probability is taken over random tapes of A and C.

Definition 2.3 ([4]). A PPSS scheme P is ðqU ; qS; T ; "Þ-PPSS-secure if for any security parameter k, any setup
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parameter � 2 �ðkÞ, any documents d1; d2 2 Doc� , any subset V 0 � ½n� with #V 0 ¼ t0 < t and any adversary A, the
inequality

jPðd1; d1; d2Þ � Pðd2; d1; d2Þj �
qS

t � t0

� �
�

1

#PW�
þ "

holds under the following conditions:
(1) A chooses the subset V 0 � ½n� in Initialization phase,
(2) the running time of the adversary A is at most T ,
(3) A is allowed to enter User’s query phase at most qU times, and
(4) A is allowed to enter Server’s query phase at most qS times.

2.5 Another security notion for PPSS schemes: pparam-security

We state another PPSS security notion called pparam-secure [7]. A pparam-attack game for a PPSS scheme P

between an adversary A and a challenger C is as follows:

Initialization phase: C first executes Setup on input 1k, and gets a setup parameter � . Then C sends � to A. A chooses
two documents d1; d2 2 Doc� , and sends them to C. C chooses � 2r f1; 2g. Then C executes Init on an input ð�; p; d�Þ,
and gets a pair ðpub; secÞ, where pub ¼ ðpub1; pub2; pub3Þ. Finally, C sends the public parameter pub to A.

Attack phase: A is allowed to interact with C. In each interaction, A sends a public parameter pub0 ¼
ðpub01; pub02; pub03Þ 2 Pub� to C. C plays the role in computing the ‘‘inverse’’ of the initialization algorithm if pub1 ¼
pub01 and pub3 6¼ pub03. Then C returns a document d 2 Doc� which satisfies Initð�; p; dÞ ¼ ðpub0; sec0Þ for some
p 2 PW� and sec0 2 Sec� . Otherwise, C returns a special symbol ?.

Challenge phase: A sends �0 2 f1; 2g.

For � ¼ 1; 2 and a security parameter k, let P�pparam-atkðkÞ denote the probability that A sends 1 in Challenge phase of
the pparam-attack game under the condition that C chooses � in Initialization phase, where the probability is taken over
the random tapes of A and C.

For a security parameter k and an adversary A, we define AdvAðkÞ by

AdvAðkÞ ¼ P1
pparam-atkðkÞ � P2

pparam-atkðkÞ
��� ���:

Definition 2.4 ([7]). A PPSS scheme P is ðT ; "; qAÞ-pparam-secure if for any security parameter k and any adversary
A, AdvAðkÞ < " holds under the following conditions:
(1) A is allowed to enter Attack phase at most qA times, and
(2) the running time of A is at most T .

It should be noted that the pparam-security is independent of the PPSS-security in a sense that the pparam-security
does not imply the PPSS-security in general and vice versa. Indeed, the protocol PPSS2 proposed in [4] is PPSS-secure
[4], but not pparam-secure [7]. On the other hand, one can easily construct a protocol which is pparam-secure but not
PPSS-secure. We give the protocol in Section 4. Hence, one prefers PPSS schemes which are both PPSS-secure and
pparam-secure.

3. The protocol ePPSS2 and Main Theorem

We depict a protocol ePPSS2, in Protocol 1: the proof systems ðPðLpub
S1 Þ;VðL

pub
S1 ÞÞ and ðPðLpub

U Þ;VðL
pub
U ÞÞ are given

in [4], and ðPðLpub
S2 Þ;VðL

pub
S2 ÞÞ is given in [7]. In [4], they stated that, for any given qSP and qSH , these systems are

ðTS; qSP; qSH ; "ZK; "SSÞ-SS-NIZK, where "ZK ¼ qSPq
S
H=q, "SS ¼ qSH=q and TS is the same as the running time of the

corresponding prover. The non-interactive proof system ðPðLpub
E Þ;VðL

pub
E ÞÞ is similarly defined (see also [6]).

The protocol ePPSS2 is the same as the protocol PPSS2 except for the following three points:
(1) In Init, one constructs two pairs ððg; y1Þ; x1Þ and ððg; y2Þ; x2Þ of the public and secret keys, and generates two

ElGamal encryptions ðu1;d; v1;dÞ and ðu2;d; v2;dÞ of the document d.
(2) In order to prove that ðu1;d; v1;dÞ and ðu2;d; v2;dÞ are encryptions of the same document d, a proof � is added in the

public parameter.
(3) The verification process of the proof � is added in Step Sj1-1.

It was shown that ePPSS2 is pparam-secure in [7]. Our main result is as follows:

Theorem. Assume that the following properties hold:
. the DDH problem is ðTddh; "ddhÞ-hard,
. the proof systems ðPðLpub

S1 Þ;VðL
pub
S1 ÞÞ, ðPðL

pub
U Þ;VðL

pub
U ÞÞ and ðPðLpub; j

S2 Þ;VðL
pub; j
S2 ÞÞ are ðTS; qSP; qSH ; "SS; "ZKÞ-SS-

NIZK, and
. the proof system ðPðLpub

E Þ;VðL
pub
E ÞÞ is ðTS; 1; qSH ; "SS; "ZKÞ-SS-NIZK.
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The setup algorithm Setup:
1: Input 1k.
2: Run Gen on input 1k, and get a pair ðQ; gÞ.
3: Choose natural numbers t and n with t � n < TGenðkÞ, where TGen is a running time of Gen. Then output

� ¼ ðq; g; t; nÞ, where q ¼ ðQ� 1Þ=2.

The initialization algorithm Init:
I1: Input a tuple ð�; p; dÞ, where � ¼ ðq; g; t; nÞ is a setup parameter output by Setup, p 2 Zq ¼ PW� and

d 2 Gq ¼ Doc� .
I2: Choose x1; x2 2r Zq, and compute y1 ¼ gx1 , y2 ¼ gx2 , fx1; jgnj¼1 ¼ SSt;nðx1Þ and fx2; jgnj¼1 ¼ SSt;nðx2Þ.
I3: Choose h; ĝ; ĥ; ŷ; �g 2r Gq and rp; r1;d; r2;d 2r Zq.
I4: Compute up ¼ grp , vp ¼ y

rp
1 h

p, u1;d ¼ gr1;d , u2;d ¼ gr2;d , v1;d ¼ y
r1;d
1 d and v2;d ¼ y

r2;d
2 d.

I5: Choose r1; j; r2; j 2r Zq, and compute y1; j ¼ gx1; j hr1; j and y2; j ¼ gx2; j hr2; j for each j 2 ½n�.
I6: Run PðLpub

E Þ on an input ððu1;d; v1;d; u2;d; v2;dÞ; r1;d; r2;dÞ, and get a proof �.
I7: Set pub1 ¼ ðg; y1; y2; h; fy1; jgnj¼1; fy2; jgnj¼1; ĝ; ĥ; ŷ; �gÞ, pub2 ¼ ðup; vpÞ, pub3 ¼ ðu1;d; v1;d; u2;d; v2;dÞ and

secj ¼ ðx1; j; r1; j; x2; j; r2; jÞ for each j 2 ½n�, and output ðpub; secÞ ¼ ððpub1; pub2; pub3; �Þ; fsecjgnj¼1Þ.
The interaction between the user algorithm User and the server algorithms Server1; . . . ;Servern:
	 User’s input is a tuple ð�; pub; ~pÞ, where ~p 2 Zq ¼ PW� .
	 For each j, Serverj’s input is a tuple ð�; pub; secjÞ.

U and Sj are the same as those of PPSS2.
Sj1-1: If � is invalid, then halt.
Sj1-2: Choose tj 2r Zq, and compute aj ¼ gtj , bj ¼ u

tj
p and �aj ¼ ð �gÞtj .

Sj1-3: Run PðLpub
S1 Þ on an input ððaj; bj; �ajÞ; tjÞ, and get a proof �1; j.

Sj1-4: Send a tuple ðaj; bj; �aj; �1; jÞ to User.

U1-1: Choose a subset V � ½n� with #V ¼ t.
U1-2: If �1; j is invalid for some j 2 V , then halt.
U1-3: Choose r ~p 2r Zq, and compute u ~p ¼ gr ~p , v ~p ¼ y

r ~p

1 h ~p, û ~p ¼ ðĝÞr ~p and v̂ ~p ¼ ðŷÞr ~p ðĥÞ ~p.
U1-4: Compute ej ¼ ðajÞr ~p for each j 2 ½n�.
U1-5: Compute u ¼

Q
j2V ðbj=ejÞ.

U1-6: Run PðLpub
U Þ on an input ððaj; ej; u ~p; v ~p; û ~p; v̂ ~pÞ; r ~p; ~pÞ, and get a proof �2; j.

U1-7: Send a tuple ðV ; u; ej; u ~p; v ~p; û ~p; v̂ ~p; �2; jÞ to Serverj for each j 2 ½n�.

Sj2-1: If j 62 V or �2; j is invalid, then halt.
Sj2-2: Compute wj ¼ ðu1;duÞ�jx1; j , where

�j ¼
Y

‘2Vnf jg

�‘
j� ‘

mod q.

Sj2-3: Compute vj ¼ ðvp=v ~pÞtj .
Sj2-4: Compute zj ¼ vj=wj.
Sj2-5: Choose rzj 2 Zq, and compute uzj ¼ grzj and vzj ¼ ðu ~pÞrzj zj.
Sj2-6: Run PðLpub; j

S2 Þ on an input ððuzj ; vzj ; u ~p; aj; vp=v ~p; ðu1;duÞ�jÞ; rzj ; tj; x1; j; r1; jÞ, and get a proof �3; j.
Sj2-7: Send a tuple ððuzj ; vzjÞ; �3; jÞ to User.

U2-1: If �3; j is invalid for some j 2 V , then halt.
U2-2: Compute d0 ¼ v1;dð

Q
j2V vzj=ð

Q
j2V uzjÞ

r ~p Þ, and output d0.
The languages L

pub
S1 , L

pub
U , L

pub; j
S2 and L

pub
E are defined as follows:

L
pub
S1 ¼ fðaj; bj; �ajÞ 2 G

3
q j 9tj 2 Zq s.t. ðaj; bj; �ajÞ ¼ ðgtj ; ðupÞtj ; ð �gÞtjÞg,

L
pub
U ¼ fðaj; ej; u ~p; v ~p; û ~p; v̂ ~pÞ 2 G6

q j 9ðr ~p; ~pÞ 2 Z2
q s.t. ðej; u ~p; v ~p; û ~p; v̂ ~pÞ ¼ ða

r ~p

j ; g
r ~p ; yr ~ph ~p; ðĝÞr ~p ; ðŷÞr ~p ðĥ ~pÞg,

L
pub; j
S2 ¼ fðuzj ; vzj ; u ~p; aj; vp=v ~p; ðuduÞ�j Þ 2 G6

q j 9ðrzj ; tj; xj; rjÞ 2 Z
4
q

s.t. ðyj; aj; uzj ; vzjÞ ¼ ðgxjhrj ; gtj ; grzj ; ðu ~pÞrzj ðvp=v ~pÞtjðuduÞ��jxjÞg
and

L
pub
E ¼ fðu1;d; v1;d; u2;d; v2;dÞ 2 G4

q j 9ðr1;d; r2;dÞ 2 Z
2
q s.t. u1;d ¼ gr1;d ; u2;d ¼ gr2;d ; v1;d=v2;d ¼ y

r1;d
1 =y

r2;d
2 g.

Protocol 1. The protocol ePPSS2
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Then the protocol ePPSS2 is ðqU ; qS;T ; "Þ-PPSS-secure, where maxfnqU ; qSg � qSP; q
S
H ,

T � Tddh � 4TS � qU f
U � qS f

S � f I

for some polynomials f U , f S and f I in n, t and k, and

" � 8"ZK þ ð4nqUqS þ 6nqU � 4nqS þ 6qSÞ"SS þ ð2qUqS þ 3qU þ 2qS þ 7Þ"ddh þ qUqS!1 þ qU!2 þ qS!3 þ !4;

where !1, !2, !3 and !4 are negligible in k.

The proof of the theorem is given in Section 5.

4. A protocol which is pparam-secure but not PPSS-secure

As stated in the last of Section 2, the pparam-security is independent of the PPSS-security. In this section, we give a
protocol which is pparam-secure but not PPSS-secure. The protocol is depicted in Protocol 2. We see that Protocol 2 is
pparam-secure.

The setup algorithm Setup and Init are the same as those of ePPSS2.
The interaction between the user algorithm User and the server algorithms Server1; . . . ;Servern:
	 User’s input is a tuple ð�; pub; ~pÞ, where ~p 2 Zq ¼ PW� .
	 For each j, Serverj’s input is a tuple ð�; pub; secjÞ.

U and Sj are the same as those of PPSS2.
U1-1: Choose a subset V � ½n� with #V ¼ t.
U1-2: Send V to Serverj for each j 2 ½n�.

Sj1: If � is invalid, then halt.
Sj2: If j 2 V , then send the secret x1; j to User. Otherwise, halt.

U2-1: Compute x01 ¼ �j2Vx1; j�j, where �j is defined in Step Sj2-2 of the protocol ePPSS2.
U2-2: Compute d0 ¼ v1;d=ðu1;dÞx

0
1 , and output d0.

Protocol 2. A protocol which is pparam-secure but not PPSS-secure

Proposition 4.1. Assume that the following properties hold:
. the protocol PPSS2 is ðT ; "; 0Þ-pparam-secure, and
. the proof system ðPðLpub

E Þ;VðL
pub
E ÞÞ is ðTS; 1; qSH ; "ZK; "SSÞ-SS-NIZK.

Then Protocol 2 is ðT 0; "0; qAÞ-pparam-secure, where

T 0 � T � TS � qA fA; qA � qSH and "0 � 2"þ 6"SS

for some polynomial fA in n, t and k.

The proof of this proposition is the same as Theorem in [7]. On the other hand, Protocol 2 is not PPSS-secure.

Proposition 4.2. Protocol 2 is not PPSS-secure.

Proof. In the PPSS adversarial game for Protocol 2, assume that the adversary A receives the public parameter pub

and the subset fx1; j0 gj02V 0 of secret seeds. Entering Server’s query phase at most t � t0 times, A receives another subset
fx1; jgj2V0

of secret seeds, where V0 is a subset of ½n� n V 0 with #V0 ¼ t � t0. Then, in time polynomial in the length of the
setup parameter, computing x1 from the subset fx1; jgV0[V 0 of secret seeds, A can recover the stored document. This
implies that this protocol is not ð0; t � t0;T ; "0Þ-PPSS-secure, where T is the running time of A and "0 is any positive
number which satisfies 1 > 1=#PW� þ "0. �

5. Proof of Main Theorem

We now give the proof of the theorem. We state several lemmas in order to prove the theorem. The proofs of the
lemmas are given in Section 6.

We use the hybrid argument. Let A be a probabilistic machine followed by an adversary of the PPSS adversarial
game for ePPSS2. Assume that the running time of A is T . Using the adversary A, we define sequences of games
fGameð�; �Þg�;� and fGameð�; �; 	Þg�;�;	. Let ðQ; gÞ ¼ Genð1kÞ. We first depict the game Gameð0; 0Þ in Protocol 3.
This game models the real PPSS adversarial game for ePPSS2 with the exception that the real proofs constructed in
ePPSS2 are replaced by the simulated proofs and that Output phase is added. We convert the game Gameð0; 0Þ so that
the game does not depend on the document d and the password p.
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Initialization phase
I0: Set CU ¼ CS ¼ CF ¼ 0, F ¼ false and Upset ¼ Idset ¼ ;.
I1: Choose n; t 2 N with n � t, and send a tuple ðq; g; n; tÞ to A, where q ¼ ðQ� 1Þ=2.
I2: If A sends two documents d1; d2 2 Gq and a subset V 0 � ½n� with #V 0 ¼ t0 < t, then choose � 2r f1; 2g.
I3: Choose x1; x2 2r Zq, and compute y1 ¼ gx1 , y2 ¼ gx2 , fx1; jgnj¼1 ¼ SSt;nðx1Þ and fx2; jgnj¼1 ¼ SSt;nðx2Þ.
I4: Choose h; ĝ; ĥ; ŷ; �g 2r Gq and rp; r1;d; r2;d 2r Zq.
I5: Choose a password p 2r Zq, and compute up ¼ grp and vp ¼ y

rp
1 h

p.
I6: Compute ðu1;d ; v1;dÞ ¼ ðgr1;d ; y

r1;d
1 d�Þ and ðu2;d; v2;dÞ ¼ ðgr2;d ; y

r2;d
2 d�Þ.

I7: Choose r1; j; r2; j 2r Zq, and compute y1; j ¼ gx1; j hr1; j and y2; j ¼ gx2; j hr2; j for each j 2 ½n�.
I8: Run the simulator SðLpub

E Þ on an input ðu1;d; v1;d; u2;d; v2;dÞ, and get a proof �.
I9: Set pub1 ¼ ðg; y1; y2; h; fy1; jgnj¼1; fy2; jgnj¼1; ĝ; ĥ; ŷ; �gÞ, pub2 ¼ ðup; vpÞ, pub3 ¼ ððu1;d ; v1;dÞ; ðu2;d; v2;dÞ; �Þ and

secj ¼ ðx1; j; r1; j; x2; j; r2; jÞ for each j 2 ½n�, and send ðpub; secV 0 Þ ¼ ððpub1; pub2; pub3Þ; fsecjgj2V 0 Þ.

User’s query phase
If A enters User’s query phase with n-tuple fð j; aj; bj; �aj; �1; jÞgj2½n�, then execute the following procedure:
U1-0: Set CU ¼ CU þ 1.
U1-1: If �1; j is invalid for some j 2 ½n�, then halt.
U1-2: Choose a subset V � ½n� with #V ¼ t.
U1-3: Choose r ~p 2r Zq, and compute u ~p ¼ gr ~p , v ~p ¼ y

r ~p

1 hp, û ~p ¼ ðĝÞr ~p and v̂ ~p ¼ ðŷÞr ~p ðĥÞp.
U1-4: Set u ~pðCUÞ ¼ u ~p and Upset ¼ Upset [ fu ~pðCUÞg.
U1-5: Compute ej ¼ ðajÞr ~p for each j 2 ½n�.
U1-6: Compute u ¼

Q
j2V ðbj=ejÞ.

U1-7: Run the simulator SðLpub
U Þ on an input tuple ðaj; ej; u ~p; v ~p; û ~p; v̂ ~pÞ, and get a proof �2; j for each j 2 ½n�.

U1-8: Send ðV ; u; ej; u ~p; v ~p; û ~p; v̂ ~p; �2; jÞ for each j 2 ½n�.
If A returns a tuple fðuzj ; vzj ; �3; jÞgj2V , then execute the following procedure:
U2-1: If �3; j is invalid for some j 2 V , then halt.
U2-2: Compute d0 ¼ v1;dð

Q
j2V vzj=ð

Q
j2V uzjÞ

r ~p Þ, and send d0 to A.

Server’s query phase
If A enters Server’s query phase with an index j 2 ½n� n V 0, then executes the following procedure:
Sj1-0: Set CS ¼ CS þ 1.
Sj1-1: If � is invalid, then halt.
Sj1-2: Choose tj 2r Zq, and compute aj ¼ gtj , bj ¼ u

tj
p and �aj ¼ ð �gÞtj .

Sj1-3: Run the simulator SðLpub
S1 Þ on an input ðaj; bj; �ajÞ and get a proof �1; j.

Sj1-4: Send a tuple ð j; aj; bj; �aj; �1; jÞ.
If A returns a tuple ðV ; u; ej; u ~p; v ~p; û ~p; v̂ ~p; �2; jÞ, then execute the following procedure:
Sj2-1: If j 62 V or �2; j is invalid, then halt.
Sj2-2: If v̂ ~p=ðû ~pÞx̂ ¼ ĥp, then Idset ¼ Idset [ f jg. If #Idset � t � t0, then set F ¼ true.
Sj2-3: Compute wj ¼ ðu1;duÞ�jx1; j , where �j is defined in Step Sj2-2 of the protocol ePPSS2.
Sj2-4: Compute vj ¼ ðvp=v ~pÞtj .
Sj2-5: Compute zj ¼ vj=wj.
Sj2-6: Choose rzj 2 Zq, and compute uzj ¼ grzj and vzj ¼ ðu ~pÞrzj zj.
Sj2-7: Run the simulator SðLpub; j

S2 Þ on an input ðuzj ; vzj ; u ~p; aj; vp=v ~p; ðu1;duÞ�jÞ, and get a proof �3; j.
Sj2-8: Send ðuzj ; vzj ; �3; jÞ.

Output phase
If A outputs 1, then set ’ ¼ 1. Otherwise, set ’ ¼ 0.

Protocol 3. Gameð0; 0Þ

For � ¼ 1; 2, we define the probabilistic machine M
�
0;0 as follows: On input w ¼ ðQ; g; g1; g2; g3Þ,

(i) Simulate Gameð0; 0Þ by using ðQ; gÞ, and choose � in Step I2 of Initialization phase.
(ii) Output  set in Output phase.
Let E0;0;d� be the event that the adversary A outputs 1, and let ’�0;0 be the output of M�

0;0.
We similarly define probabilistic machines M�

�;� and M
�
�;�;	, events E�;�;d� and E�;�;	;d� , and outputs ’��;� and ’��;�;	.

We set p�;�ðd�Þ ¼ Pr½E�;�;d� � and p�;�;	ðd�Þ ¼ Pr½E�;�;	;d� �.
We note the following facts: in Gameð0; 0Þ,

(1) in Initialization phase, the challenger queries SðLpub
E Þ one time in order to make a proof �.

(2) When A enters User’s query phase,
. A queries the random oracles at most n and t times in order to make proofs f�1; jgj2½n� and f�3; jgj2V , respectively.
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. the challenger queries SðLpub
U Þ n times in order to make proofs f�2; jgj2½n�.

(3) When A enters Server’s query phase,
. A queries the random oracles at most one time in order to make a proof �2; j.
. the challenger queries SðLpub

S1 Þ and SðLpub; j
S2 Þ one time in order to make proofs �1; j and �3; j, respectively.

We also note that ’�0;0 only depends on Q and g, and is independent of g1, g2 and g3. Hence, if the running times of
the simulators SðLpub

E Þ, SðL
pub
S1 Þ, SðL

pub
U Þ and SðLpub; j

S2 Þ used in M
�
0;0ðwÞ are at most TS and maxfnqU ; qSg � qSP; q

S
H

holds, then we have

jPðd�; d1; d2Þ � p0;0ðd�Þj � 4"ZK

for � ¼ 1; 2. This implies that

jPðd1; d1; d2Þ � Pðd2; d1; d2Þj � jp0;0ðd1Þ � p0;0ðd2Þj þ 8"ZK: ð5:1Þ

(I) We define the sequence of games fGameð0; �ÞgqU�¼1. In Gameð0; �Þ, we replace Step U1-3 of Gameð0; 0Þ by the
following step:

U1-30: If CU � �, then choose v̂ ~p 2r Gq and r ~p 2r Zq, and compute u ~p ¼ gr ~p , v ~p ¼ y
r ~p

1 hp and û ~p ¼ ðĝÞr ~p . Otherwise,
choose r ~p 2r Zq, and compute u ~p ¼ gr ~p , v ~p ¼ y

r ~p

1 hp, û ~p ¼ ðĝÞr ~p and v̂ ~p ¼ ðŷÞr ~p ðĥÞp.

Lemma 5.1 (cf. Claim 5 [4]). If T � Tddh � 4TS � qU f
U
1 � qS f

S
1 � f I1 holds for some polynomials f U1 , f S1 and f I1 in n,

t and k, then

jp0;0ðd�Þ � p0;qU ðd�Þj � qUð2n"SS þ "ddh þ e!1Þ

follows for � 2 f1; 2g, where e!1 is negligible in k.

(II) We define the sequence of games fGameð1; �; 	Þg, where � ¼ 0; . . . ; qU � 1 and 	 ¼ 0; . . . ; qS. In Gameð1; �; 	Þ, we
replace Step Sj2-5 of Gameð1; 0; 0Þ ¼ Gameð0; qUÞ by the following step:

Sj2-50: If either of the following conditions (1) and (2) hold, then choose zj 2r Gq.
(1) u ~p 2 fu ~pð1Þ; . . . ; u ~pðminfCU ; �gÞg.
(2) CS � 	, CU � �þ 1 and u ~p ¼ u ~pð�þ 1Þ.

Otherwise, compute zj ¼ vj=wj.
We note that Gameð1; �; 0Þ ¼ Gameð1; �� 1; qSÞ holds.

Lemma 5.2 (cf. Claim 6 [4]). If T � Tddh � 4TS � qU f
U
2 � qS f

S
2 � f I2 holds for some polynomials f U2 , f S2 and f I2 in n,

t and k, then

jp1;0;0ðd�Þ � p1;qU�1;qSðd�Þj � ðqU � 1ÞqSð2n"SS þ "ddh þ e!2Þ

follows for � 2 f1; 2g, where e!2 is negligible in k.

(III) We define the sequence of games fGameð2; �ÞgqS�¼0. In Gameð2; �Þ, we replace Steps I4 and Sj2-4 of Gameð2; 0Þ ¼
Gameð1; qU � 1; qSÞ by the following steps, respectively:

I40: Choose h; ĝ; ĥ; �g 2r Gq and x̂; rp; r1;d ; r2;d 2r Zq, and compute ŷ ¼ ðĝÞx̂.
Sj2-40: If CS � � and ðv̂ ~p=û

x̂
~pÞ 6¼ ĥp, then choose vj 2r Gq. Otherwise, compute vj ¼ ðvp=v ~pÞtj .

Lemma 5.3 (cf. Claim 7 [4]). If T � Tddh � 4TS � qU f
U
3 � qS f

S
3 � f I3 holds for some polynomials f U3 , f S3 and f I3 in n,

t and k, then

jp2;0ðd�Þ � p2;qS ðd�Þj � qSð"ddh þ 2"SS þ e!3Þ

follows for � 2 f1; 2g, where e!3 is negligible in k.

Using Lemmas 5.1–5.3, we have

jp0;0ðd1Þ � p0;0ðd2Þj
� 4ðnqUqS þ nqU � nqS þ qSÞ"SS þ 2qUðqS þ 1Þ"ddh þ qU e!1 þ ðqU � 1ÞqSe!2 þ qSe!3 þ jp2;qSðd1Þ � P2;qS ðd2Þj: ð5:2Þ

(IV) We define the two games Gameð3; 1Þ and Gameð3; 2Þ. In Gameð3; 1Þ, we replace Step I3 and Output phase of
Gameð3; 0Þ ¼ Gameð2; qSÞ by the following steps, respectively:

I30: Choose x2 2r Zq and y1 2r Gq, and compute y2 ¼ gx2 , fx1; jgnj¼1 ¼ SSt;nð0Þ and fx2; jgnj¼1 ¼ SSt;nðx2Þ.
Output phase: If F ¼ false and A’s output equals 1, then set ’ ¼ 1. Otherwise, set ’ ¼ 0.

In Gameð3; 2Þ, we replace Output phase of Gameð3; 1Þ by the following procedure:

Output phase: If F ¼ true, then set ’ ¼ 1. Otherwise, set ’ ¼ 0.
For each M�

�;�, let F�;�;d� denote the event that F ¼ true holds. We write pF�;�ðd�Þ ¼ Pr½E�;�;d� ^ F�;�;d� � and
p:F�;�ðd�Þ ¼ p�;�ðd�Þ � pF�;�ðd�Þ. Then we have
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jp3;0ðd1Þ � p3;0ðd2Þj � jpF3;0ðd1Þ � pF3;0ðd2Þj þ jp:F3;0 ðd1Þ � p:F3;0 ðd2Þj þmaxfPr½F3;0;d1
�;Pr½F3;0;d2

�g: ð5:3Þ

Lemma 5.4 (cf. Claim 8 [4]). One has

j Pr½F3;0;d� � � Pr½F3;2;d� �j � e!4

and

p:F3;0 ðd1Þ � p:F3;0 ðd2Þ
�� �� � e!4

0 þ p:F3;1 ðd1Þ � p:F3;1 ðd2Þ
�� ��;

where e!4 and e!4
0 are negligible in k.

(V) We define the two games Gameð4; 1Þ and Gameð4; 2Þ. In Gameð4; 1Þ and Gameð4; 2Þ, we replace Step I6 of
Gameð3; 1Þ and Gameð3; 2Þ by the following step, respectively:

I60: Choose u1;d; v1;d 2r Gq, and compute ðu2;d; v2;dÞ ¼ ðgr2;d ; y
r2;d
2 d�Þ.

Lemma 5.5 (cf. Claim 9 [4]). If T � Tddh � 4TS � qU f
U
5 � qS f

S
5 � f I5 holds for some polynomials f U5 , f S5 and f I5 in n,

t and k, then

jp:F3;1 ðd�Þ � p:F4;1 ðd�Þj < "ddh

and

j Pr½F3;2;d� � � Pr½F4;2;d� �j < "ddh

follow for � 2 f1; 2g.

As we employ the twin-encryption version of the ElGamal encryption, which has not been involved in PPSS2, we
also need to replace the ‘‘second term’’ ðu2;d; v2;dÞ by random values of G2

q. So, we define the following games
Gameð4; 3Þ and Gameð4; 4Þ. In Gameð4; 3Þ and Gameð4; 4Þ, we replace Step I60 of Gameð4; 1Þ and Gameð4; 2Þ by the
following step, respectively:

I600: Choose u1;d; v1;d; u2;d; v2;d 2r Gq.

Lemma 5.6. If T � Tddh � 4TS � qU f
U
6 � qS f

S
6 � f I6 holds for some polynomials f U6 , f S6 and f I6 in n, t and k, then

jp:F4;1 ðd�Þ � p:F4;3 ðd�Þj < "ddh

and

j Pr½F4;2;d� � � Pr½F4;4;d� �j < "ddh

follow for � 2 f1; 2g.

Since the values v1;d and v2;d are uniformly chosen in Step I600 of Gameð4; 3Þ, A’s output does not depend on the
choice of � in Step I2 of the game. Hence, we see that p:F4;3 ðd1Þ ¼ p:F4;3 ðd2Þ. Using Lemmas 5.4–5.6, we have

jp:F3;0 ðd1Þ � p:F3;0 ðd2Þj � 4"ddh þ e!4: ð5:4Þ

(VI) We define the sequence of games fGameð5; �ÞgqS�¼0. In Gameð5; �Þ, we replace Step Sj2-40 of Gameð5; 0Þ ¼
Gameð4; 4Þ by the following step:

Sj2-400: If CS � � or ðv̂ ~p=û ~pÞ 6¼ ĥp, then choose vj 2r Gq. Otherwise, compute vj ¼ ðvp=v ~pÞtj .

Lemma 5.7 (cf. Claim 10 [4]). If T � Tddh � 4TS � qU f
U
7 � qS f

S
7 � f I7 holds for some polynomials f U7 , f S7 and f I7 in

n, t and k, then

j Pr½F5;0;d� � � Pr½F5;qS;d� �j � qSð2"ddh þ 2"SS þ e!7Þ

follows for � 2 f1; 2g, where e!7 is negligible in k.

(VII) We define the sequence of games fGameð6; �ÞgqU�¼0. In Gameð6; �Þ, we replace Step U1-30 of Gameð6; 0Þ ¼
Gameð5; qUÞ by the following step:

U1-300: If CU � �, then choose v̂ ~p; v ~p 2r Gq and r ~p 2r Zq, and compute u ~p ¼ g
r ~p

1 and û ~p ¼ ðĝÞr ~p . Otherwise, choose
v̂ ~p 2r Gq and r ~p 2r Zq, and compute u ~p ¼ gr ~p , v ~p ¼ y

r ~p

1 h ~p and û ~p ¼ ðĝÞr ~p .

Lemma 5.8 (cf. Claim 11 [4]). If T � Tddh � 4TS � qU f
U
8 � qS f

S
8 � f I8 holds for some polynomials f U8 , f S8 and f I8 in

n, t and k, then

j Pr½F6;0;d� � � Pr½F6;qU ;d� �j � qUð"ddh þ 2n"SS þ e!8Þ

follows for � 2 f1; 2g, where e!8 is negligible in k.
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(VIII) We define the game Gameð7; 1Þ. In Gameð7; 1Þ, we replace Step I5 of Gameð7; 0Þ ¼ Gameð6; qUÞ by the
following step:

I50: Choose p 2r Zq and up; vp 2r Gq.

Lemma 5.9 (cf. Claim 12 [4]). If T � Tddh � 4TS � qU f
U
9 � qS f

S
9 � f I9 holds for some polynomials f U9 , f S9 and f I9 in

n, t and k, then

j Pr½F7;0;d� � � Pr½F7;1;d� �j < "ddh

follows for � 2 f1; 2g.

For � 2 f1; 2g, using Lemmas 5.4–5.9, we have

Pr½F3;0;d� � � Pr½F7;1;d� � þ ð2qS þ qU þ 3Þ"ddh þ 2ðnqU þ qSÞ"SS þ e!4 þ qSe!7 þ qU e!8: ð5:5Þ

The values vp, v ~p and v̂ ~p constructed in Steps I50 and U1-300 of Gameð7; 1Þ are independent of the choice of p in Step
I50. Hence, for � 2 f1; 2g, we have

Pr½F7;1;d� � �
qS

t � t0

� �
�

1

#PW�
: ð5:6Þ

Hence, if T � Tddh � 4TS � qU f
U � qS f

S � f I holds for some polynomials f U , f S and f I in n, t and k, then, by the
inequalities (5.1)–(5.6), we obtain

jPðd1; d1; d2Þ � Pðd2; d1; d2Þj �
qS

t � t0

� �
�

1

#PW�
þ 8"ZK þ ð4nqUqS þ 6nqU � 4nqS þ 6qSÞ"SS

þ ð2qUqS þ 3qU þ 2qS þ 7Þ"ddh þ qUqS!1 þ qU!2 þ qS!3 þ !4;

where !1, !2, !3 and !4 are negligible in k. This completes the proof of the theorem.

6. Proof of Lemmas

In this section, we prove Lemmas 5.1–5.9.

6.1 Proof of Lemma 5.1

We construct an intermediary machine eM�
0;�. On input w ¼ ðQ; g; g1; g2; g3Þ, eM�

0;� simulates M
�
0;� except for the

following steps:

I4: Choose h; ĥ 2r Gq, rp; r1;d; r2;d 2r Zq and r0; r1 2r Z�q. Then set ĝ ¼ gr0 , �g ¼ gr11 and ŷ ¼ g2.
U1-30: If CU ¼ �, then set u ~p ¼ g

1=r0
1 , v ~p ¼ g

x1=r0
1 hp, û ~p ¼ g1 and v̂ ~p ¼ g

1=r0
3 ðĥÞ

p. Otherwise, execute Step U1-30 of
M

�
0;�.

U1-5: if CU ¼ �, then set ej ¼ ð �ajÞ1=ðr0r1Þ for each j 2 ½n�. Otherwise, execute Step U1-5 of M�
0;�.

Let e’��;� be the outputs of eM�
�;�. Noting that ’�0;� is independent of g1, g2 and g3, we have

p0;��1ðd�Þ � p0;�ðd�Þ
�� �� ¼ Pr

w2DH
½’�0;��1 ¼ 1� � Pr

w2fDH

½’�0;� ¼ 1�

�����
�����

� Pr
w2DH
½’�0;��1 ¼ 1� � Pr

w2DH
½e’�0;� ¼ 1�

����
����þ Pr

w2DH
½e’�0;� ¼ 1� � Pr

w2eDH

½e’�0;� ¼ 1�

�����
�����

þ Pr
w2fDH

½e’�0;� ¼ 1� � Pr
w2fDH

½’�0;� ¼ 1�

�����
�����: ð6:1Þ

For any 0 � � � qU , the running time of eM�
0;� is at most T1 ¼ T þ 4TS þ qU f

U
1 þ qS f

S
1 þ f I1 for some polynomials f U1 ,

f S1 and f I1 in n, t and k. So, if T1 � Tddh, then the second term on the right-hand side of (6.1) is at most "ddh.
We now estimate the first and the last terms on the right-hand side of (6.1). Let ESS

S1;� denote the event such that A
enters the �-th User’s query phase with a query fð j; aj; bj; �aj; �1; jÞgj2½n� which satisfies the following two conditions for
some j0 2 ½n�: (i) ðaj0 ; bj0 ; �aj0Þ 62 L

pub
S1 , and (ii) �1; j0 is a valid proof. Then we have

Pr
w2DH
½’�0;��1 ¼ 1� � Pr

w2DH
½e’�0;� ¼ 1�

����
����

� Pr
w2DH
½’�0;��1 ¼ 1 ^ ESS

S1;�� � Pr
w2DH
½e’�0;� ¼ 1 ^ ESS

S1;��
����

����
þ Pr

w2DH
½’�0;��1 ¼ 1 ^ :ESS

S1;�� � Pr
w2DH
½e’�0;� ¼ 1 ^ :ESS

S1;��
����

����: ð6:2Þ
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Since ðPðLpub
S1 Þ;VðL

pub
S1 ÞÞ is ðTS; qSP; qSH ; "ZK; "SSÞ-SS-NIZK, if the running time of SðLpub

S1 Þ used in M
�
0;��1 and eM�

0;� is at
most TS, and maxfnqU ; qSg � qSH ; q

S
P holds, then we have

Pr
w2DH
½’�0;��1 ¼ 1 ^ ESS

S1;�� � Pr
w2DH
½e’�0;� ¼ 1 ^ ESS

S1;��
����

���� � 1� ð1� "SSÞn � n"SS:

By the similar argument, we have

Pr
w2fDH

½e’�0;� ¼ 1� � Pr
w2fDH

½’�0;� ¼ 1�

�����
����� � n"SS þ Pr

w2fDH

½e’�0;� ¼ 1 ^ :ESS
S1;�� � Pr

w2fDH

½’�0;� ¼ 1 ^ :ESS
S1;��

�����
�����: ð6:3Þ

In order to estimate other terms, we assume that the event ESS
S1;� does not occur.

(A) We first consider the last term on the right-hand side of (6.2). Let w 2 DH. In the �-th User’s query phase of eM�
0;�,

if we set r ~p ¼ 
1=r0, where g1 ¼ g
1 , then one has u ~p ¼ gr ~p , v ~p ¼ y
r ~p

1 hp, û ~p ¼ ðĝÞr ~p , v̂ ~p ¼ ðŷÞr ~pðĥÞp and ej ¼ ðajÞr ~p :
these values are the same as the values obtained in the �-th User’s query phase of M�

0;��1 with r ~p ¼ 
1=r0. Therefore,
the only differences between M

�
0;��1 and eM�

0;� are the choices of ĝ, �g and ŷ in Step I4 and that of u ~p in Step U1-30 of the
�-th User’s query phase. We define the following distribution over G4

q:

�1
0;� ¼ fðg

r0 ; gr11 ; g2; g
1=r0
1 Þ j r0; r1 2r Z

�
q; g1; g2 2r Gqg:

The distribution �1
0;� is identical to the distribution of ðĝ; �g; ŷ; u ~pÞ constructed in eM�

0;�ðwÞ. In addition, the distribution of
ðĝ; �g; ŷ; u ~pÞ constructed in M

�
0;��1ðwÞ is uniform over G4

q. Hence, the last term on the right-hand side of (6.2) is bounded
by the statistical distance between �1

0;� and U
G

4
q
.

We see that the following statements hold:
For any �g; ŷ; u ~p 2 Gq, one has

Pr
g2�1

0;�

½g ¼ ð1; �g; ŷ; u ~pÞ� ¼ 0:

For any ĝ; �g; u ~p 2 Gq n f1g and ŷ 2 Gq, one has

Pr
g2�1

0;�

½g ¼ ðĝ; 1; ŷ; u ~pÞ� ¼ Pr
g2�1

0;�

½g ¼ ðĝ; �g; ŷ; 1Þ� ¼ 0; Pr
g2�1

0;�

½g ¼ ðĝ; 1; ŷ; 1Þ� ¼
1

q2ðq� 1Þ

and

Pr
g2�1

0;�

½g ¼ ðĝ; �g; ŷ; u ~pÞ� ¼
1

q2ðq� 1Þ2
:

So the statistical distance between �1
0;� and U

G
4
q

is given by 2ð3q2 � 4qþ 2Þ=q3. This value is negligible in the security
parameter k.
(B) We next consider the last term on the right-hand side of (6.3). Let w 2gDH. Using the similar argument to (A), we
see that the differences between eM�

0;� and M
�
0;� are the choices of ĝ, �g and ŷ in Step I4 and those of u ~p and v̂ ~p in Step

U1-30 of the �-th User’s query phase. We define the distribution �2
0;� over G5

q by

�2
0;� ¼ fðg

r0 ; gr11 ; g2; g
1=r0
1 ; g1=r0

3 ĥpÞ j r0; r1 2r Z�q; g1; g2; g3 2r Gqg:

The distribution �2
0;� is identical to that of ðĝ; �g; ŷ; u ~p; v̂ ~pÞ constructed in eM�

0;�ðwÞ. In addition, the distribution of
ðĝ; �g; ŷ; u ~p; v̂ ~pÞ constructed in M

�
0;�ðwÞ is identical to U

G
5
q
. The last term on the right-hand side of (6.3) is bounded by the

statistical distance between �2
0;� and U

G
5
q
. We note that for any fixed r0 2 Z�q, p 2 Zq and ĥ 2 Gq, the distribution

fg1=r0
3 ĥp j g3 2r Gqg over Gq is uniform. This implies that the statistical distance between �2

0;� and U
G

5
q

is
less than the distance between �1

0;� and U
G

4
q
.

Consequently, we have

p0;��1ðd�Þ � p0;�ðd�Þ
�� �� � 2n"SS þ "ddh þ e!1;

where !1 is negligible in k, and hence

p0;0ðd�Þ � p0;qU ðd�Þ
�� �� � qUð2n"SS þ "ddh þ e!1Þ

follows.

Remark 6.1. In the proof of Lemma 5.1, the construction of the machine eM�
0;�, the estimation of the second term on

the right-hand side of (6.1) and that of the first term on the right-hand side of (6.2) are the same as those in the proof of
Claim 5 in [4]. On the other hand, in [4], the second term on the right-hand side of (6.2) and that of (6.3) are regarded to
be zero without precise estimation. However, one has to estimate these terms precisely since the statistical distance
between �1

0;� and U4
Gq

and that between �2
0;� and U5

Gq
are not necessarily zero as analyzed in (A) and (B) of our proof.

The same applies in other lemmas.

42 HASEGAWA et al.



6.2 Proof of Lemma 5.2

We construct an intermediary machine eM�
1;�;	. On input w ¼ ðQ; g; g1; g2; g3Þ, eM�

1;�;	 simulates M�
1;�;	�1 except for the

following steps:

I4: Choose h; ĥ 2r Gq, rp; r1;d; r2;d; r0; x̂ 2r Zq and r1 2r Z�q. Then set ĝ ¼ gr0 , �g ¼ gr11 and ŷ ¼ ĝx̂.
U1-30: if CU ¼ �, then choose v̂ ~p 2r Gq, and set u ~p ¼ g1, v ~p ¼ gx1

1 h
p and û ~p ¼ gr01 . Otherwise, execute Step U1-30 of

M
�
1;�;	�1.

U1-5: if CU ¼ �, then set ej ¼ ð �ajÞ1=r1 for each j 2 ½n�. Otherwise, execute Step U1-5 of M�
1;�;	�1.

Sj2-6: if CS ¼ 	, CU � �þ 1 and u ~p ¼ u ~pð�þ 1Þ hold, then set uzj ¼ g2 and vzj ¼ g3zj. Otherwise, execute Step Sj2-6
of M�

1;�;	�1.

In each M
�
1;�;	 and eM�

1;�;	, let U�;	
p denote the event that CU � �þ 1 and u ~p ¼ u ~pð�þ 1Þ hold in the 	-th Server’s

query phase.
Let e’��;�;	 be the output of eM�

�;�;	. Noting that ’�1;�;	 is independent of g1, g2 and g3, we have

jp1;�;	�1ðd�Þ � p1;�;	ðd�Þj

� Pr
w2DH
½’�1;�;	�1 ¼ 1� � Pr

w2DH
½e’�1;�;	 ¼ 1�

����
����þ Pr

w2DH
½e’�1;�;	 ¼ 1� � Pr

w2fDH

½e’�1;�;	 ¼ 1�

�����
�����

þ Pr
w2fDH

½e’�1;�;	 ¼ 1� � Pr
w2fDH

½’�1;�;	 ¼ 1�

�����
�����: ð6:4Þ

We estimate the first and the last terms on the right-hand side of (6.4). Let ESS
S1;� denote the event defined as in the

proof of the Lemma 5.1. If the running time of SðLpub
S1 Þ used in M

�
1;�;	�1, eM�

1;�;	 and M
�
1;�;	 is at most TS, and

maxfnqU ; qSg � qSH ; q
S
P holds, then we have

Pr
w2DH
½’�1;�;	�1 ¼ 1� � Pr

w2DH
½e’�1;�;	 ¼ 1�

����
����þ Pr

w2fDH

½e’�1;�;	 ¼ 1� � Pr
w2fDH

½’�1;�;	 ¼ 1�

�����
�����

� 2n"SS þ Pr
w2DH
½’�1;�;	�1 ¼ 1 ^ :ESS

S1;�� � Pr
w2DH
½e’�1;�;	 ¼ 1 ^ :ESS

S1;��
����

����
þ Pr

w2fDH

½e’�1;�;	 ¼ 1 ^ :ESS
S1;�� � Pr

w2fDH

½’�1;�;	 ¼ 1 ^ :ESS
S1;��

�����
�����: ð6:5Þ

In order to estimate other terms, we assume that the event ESS
S1;� does not occur.

(A) We first consider the second term on the right-hand side of (6.5). Let w 2 DH. In the �-th User’s query phase ofeM�
1;�;	, if we set r ~p ¼ 
1, where g1 ¼ g
1 , then one has u ~p ¼ gr ~p , v ~p ¼ y

r ~p

1 hp, û ~p ¼ ðĝÞr ~p , v̂ ~p 2r Gq and ej ¼ ðajÞr ~p : these
values are the same as the values obtained in the �-th Server’s query phase of M�

1;�;	�1. We consider the 	-th Server’s
query phase of eM�

1;�;	.
. Assume that the event U�;	

p occurs. If we set rzj ¼ 
2, where g2 ¼ g
2 , then one has uzj ¼ grzj and vzj ¼ u
rzj
~p zj: these

values are the same as the values obtained in the 	-th Server’s query phase of M�
1;�;	�1 with rzj ¼ 
2. In particular,

g2 is randomly chosen, and is independent of the choices of ĝ, �g, ŷ and u ~p.
. If the event U�;	

p does not occur, then the 	-th Server’s query phase of eM�
1;�;	 is the same as that of M�

1;�;	�1.
Hence, the differences between M

�
1;�;	�1 and eM�

1;�;	 are the choices of ĝ, �g and ŷ in Step I4 and that of u ~p in Step
U1-30. The distribution

�1
1;�;	 ¼ fðg

r0 ; gr11 ; g
r0 x̂; g1Þ j r0; x̂ 2r Zq; r1 2r Z�q; g1 2r Gqg

over G4
q is identical to the distribution of ðĝ; �g; ŷ; u ~pÞ constructed in eM�

1;�;	ðwÞ. In addition, the distribution of ðĝ; �g; ŷ; u ~pÞ
constructed in M

�
1;�;	�1ðwÞ is uniform over G4

q. The second term on the right-hand side of (6.5) is bounded by the
statistical distance between �1

1;�;	 and U
G

4
q
. We define the following two distributions over G2

q:

��1
1;�;	 ¼ fðg

r0 ; gr0 x̂Þ j r0; x̂ 2r Zqg

and

e�1
1;�;	 ¼ fðg

r1
1 ; g1Þ j r1 2r Z�q; g1 2r Gqg:

For any ĝ; �g; ŷ; u ~p; uzj 2 Gq n f1g, we have

Pr
g2 ��1

1;�;	

½g ¼ ð1; ŷÞ� ¼ 0; Pr
g2 ��1

1;�;	

½g ¼ ð1; 1Þ� ¼ Pr
g2 ~�1

1;�;	

½g ¼ ð1; 1Þ� ¼
1

q
;
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Pr
g2 ��1

1;�;	

½g ¼ ðĝ; 1Þ� ¼ Pr
g2 ��1

1;�;	

½g ¼ ðĝ; ŷÞ� ¼
1

q2
; Pr

g2 ~�1
1;�;	

½g ¼ ð �g; u ~pÞ� ¼
1

qðq� 1Þ

and

Pr
g2 ~�1

1;�;	

½g ¼ ð1; u ~pÞ� ¼ Pr
g2 ~�1

1;�;	

½g ¼ ð �g; 1Þ� ¼ 0:

Since ��1
1;�;	 and ~�1

1;�;	 are independent, the statistical distance between �1
1;�;	 and U

G
4
q

is at most the sum of the distance

between ��1
1;�;	 and U

G
2
q

and that between ~�1
1;�;	 and U

G
2
q
. Hence, the statistical distance between �1

1;�;	 and U
G

4
q

is at

most 6ðq� 1Þ=q2, which is negligible in k.

(B) We next consider the last term on the right-hand side of (6.5). Let w 2gDH. We have

Pr
w2fDH

½e’�1;�;	 ¼ 1 ^ :ESS
S1;�� � Pr

w2fDH

½’�1;�;	 ¼ 1 ^ :ESS
S1;��

�����
�����

� Pr
w2fDH

½e’�1;�;	 ¼ 1 ^ :ESS
S1;� ^ U�;	

p � � Pr
w2fDH

½’�1;�;	 ¼ 1 ^ :ESS
S1;� ^ U�;	

p �

�����
�����

þ Pr
w2fDH

½e’�1;�;	 ¼ 1 ^ :ESS
S1;� ^ :U

�;	
p � � Pr

w2fDH

½’�1;�;	 ¼ 1 ^ :ESS
S1;� ^ :U

�;	
p �

�����
�����: ð6:6Þ

(B-1) In order to estimate the last term on the last-hand side of (6.6), we assume that the event U�;	
p does not occur.

Then, by the similar argument to (A), the differences between eM�
1;�;	 and M

�
1;�;	 are the choices of ĝ, �g and ŷ in Step I4

and that of u ~p in Step U1-30 of the �-th User’s query phase. Hence, the last term on the right-hand side of (6.6) is at most
the statistical distance between �1

1;�;	 and U
G

4
q
, and is negligible in k.

(B-2) In order to estimate the first term on the right-hand side of (6.6), we assume that the event U�;	
p occurs. The

differences between eM�
1;�;	 and M

�
1;�;	 are the choices of ĝ, �g and ŷ in Step I4, that of u ~p in Step U1-30 of the �-th User’s

query phase and those of zj, uzj and vzj of the 	-th Server’s query phase. Let Z be the distribution of zj 2 Gq computed

in the 	-th Server’s query phase of eM�
1;�;	. The distribution Z depends on gr0 , gr11 , gr0 x̂ and g1, and is independent of g2

and g3.
The distribution

�2
1;�;	 ¼ fðg

r0 ; gr11 ; g
r0x̂; g1; g2; g3zjÞ j r0; x̂ 2r Zq; r1 2r Z�q; g1; g2; g3 2r Gq; zj 2 Zg

is identical to the distribution of ðĝ; �g; ŷ; u ~p; uzj ; vzjÞ constructed in eM�
1;�;	ðwÞ. Let m0 ¼ ðm1;m2;m3;m4Þ 2 G4

q, m
00 ¼

ðm5;m6Þ 2 G2
q and m ¼ ðm0;m00Þ. Then we have

Pr
g2�2

1;�;	

½g ¼ m� ¼ Pr
g2�2

1;�;	

½g00 ¼ m00 j g0 ¼ m0� Pr
g2�2

1;�;	

½g0 ¼ m0�;

where we have set g ¼ ðg0;g00Þ. We note that

Pr
g2�1

1;�;	

½g0 ¼ m0� ¼ Pr
g2�2

1;�;	

½g0 ¼ m0�:

It follows that

Pr
g2�2

1;�;	

½g00 ¼ m00 j g0 ¼ m0� ¼ Pr
g2�2

1;�;	

½g3zj ¼ m6 j ðg0; g2Þ ¼ ðm0;m5Þ� Pr
g2�2

1;�;	

½g2 ¼ m5 j g0 ¼ m0�

¼
1

q

X
m02Gq

Pr
g2�2

1;�;	

½zj ¼ m6m
�1
0 j ðg

0; g2; g3Þ ¼ ðm0;m5;m0Þ� Pr
g2�2

1;�;	

½g3 ¼ m0 j ðg0; g2Þ ¼ ðm0;m5Þ�

¼
1

q2

X
m02Gq

Pr
g2�2

1;�;	

½zj ¼ m6m
�1
0 j ðg

0; g2; g3Þ ¼ ðm0;m5;m0Þ�:

Since fm6m
�1
0 j m0 2 Gqg ¼ Gq for any m6 2 Gq, we have

Pr
g2�2

1;�;	

½g00 ¼ m00 j g0 ¼ m0� ¼
1

q2
:

The distribution

�3
1;�;	 ¼ fðĝ; �g; ŷ; g

r ~p ; grzj ; gr ~przj zjÞ j r ~p; rzj 2r Zq; ĝ; �g; ŷ; zj 2r Gqg

is identical to that constructed in M
�
1;�;	ðwÞ, and is uniform over G6

q. Since the first term on the right-hand side of (6.6) is
bounded by the statistical distance between �2

1;�;	 and �3
1;�;	, we have

44 HASEGAWA et al.



Pr
w2fDH

½e’�1;�;	 ¼ 1 ^ :ESS
S1;� ^ U�;	

p � � Pr
w2fDH

½’�1;�;	 ¼ 1 ^ :ESS
S1;� ^ U�;	

p �

�����
�����

�
X
m2G6

q

Pr
g2�2

1;�;	

½g ¼ m� � Pr
g2�3

1;�;	

½g ¼ m�

�����
����� ¼

X
m002G2

q

1

q2

X
m02G4

q

Pr
g2�2

1;�;	

½g0 ¼ m0� �
1

q4

�����
����� ¼ 6ðq� 1Þ

q2
;

where the last equation follows from the argument in (A). This value is negligible in k.

Note that, for any 0 � � � qU � 1 and 0 � 	 � qS, the running time of eM�
1;�;	 is at most T2 ¼ T þ 4TS þ qU f

U
2 þ

qS f
S
2 þ f I2 for some polynomials f U2 , f S2 and f I2 in n, t and k. So, if T2 � Tddh, then the second term on the right-hand side

of (6.4) is at most "ddh. Consequently, we have

jp1;0;0ðd�Þ � p1;qU�1;qSðd�Þj � ðqU � 1ÞqSð2n"SS þ "ddh þ e!2Þ;

where e!2 is negligible in k.

6.3 Proof of Lemma 5.3

We construct an intermediary probabilistic machine eM�
2;�. On input w ¼ ðQ; g; g1; g2; g3Þ, eM�

2;� simulates M�
2;� except

for the following steps:

I40: Choose ĝ 2r Gq, x̂; rp; r1;d; r2;d; r1 2r Zq and r0 2r Z�q, and set h ¼ g2, ĥ ¼ gr03 , ŷ ¼ ĝx̂ and �g ¼ gr1 .
Sj1-2: if CS ¼ �, then set aj ¼ g1, bj ¼ g

rp
1 and �aj ¼ gr11 . Otherwise, execute Step Sj1-2 of M�

2;�.
Sj2-40: if CS ¼ �, then set

vj ¼
bj

ej

� �x1

g
p
3

v̂ ~p

ðû ~pÞx̂

� ��1=r0

:

Otherwise, execute Step Sj2-40 of M�
2;�.

Noting that ’�2;� is independent of g1, g2 and g3, we have

jp2;��1ðd�Þ � p2;�ðd�Þj

� Pr
w2DH
½’�2;��1 ¼ 1� � Pr

w2DH
½e’�2;� ¼ 1�

����
����þ Pr

w2DH
½e’�2;� ¼ 1� � Pr

w2fDH

½e’�2;� ¼ 1�

�����
�����

þ Pr
w2fDH

½e’�2;� ¼ 1� � Pr
w2fDH

½’�2;� ¼ 1�

�����
�����: ð6:7Þ

We estimate the first and the last terms on the right-hand side of (6.7). Let ESS
U;� denote the event such that A enters

the �-th Server’s query phase with a query ðV ; u; ej; u ~p; v ~p; û ~p; v̂ ~p; �2; jÞ which satisfies the following two conditions: (i)
�2; j is a valid proof, and (ii) ðaj; ej; u ~p; v ~p; û ~p; v̂ ~pÞ 62 Lpub

U . Since ðPðLpub
U Þ;VðL

pub
U ÞÞ is ðTS; qSP; qSH ; "ZK; "SSÞ-SS-NIZK, if

the running time of SðLpub
U Þ used in M

�
2;��1, M�

2;� and eM�
2;� is at most TS, and maxfnqU ; qSg � qSH ; q

S
P holds, then we

have

Pr
w2DH
½’�2;��1 ¼ 1� � Pr

w2DH
½e’�2;� ¼ 1�

����
����þ Pr

w2fDH

½e’�2;� ¼ 1� � Pr
w2fDH

½’�2;� ¼ 1�

�����
�����

� 2"SS þ Pr
w2DH
½’�2;��1 ¼ 1 ^ :ESS

U;�� � Pr
w2DH
½e’�2;� ¼ 1 ^ :ESS

U;��
����

����
þ Pr

w2fDH

½e’�2;� ¼ 1 ^ :ESS
U;�� � Pr

w2fDH

½’�2;� ¼ 1 ^ :ESS
U;��

�����
�����: ð6:8Þ

In order to estimate other terms, we assume that the event ESS
U;� does not occur.

(A) We first consider the second term on the right-hand side of (6.8). Let w 2 DH. In the �-th Server’s query phase ofeM�
2;�, if we set tj ¼ 
1, where g1 ¼ g
1 , then one has aj ¼ gtj , bj ¼ u

tj
p , �aj ¼ ð �gÞtj and vj ¼ ðvp=v ~pÞtj : these values are the

same as the values obtained in the �-th Server’s query phase of M�
2;��1 with tj ¼ 
1. Hence, the differences between

M
�
2;��1 and eM�

2;� is the choices of h, ĥ and �g in Step I40 and that of aj in Step Sj1-2 of the �-th Server’s query phase. We
define the distribution �1

2;� over G4
q by

�1
2;� ¼ fðg


2 ; g
1
2r0 ; gr1 ; g
1 Þ j r1; 
1; 
2 2r Zq; r0 2r Z�qg:

The distribution �1
2;� is identical to the distribution of ðh; ĥ; �g; ajÞ constructed in eM�

2;�ðwÞ. In addition, the distribution of
ðh; ĥ; �g; ajÞ constructed in M

�
2;��1ðwÞ is identical to U

G
4
q
. The second term on teh right-hand side of (6.8) is bounded by

the statistical distance between �1
2;� and U

G
4
q
. Since the distribution fgr1 j r1 2r Zqg over Gq is uniform, the statistical

distance between �1
2;� and U

G
4
q

is at most the distance between the distribution
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��1
2;� ¼ fðg


2 ; g
1
2r0 ; g
1Þ j 
1; 
2 2r Zq; r0 2r Z�qg

over G3
q and U

G
3
q
. For any h; ĥ; aj 2 Gq n f1g, we have

Pr
g2 ��1

2;�

½g ¼ ð1; ĥ; ajÞ� ¼ Pr
g2 ��1

2;�

½g ¼ ð1; ĥ; 1Þ� ¼ Pr
g2 ��1

2;�

½g ¼ ðh; ĥ; 1Þ� ¼ Pr
g2 ��1

2;�

½g ¼ ðh; 1; ajÞ� ¼ 0;

Pr
g2 ��1

2;�

½g ¼ ðh; ĥ; ajÞ� ¼
1

q2ðq� 1Þ

and

Pr
g2 ��1

2;�

½g ¼ ðh; 1; 1Þ� ¼ Pr
g2 ��1

2;�

½g ¼ ð1; 1; ajÞ� ¼ Pr
g2 ��1

2;�

½g ¼ ð1; 1; 1Þ� ¼
1

q2
:

Hence, the statistical distance between �1
2;� and U

G
4
q

is at most 2ð3q2 � 5qþ 2Þ=q3, which is negligible in k.

(B) We next consider the last term on the right-hand side of (6.8). Let w 2gDH. We have

Pr
w2fDH

½e’�2;� ¼ 1 ^ :ESS
U;�� � Pr

w2fDH

½’�2;� ¼ 1 ^ :ESS
U;��

�����
�����

� Pr
w2fDH

½e’�2;� ¼ 1 ^ :ESS
U;� ^ I�� � Pr

w2fDH

½’�2;� ¼ 1 ^ :ESS
U;� ^ I��

�����
�����

þ Pr
w2fDH

½e’�2;� ¼ 1 ^ :ESS
U;� ^ :I�� � Pr

w2fDH

½’�2;� ¼ 1 ^ :ESS
U;� ^ :I��

�����
�����; ð6:9Þ

where I� denotes the event such that A enters the �-th Server’s query phase with a query ðV ; u; ej; u ~p; v ~p; û ~p; v̂ ~p; �2; jÞ
which satisfies v̂ ~p=ðû ~pÞx̂ ¼ ĥp.

(B-1) In order to estimate the first term on the right-hand side of (6.9), we assume that the event I� occurs. In the �-th
Server’s query phase of eM�

2;�, if we set tj ¼ 
1, where g1 ¼ g
1 , then one has aj ¼ gtj , bj ¼ u
tj
p , �aj ¼ ð �gÞtj and

vj ¼
bx1

j

ex1

j

¼
u
tjx1
p hptj

u
tjx1

~p hptj
¼

vp

v ~p

� �tj

:

This shows that these values are the same as the values obtained in the �-th Server’s query phase of M�
2;� with tj ¼ 
1.

Hence, the differences between eM�
2;� and M

�
2;� are the choices of h, ĥ and �g in Step I40 and that of aj in Step Sj1-2 of the

�-th Server’s query phase. The distribution

�2
2;� ¼ fðg2; g

r0
3 ; g

r1 ; g1Þ j r0 2r Z�q; r1 2 Zq; g1; g2; g3 2r Gqg

over G4
q is identical to the distribution of ðh; ĥ; �g; ajÞ constructed in eM�

2;�ðwÞ, and is uniform. Since the distribution of
ðh; ĥ; �g; ajÞ constructed in M

�
2;�ðwÞ is also uniform over G4

q, we have

Pr
w2fDH

½e’�2;� ¼ 1 ^ :ESS
U;� ^ I�� ¼ Pr

w2fDH

½’�2;� ¼ 1 ^ :ESS
U;� ^ I��:

(B-2) In order to estimate the last term on the right-hand side of (6.9), we assume that the event I� does not occur and
that A enters the �-th Server’s query phase with a query ðV ; u; ej; u ~p; v ~p; û ~p; v̂ ~p; �2; jÞ. The differences between eM�

2;� and
M

�
2;� are the choices of h, ĥ and �g in Step I40, and those of aj and vj in the �-th Server’s query phase.
We set �1 ¼ x1ðrp � r ~pÞ and �2 ¼ p� ~p, where u ~p ¼ gr ~p and v̂ ~p=ðû ~pÞx̂ ¼ ĥ ~p. Then the value vj computed in the �-th

Server’s query phase of eM�
2;� is equal to g�11 g

�2
3 . Let D1 and D2 be the distributions of �1 2 Zq and �2 2 Zq, respectively.

The distributions D1 and D2 depend on h, ĥ, �g and aj.
The distribution

�3
2;� ¼ fðg2; g

r0
3 ; g

r1 ; g1; g
�1
1 g

�2
3 Þ j g1; g2; g3 2r Gq; r0 2r Z�q; r1 2r Zq �1 2 D1; �2 2 D2g

is identical to the distribution of ðh; ĥ; �g; aj; vjÞ constructed in eM�
2;�ðwÞ, and the distribution of ðh; ĥ; �g; aj; vjÞ constructed

in M
�
2;�ðwÞ is uniform over G5

q. The last term on the right-hand side of (6.9) is bounded by the statistical distance
between �3

2;� and U
G

5
q
. We note that �2 6¼ 0 holds if the event I� does not occur. Hence, we have

Pr
w2fDH

½’�2;� ¼ 1 ^ :ESS
U;� ^ :I�� � Pr

w2fDH

½’�2;� ¼ 1 ^ :ESS
U;� ^ :I��

�����
�����

�
X
m2G5

q

Pr
g2�3

2;�

½g ¼ m ^ �2 6¼ 0� � Pr
g2U

G
5
q

½g ¼ m ^ �2 6¼ 0�

�����
�����:

46 HASEGAWA et al.



We write m ¼ ðm1;m2;m3;m4;m5Þ ¼ ðm0;m5Þ 2 G5
q and g ¼ ðg0;g5Þ. For any m 2 G5

q, we have

Pr
g2U

G
5
q

½g ¼ m ^ �2 6¼ 0� ¼
1

q4
Pr

g2U
G

5
q

½g ¼ m ^ �2 6¼ 0 j g0 ¼ m0�

¼
1

q4
Pr

g2U
G

5
q

½g5 ¼ m5 j �2 6¼ 0 ^ g0 ¼ m0� Pr
g2U

G
5
q

½�2 6¼ 0 j g0 ¼ m0�

¼
1

q5
Pr

g2U
G

5
q

½�2 6¼ 0 j g0 ¼ m0�:

Since the value �2 depends on m0, we have

Pr
g2U

G
5
q

½�2 6¼ 0 j g0 ¼ m0� ¼ Pr
g2�3

2;�

½�2 6¼ 0 j g0 ¼ m0�:

We denote this value by Dðm0Þ.

(i) When m2 ¼ m4 ¼ m5 ¼ 1, we have

Pr
g2�3

2;�

½g ¼ m ^ �2 6¼ 0� ¼
1

q4
Pr

g2�3
2;�

½g5 ¼ 1 ^ �2 6¼ 0 j g0 ¼ m0�

¼
1

q4
Pr

g2�3
2;�

½1�1þ�2 ¼ 1 j �2 6¼ 0 ^ g0 ¼ m0�Dðm0Þ ¼
Dðm0Þ
q4

:

(ii) When m2 ¼ m4 ¼ 1 and m5 6¼ 1, we have

Pr
g2�3

2;�

½g ¼ m ^ �2 6¼ 0� ¼
1

q4
Pr

g2�3
2;�

½1�1þ�2 ¼ m5 j �2 6¼ 0 ^ g0 ¼ m0�Dðm0Þ ¼ 0:

(iii) When m2 6¼ 1 and m4 ¼ 1, we have

Pr
g2�3

2;�

½g ¼ m ^ �2 6¼ 0� ¼
1

q4
Pr

g2�3
2;�

½g�23 ¼ m5 j �2 6¼ 0 ^ g0 ¼ m0�Dðm0Þ

¼
1

q4

X
�2 6¼0

Pr
g2�3

2;�

½g�23 ¼ m5 ^ �2 ¼ �2 j �2 6¼ 0 ^ g0 ¼ m0�Dðm0Þ

¼
1

q4

X
�2 6¼0

Pr
g2�3

2;�

½g�23 ¼ m5 j �2 ¼ �2 ^ �2 6¼ 0 ^ g0 ¼ m0� Pr
g2�3

2;�

½�2 ¼ �2 j �2 6¼ 0 ^ g0 ¼ m0�Dðm0Þ

¼
0 if m5 ¼ 1,

Dðm0Þ
q4ðq� 1Þ

otherwise.

8<
:

(iv) When m2 ¼ 1 and m4 6¼ 1, we have

Pr
g2�3

2;�

½g ¼ m ^ �2 6¼ 0� ¼
1

q4
Pr

g2�3
2;�

½m�14 ¼ m5 j �2 6¼ 0 ^ g0 ¼ m0�Dðm0Þ:

Since, for fixed m4 6¼ 1, the function Zq 3 �1 7!m�14 2 Gq is bijective, we have

1

q4

X
m52Gq

Pr
g2�3

2;�

½m�14 ¼ m5 j �2 6¼ 0 ^ g0 ¼ m0�Dðm0Þ ¼
Dðm0Þ
q4

:

(v) When m2 6¼ 1 and m4 6¼ 1, we have

Pr
g2�3

2;�

½g ¼ m ^ �2 6¼ 0�

¼
1

q4

X
�2Zq
Z�q

Pr
g2�3

2;�

½m�14 g
�2
3 ¼ m5 j � ¼ � ^ �2 6¼ 0 ^ g0 ¼ m0� Pr

g2�3
2;�

½� ¼ � ^ �2 6¼ 0 ^ g0 ¼ m0�Dðm0Þ;

where � ¼ ð�1; �2Þ and � ¼ ð�1; �2Þ. By the similar arguments to (iii) and (iv), we have

Pr
g2�3

2;�

½m�14 g
�2
3 ¼ m5 j � ¼ � ^ �2 6¼ 0 ^ g0 ¼ m0� ¼

0 if m�14 ¼ m5

1

q� 1
otherwise,

8<
:
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and we see that

X
m52Gq

Pr
g2�3

2;�

½g ¼ m ^ �2 6¼ 0� � Pr
g2U

G
5
q

½g ¼ m ^ �2 6¼ 0�

�����
�����

¼
Dðm0Þ
q4

X
�12Zq

1

q� 1
Pr

g2�3
2;�

½�1 6¼ �1 j �2 6¼ 0 ^ g0 ¼ m0� �
1

q

�����
�����

¼
Dðm0Þ

q4ðq� 1Þ

X
�12Zq

1

q
� Pr

g2�3
2;�

½�1 ¼ �1 j �2 6¼ 0 ^ g0 ¼ m0�

�����
����� � 2Dðm0Þ

q4ðq� 1Þ
:

Since Dðm0Þ � 1, we obtain

X
m2G5

q

Pr
g2�3

2;�

½g ¼ m ^ �2 6¼ 0� � Pr
g2U

G
5
q

½g ¼ m ^ �2 6¼ 0�

�����
����� � 4q2 � 1

q3
:

This value is negligible in k.
Note that, for any 0 � � � qS, the running time of eM�

2;� is at most T3 ¼ T þ 4TS þ qU f
U
3 þ qS f

S
3 þ f I3 for some

polynomials f U3 , f S3 and f I3 in n, t and k. So, if T3 � Tddh, then the second term on the right-hand side of (6.7) is at most
"ddh. Consequently, we have

jp2;0ðd�Þ � p2;qS ðd�Þj � qSð"ddh þ 2"SS þ e!3Þ;

where e!3 is negligible in k.

6.4 Proof of Lemma 5.4

The distribution of y1 constructed in M
�
3;0 is identical to that constructed in M

�
3;2. This implies that the distribution of

ðg; y1; y2; h; ĝ; ĥ; ŷ; �g; pub2; pub3Þ constructed in M
�
3;0 is identical to that constructed in M

�
3;2.

We note the following two facts:

F1 This fact is due to the property of the secret sharing SSt;n. For any x; x0 2 Zq, we set fxjgnj¼1 ¼ SSt;nðxÞ and
fx0jg

n
j¼1 ¼ SSt;nðx0Þ. Let t0 < t and 1 � j1 < � � � < jt0 � n. Then, for any mj1 ; . . . ;mjt0 2 Zq, one has

Pr½ðxj1 ; . . . ; xjt0 Þ ¼ ðmj1 ; . . . ;mjt0 Þ� ¼ Pr½ðx0j1 ; . . . ; x
0
jt0
Þ ¼ ðmj1 ; . . . ;mjt0 Þ� ¼

1

qt
0 ;

where the probability is taken over the random tape of SSt;n. In particular, if t0 < t � 1, then for any j0 2
½n� n f j1; . . . ; jt0 g and mj0 2 Zq, one has

Pr½xj0 ¼ mj0 j ðxj1 ; . . . ; xjt0 Þ ¼ ðmj1 ; . . . ;mjt0 Þ� ¼ Pr½x0j0 ¼ mj0 j ðx
0
j1
; . . . ; x0jt0 Þ ¼ ðmj1 ; . . . ;mjt0 Þ� ¼

1

q
:

F2 Let g and h be generators of Gq. Then for any x; x0 2 Zq and y 2 Gq, one has

Pr
r2rZq

½y ¼ gxhr� ¼ Pr
r2rZq

½y ¼ gx
0
hr�:

Using these facts, we see that, for any subset V 0 � ½n� with #V 0 < t, under the condition that h 6¼ 1, the distribution
of ðfy1; jgnj¼1; fy2; jgnj¼1; fsecjgj2V 0 Þ constructed in M

�
3;0 is identical to that constructed in M

�
3;2. Namely, the distribution of

ðpub; secV 0 ) constructed in M
�
3;0 is also identical that constructed in M

�
3;2.

Assume that h 6¼ 1. We note that the only difference between M
�
3;0 and M

�
3;2 is the construction of the secret

seeds fx1; jgnj¼1. In User’s query phase, the challenger does not use the secret seeds in order to respond to the query.
Hence, when A enters User’s query phase with a query fð j; aj; bj; �aj; �1; jÞgj2½n�, the distribution of the answer
ðV ; u; ej; u ~p; v ~p; û ~p; v̂ ~p; �2; jÞ constructed in M

�
3;0 is identical to that constructed in M

�
3;2.

In Server’s query phase, the answer ðuzj ; vzj ; �3; jÞ depends on the secret seed x1; j although the answer ð j; aj; bj; �aj; �1; jÞ
is independent of it. There are the following two cases to consider:

. Assume that v̂ ~p=ðû ~pÞx̂ 6¼ ĥp. Then vj is randomly chosen in Step Sj2-4. So we may regard that in Step Sj2-5, the
value zj is uniformly chosen from Gq. Hence, the distribution of ðuzj ; vzj Þ constructed in M

�
3;0 is identical to that

constructed in M
�
3;2.

. Assume that v̂ ~p=ðû ~pÞx̂ ¼ ĥp holds. Then the distribution of ðuzj ; vzj Þ depends on the secret seed x1; j. However, if
#Idset < t � t0, that is, F ¼ false, then the fact F1 implies that the distribution of x1; j 2 Zq is uniform. Hence,
under the condition that F ¼ false, the distribution of ðuzj ; vzjÞ constructed in M

�
3;0 is identical to that constructed in

M
�
3;2.

The same argument can be applied even when we replace M
�
3;2 by M

�
3;1. In summary, we see that Pr½F3;0;d� ^

h 6¼ 1� ¼ Pr½F3;2;d� ^ h 6¼ 1� and p
:F^h6¼1
3;0 ðd�Þ ¼ p

:F^h 6¼1
3;1 ðd�Þ, where p

:F^h 6¼1
3;� ðd�Þ ¼ Pr½E3;�;d� ^ :F3;�;d� ^ h 6¼ 1� for

� ¼ 0; 1. We have
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Pr½F3;0;d� � � Pr½F3;0;d� � � Pr½F3;2;d� �
�� ��þ Pr½F3;2;d� �
� Pr½F3;0;d� ^ h 6¼ 1� � Pr½F3;2;d� ^ h 6¼ 1�
�� ��þ Pr½F3;0;d� ^ h ¼ 1� � Pr½F3;2;d� ^ h ¼ 1�

�� ��þ Pr½F3;2;d� �

�
1

q
þ Pr½F3;2;d� �:

The symmetric argument yields

Pr½F3;2;d� � �
1

q
þ Pr½F3;0;d� �:

Set p:F^h¼1
3;� ðd�Þ ¼ p:F3;� ðd�Þ � p

:F^h 6¼1
3;� ðd�Þ. Since p:F^h¼1

3;� ðd�Þ � 1=q, we have

p:F3;0 ðd1Þ � p:F3;0 ðd2Þ
�� �� � p:F3;0 ðd1Þ � p:F3;1 ðd1Þ

�� ��þ p:F3;1 ðd1Þ � p:F3;1 ðd2Þ
�� ��

þ p:F3;1 ðd2Þ � p:F3;0 ðd2Þ
�� �� � 2

q
þ p:F3;1 ðd1Þ � p:F3;1 ðd2Þ
�� ��;

proving the lemma.

6.5 Proof of Lemmas 5.5 and 5.6

We first prove Lemma 5.5. We construct two intermediary machines eM�
4;1 and eM�

4;2. On input w ¼ ðQ; g; g1; g2; g3Þ,eM�
4;1 and eM�

4;2 simulate M
�
4;1 and M

�
4;2, respectively, except for the following steps:

I30: Set y1 ¼ g1. Then, choose x2 2r Zq, and compute y2 ¼ gx2 , fx1; jgnj¼1 ¼ SSt;nð0Þ and fx2; jgnj¼1 ¼ SSt;nðx2Þ.
I60: Set u1;d ¼ g2 and v1;d ¼ g3d�, and compute ðu2;d; v2;dÞ ¼ ðgr2;d ; y

r2;d
2 d�Þ.

(A) Let w 2 DH. In Step I60 of eM�
4;�, if we set r1;d ¼ 
2, where g2 ¼ g
2 , then one has u1;d ¼ gr1;d and v1;d ¼ y

r1;d
1 d�:

these values are the same as the values obtained in Initialization phase of M�
3;� with r1;d ¼ 
2. Hence, the differences

between M
�
3;� and eM�

4;� are the choice of y1 in Step I30 and that of u1;d in Step I60. The distribution �1
4;� ¼ fðg1; g2Þ j

g1; g2 2r Gqg over G2
q is identical to the distribution of ðy1; u1;dÞ constructed in eM�

4;�ðwÞ. In particular, �1
4;� is uniform

over G2
q, and is identical to the distribution of ðy1; u1;dÞ constructed in M

�
4;�ðwÞ.

(B) Let w 2gDH. By the similar argument to (A), we see that the differences between eM�
4;� and M

�
4;� are the choice of

y1 in Step I30 and those of u1;d and v1;d in Step I60. The distribution �2
4;� ¼ fðg1; g2; g3d�Þ j g1; g2; g3 2r Gqg over G3

q is
identical to the distribution of ðy1; u1;d; v1;dÞ constructed in eM�

4;�ðwÞ. The distribution �2
4;� is uniform, and is identical to

the distribution of ðy1; u1;d; v1;dÞ constructed in M
�
4;�ðwÞ.

Note that ’�3;� and ’�4;� are independent of g1, g2 and g3. Since the maximum T5 of the running times of eM�
4;1 and eM�

4;2

is at most T þ 4TS þ qU f
U
5 þ qS f

S
5 þ f I5 for some polynomials f U5 , f S5 and f I5 in n, t and k, if T5 � Tddh, then we have

j Pr½F3;2;d� � � Pr½F4;2;d� �j ¼ Pr
w2DH
½’�3;2 ¼ 1� � Pr

w2fDH

½’�4;2 ¼ 1�

�����
����� ¼ Pr

w2DH
½e’�3;2 ¼ 1� � Pr

w2fDH

½e’�4;2 ¼ 1�

�����
����� < "ddh

and

jp:F3;1 ðd�Þ � p:F4;1 ðd�Þj ¼ Pr
w2DH
½’�3;1 ¼ 1� � Pr

w2fDH

½’�4;1 ¼ 1�

�����
����� ¼ Pr

w2DH
½e’�3;1 ¼ 1� � Pr

w2fDH

½e’�4;1 ¼ 1�

�����
����� < "ddh:

We next prove Lemma 5.6. We construct two intermediary machines eM�
4;3 and eM�

4;4. On input w ¼ ðQ; g; g1; g2; g3Þ,eM�
4;3 and eM�

4;4 simulate M
�
4;3 and M

�
4;4, resptectively, except for the following steps:

I30: Set y2 ¼ g1. Then, choose x2 2r Zq and y1 2r Gq, and compute fx1; jgnj¼1 ¼ SSt;nð0Þ and fx2; jgnj¼1 ¼ SSt;nðx2Þ.
I600: Choose u1;d; v1;d 2r Gq, and set u2;d ¼ g2 and v2;d ¼ g3d�.

Then, by using the similar argument to the proof of Lemma 5.5, we see that the lemma follows.

6.6 Proof of Lemma 5.7

We construct an intermediary machine eM�
5;�. On input w ¼ ðQ; g; g1; g2; g3Þ, eM�

5;� simulates M
�
5;� except for the

following steps:

I30: Set y1 ¼ g2. Then, choose x2 2r Zq, and compute y2 ¼ gx2 , fx1; jgnj¼1 ¼ SSt;nð0Þ and fx2; jgnj¼1 ¼ SSt;nðx2Þ.
I40: Choose rp; r1;d ; r2;d; x̂; r0; r2 2r Zq and r1; r3 2r Z�q, and set h ¼ gr0 , ĝ ¼ gr33 , ĥ ¼ gr11 and �g ¼ gr2 . Then, compute

ŷ ¼ ðĝÞx̂.
Sj1-2: If CS ¼ �, then set aj ¼ g1, bj ¼ g

rp
1 and �aj ¼ gr21 . Otherwise, execute the Step Sj1-2 of M�

5;�.
Sj2-400: If CS ¼ � and v̂ ~p=ðû ~pÞx̂ ¼ ĥp hold, then set

vj ¼ g
rp
3 g

pr0
1

v̂ ~p

ðû ~pÞx̂

� ��r0=r1
ðû ~pÞ�1=r3 :
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If CS ¼ � and v̂ ~p=ðû ~pÞx̂ 6¼ ĥp hold, then choose vj 2r Gq. Otherwise, execute Step Sj2-400 of M�
5;�.

Noting that ’�5;� is independent of g1, g2 and g3, we have

j Pr½F5;��1;d� � � Pr½F5;�;d� �j

� Pr
w2DH
½’�5;��1 ¼ 1� � Pr

w2DH
½e’�5;� ¼ 1�

����
����þ Pr

w2DH
½e’�5;� ¼ 1� � Pr

w2fDH

½e’�5;� ¼ 1�

�����
�����

þ Pr
w2fDH

½e’�5;� ¼ 1� � Pr
w2fDH

½’�5;� ¼ 1�

�����
�����: ð6:10Þ

We estimate the first and the last terms on the right-hand side of (6.10). Let ESS
U;� denote the event defined as in the

proof of Lemma 5.3. If the running time of SðLpub
U Þ used in M

�
5;��1, eM�

5;� and M
�
5;� is at most TS, and maxfnqU ; qSg �

qSH ; q
S
P holds, then we have

Pr
w2DH
½’�5;��1 ¼ 1� � Pr

w2DH
½e’�5;� ¼ 1�

����
����þ Pr

w2fDH

½e’�5;� ¼ 1� � Pr
w2fDH

½’�5;� ¼ 1�

�����
�����

� 2"SS þ Pr
w2DH
½’�5;��1 ¼ 1 ^ :ESS

U;�� � Pr
w2DH
½e’�5;� ¼ 1 ^ :ESS

U;��
����

����
þ Pr

w2fDH

½e’�5;� ¼ 1 ^ :ESS
U;�� � Pr

w2fDH

½’�5;� ¼ 1 ^ :ESS
U;��

�����
�����: ð6:11Þ

In order to estimate other terms, we assume that the event ESS
U;� does not occur.

(A) We first consider the second term on the right-hand side of (6.11). Let w 2 DH. We have

Pr
w2DH
½’�5;��1 ¼ 1 ^ :ESS

U;�� � Pr
w2DH
½e’�5;� ¼ 1 ^ :ESS

U;��
����

����
� Pr

w2DH
½’�5;��1 ¼ 1 ^ :ESS

U;� ^ I�� � Pr
w2DH
½e’�5;� ¼ 1 ^ :ESS

U;� ^ I��
����

����
þ Pr

w2DH
½’�5;��1 ¼ 1 ^ :ESS

U;� ^ :I�� � Pr
w2DH
½e’�5;� ¼ 1 ^ :ESS

U;� ^ :I��
����

����; ð6:12Þ

where I� denotes the event defined as in the proof of Lemma 5.3.

(A-1) In order to estimate the first term on the right-hand side of (6.12), we assume that the event I� occurs. In the �-th
Server’s query phase of eM�

5;�, if we set tj ¼ 
1, where g1 ¼ g
1 , then one has aj ¼ gtj , bj ¼ u
tj
p , �aj ¼ ð �gÞtj and

vj ¼ g
rp
3 û
�1=r3
~p ¼

u
tjx1
p hptj

u
tjx1

~p hptj
¼

vp

v ~p

� �tj

:

This shows that these values are the same as the values obtained in the �-th Server’s query phase of M�
5;��1 with tj ¼ 
1.

Hence, the differences between M
�
5;��1 and eM�

5;� are the choice of y1 in Step I30, those of h, ĝ, ĥ and �g in Step I4 and
that of aj in Step Sj1-2 in the �-th Server’s query phase. We define the distribution �1

5;� over G6
q by

�1
5;� ¼ fðg


2 ; gr0 ; g
1
2r3 ; g
1r1 ; gr2 ; g
1Þ j r0; r2; 
1; 
2 2r Zq; r1; r3 2r Z�qg:

The distribution �1
5;� is identical to the distribution of ðy1; h; ĝ; ĥ; �g; ajÞ constructed in eM�

5;�ðwÞ. In addition, the
distribution of ðy1; h; ĝ; ĥ; �g; ajÞ constructed in M

�
5;��1ðwÞ is uniform over G6

q. The first term on the right-hand side of
(6.12) is bounded by the statistical distance between �1

5;� and U
G

6
q
. Since the distribution fðgr0 ; gr2 Þ j r0; r2 2r Zqg over

G
2
q is uniform, the statistical distance between �1

5;� and U
G

6
q

is less than the distance between the distribution

��1
5;� ¼ fðg


2 ; g
1
2r3 ; g
1r1 ; g
1Þj
1; 
2 2r Zq; r1; r3 2r Z�qg

over G4
q and U

G
4
q
. For any ĝ 2 Gq n f1g and ĥ; aj 2 Gq, we have

Pr
g2 ��1

5;�

½g ¼ ð1; ĝ; ĥ; ajÞ� ¼ 0:

For any y1; ĝ; ĥ; aj 2 Gq n f1g, we have

Pr
g2 ��1

5;�

½g ¼ ðy1; 1; ĥ; ajÞ� ¼ Pr
g2 ��1

5;�

½g ¼ ðy1; 1; 1; ajÞ� ¼ Pr
g2 ��1

5;�

½g ¼ ðy1; 1; ĥ; 1Þ� ¼ Pr
g2 ��1

5;�

½g ¼ ðy1; ĝ; 1; ajÞ�

¼ Pr
g2 ��1

5;�

½g ¼ ðy1; ĝ; ĥ; 1Þ� ¼ Pr
g2 ��1

5;�

½g ¼ ðy1; ĝ; 1; 1Þ� ¼ Pr
g2 ��1

5;�

½g ¼ ð1; 1; ĥ; 1Þ� ¼ Pr
g2 ��1

5;�

½g ¼ ð1; 1; 1; ajÞ� ¼ 0;
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Pr
g2 ��1

5;�

½g ¼ ðy1; 1; 1; 1Þ� ¼ Pr
g2 ��1

5;�

½g ¼ ð1; 1; 1; 1Þ� ¼
1

q2
; Pr

g2 ��1
5;�

½g ¼ ð1; 1; ĥ; ajÞ� ¼
1

q2ðq� 1Þ

and

Pr
g2 ��1

5;�

½g ¼ ðy1; ĝ; ĥ; ajÞ� ¼
1

q2ðq� 1Þ2
:

Hence, the statistical distance between �1
5;� and U

G
6
q

is at most 2ðq� 1Þð4q2 � 3qþ 2Þ=q4, which is negligible in k.

(A-2) In order to estimate the last term on the right-hand side of (6.12), we assume that the event I� does not occur.
Then, the value vj is uniformly chosen in the �-th Server’s query phase of both M

�
5;��1 and eM�

5;�. Hence, the differences
between M

�
5;��1 and eM�

5;� are the same as the case where I� occurs, and we have

Pr
w2DH
½’�5;��1 ¼ 1 ^ :ESS

U;�� � Pr
w2DH
½e’�5;� ¼ 1 ^ :ESS

U;��
����

���� � 4ðq� 1Þð4q2 � 3qþ 2Þ
q4

:

This value is negligible in k.

(B) We next consider the last term on the right-hand side of (6.11). Let w 2gDH. We have

Pr
w2fDH

½e’�5;� ¼ 1 ^ :ESS
U;�� � Pr

w2fDH

½’�5;� ¼ 1 ^ :ESS
U;��

�����
�����

� Pr
w2fDH

½e’�5;� ¼ 1 ^ :ESS
U;� ^ I�� � Pr

w2fDH

½’�5;� ¼ 1 ^ :ESS
U;� ^ I��

�����
�����

þ Pr
w2fDH

½e’�5;� ¼ 1 ^ :ESS
U;� ^ :I�� � Pr

w2fDH

½’�5;� ¼ 1 ^ :ESS
U;� ^ :I��

�����
�����: ð6:13Þ

(B-1) In order to estimate the last term on the right-hand side of (6.13), we assume that the event I� does not occur.
Then the differences between eM�

5;� and M
�
5;� are the same as the case of (A-2). The distribution

�2
5;� ¼ fðg2; g

r0 ; gr33 ; g
r1
1 ; g

r2 ; g1Þ j r0; r2 2r Zq; r1; r3 2r Z�q; g1; g2; g3 2r Gqg

over G6
q is identical to the distribution of ðy1; h; ĝ; ĥ; �g; ajÞ constructed in eM�

5;�ðwÞ. In addition, the distribution of
ðy1; h; ĝ; ĥ; �g; ajÞ constructed in M

�
5;�ðwÞ is uniform over G6

q. The last term on the right-hand side of (6.13) is bounded by

the statistical distance between �2
5;� and U

G
6
q
. Since the distribution

fðg2; g
r0 ; gr33 ; g

r2 Þ j r0; r2 2r Zq; r3 2r Z�q; g2; g3 2r Gqg

over G4
q is uniform, the statistical distance between �2

5;� and U
G

6
q

is less than the distance between U
G

2
q

and e�1
1;�;	

defined in the proof of Lemma 5.2. Hence, the statistical distance between �2
5;� and U

G
6
q

is at most 4ðq� 1Þ=q2, which
is negligible in k.

(B-2) In order to estimate the first term on the right-hand side of (6.13), we assume that the event I� occurs. Let R�
denote the event such that A enters the �-th Server’s query phase with a query ðV ; u; ej; u ~p; v ~p; û ~p; v̂ ~p; �2; jÞ which
satisfies the following two conditions: (i) u ~p ¼ up and (ii) �2; j is a valid proof. We have

Pr
w2fDH

½e’�5;� ¼ 1 ^ :ESS
U;� ^ I�� � Pr

w2fDH

½’�5;� ¼ 1 ^ :ESS
U;� ^ I��

�����
�����

� Pr
w2fDH

½e’�5;� ¼ 1 ^ :ESS
U;� ^ I� ^ R�� � Pr

w2fDH

½’�5;� ¼ 1 ^ :ESS
U;� ^ I� ^ R��

�����
�����

þ Pr
w2fDH

½e’�5;� ¼ 1 ^ :ESS
U;� ^ I� ^ :R�� � Pr

w2fDH

½’�5;� ¼ 1 ^ :ESS
U;� ^ I� ^ :R��

�����
�����: ð6:14Þ

(1) In order to estimate the last term on the right-hand side of (6.14), we assume that the event R� does not occur. The
differences between eM�

5;� and M
�
5;� are the choice of y1 in Step I30, those of h, ĝ, ĥ and �g in Step I4, and those of aj and

vj in the �-th Server’s query phase.
If �2; j is invalid, then the value vj is not computed in the �-th Server’s query phase. So the differences between eM�

5;�

and M
�
5;� are the same as the case of (B-1).

Assume that �2; j is valid. We set � ¼ rp � ~rp, where u ~p ¼ gr ~p . Then the value vj computed in the �-th Server’s query
phase of eM�

5;� is equal to g�3. Let D be the distribution of � 2 Zq. The distribution D depends on y1, h, ĝ, ĥ, �g and aj. The
distribution
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�3
5;� ¼ fðg2; g

r0 ; gr33 ; g
r1
1 ; g

r2 ; g1; g
�
3Þ j r1; r3 2r Z

�
q; r0; r2 2r Zq; g1; g2; g3 2r Gq; � 2 Dg

is identical to the distribution of ðy1; h; ĝ; ĥ; �g; aj; vjÞ constructed in eM�
5;�ðwÞ, and the distribution of ðy1; h; ĝ; ĥ; �g; aj; vjÞ

constructed in M
�
5;�ðwÞ is uniform over G7

q. The last term on the right-hand side of (6.14) is bounded by the statistical
distance between �3

5;� and U
G

7
q
. We note that � 6¼ 0 if �2; j is valid. Hence, we have

Pr
w2fDH

½e’�5;� ¼ 1 ^ :ESS
U;� ^ I� ^ :R�� � Pr

w2fDH

½’�5;� ¼ 1 ^ :ESS
U;� ^ I� ^ :R��

�����
�����

�
4ðq� 1Þ

q2
þ
X
m2G7

q

Pr
g2�3

5;�

½g ¼ m ^ � 6¼ 0� � Pr
g2U

G
7
q

½g ¼ m ^ � 6¼ 0�

�����
�����:

We write m ¼ ðm1; . . . ;m6;m7Þ ¼ ðm0;m7Þ 2 G7
q and g ¼ ðg0;g7Þ. For any m 2 G7

q, we have

Pr
g2U

G
7
q

½g ¼ m ^ � 6¼ 0� ¼
1

q6
Pr

g2U
G

7
q

½g ¼ m ^ � 6¼ 0 j g0 ¼ m0�

¼
1

q6
Pr

g2U
G

7
q

½g7 ¼ m7 j � 6¼ 0 ^ g0 ¼ m0� Pr
g2U

G
7
q

½� 6¼ 0 j g0 ¼ m0�

¼
1

q7
Pr

g2U
G

7
q

½� 6¼ 0 j g0 ¼ m0�:

Since the value � depends on m0, we have

Pr
g2U

G
7
q

½� 6¼ 0 j g0 ¼ m0� ¼ Pr
g2�3

5;�

½� 6¼ 0 j g0 ¼ m0�:

We denote this value by Dðm0Þ.

(i) When m3 ¼ m4 ¼ m6 ¼ m7 ¼ 1, we have

Pr
g2�3

5;�

½g ¼ m ^ � 6¼ 0� ¼
1

q5
Pr

g2�3
5;�

½g7 ¼ 1 ^ � 6¼ 0 j g0 ¼ m0� ¼
1

q5
Pr

g2�3
5;�

½1� ¼ 1 j � 6¼ 0 ^ g0 ¼ m0�Dðm0Þ ¼
Dðm0Þ
q5

:

(ii) When m3 ¼ m7 ¼ 1 and m4;m6 6¼ 1, we have

Pr
g2�3

5;�

½g ¼ m ^ � 6¼ 0� ¼
1

q5ðq� 1Þ
Pr

g2�3
5;�

½1� ¼ 1 j � 6¼ 0 ^ g0 ¼ m0�Dðm0Þ ¼
Dðm0Þ

q5ðq� 1Þ
:

(iii) When m4 ¼ m6 ¼ 1 and m3;m7 6¼ 1, we have

Pr
g2�3

5;�

½g ¼ m ^ � 6¼ 0� ¼
1

q5
Pr

g2�3
5;�

½g�3 ¼ m7 j � 6¼ 0 ^ g0 ¼ m0�Dðm0Þ

¼
1

q5

X
� 6¼0

Pr
g2�3

5;�

½g�3 ¼ m7 j � ¼ � ^ � 6¼ 0 ^ g0 ¼ m0� Pr
g2�3

5;�

½� ¼ � j � 6¼ 0 ^ g0 ¼ m0�Dðm0Þ

¼
Dðm0Þ

q5ðq� 1Þ
:

(iv) When m3;m4;m6;m7 6¼ 1, by the similar argument to (iii), we have

Pr
g2�3

5;�

½g ¼ m ^ � 6¼ 0� ¼
1

q5ðq� 1Þ
Pr

g2�3
5;�

½g�3 ¼ m7 j � 6¼ 0 ^ g0 ¼ m0�Dðm0Þ

¼
1

q5ðq� 1Þ

X
�2Zq

Pr
g2�3

5;�

½g�3 ¼ m7 j � ¼ � ^ � 6¼ 0 ^ g0 ¼ m0� Pr
g2�3

5;�

½� ¼ � j � 6¼ 0 ^ g0 ¼ m0�Dðm0Þ

¼
Dðm0Þ

q5ðq� 1Þ2
:

If m does not apply to any cases above, then Prg2�3
5;�
½g ¼ m ^ � 6¼ 0� ¼ 0 follows. Since Dðm0Þ � 1, we obtain

X
m2G7

q

Pr
g2�3

5;�

½g ¼ m ^ � 6¼ 0� � Pr
g2U

G
7
q

½g ¼ m ^ � 6¼ 0�

�����
����� � 8q3 � 16q2 þ 16q� 8

q4
;

which is negligible in k.
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(2) In order to estimate the first term on the right-hand side of (6.14), we assume that R� occurs. Using the machines
M

�
5;� and eM�

5;�, we construct new machines N �
5;� and eN �

5;� which solve the CDH problem. On input ðQ; g; g1; g2Þ, N �
5;�

works as follows:
(1) Choose 
1; 
2; 
3 2r Zq, and simulate M

�
5;� on input w ¼ ðQ; g; g
1 ; g
2 ; g
3 Þ except for the following steps:

I30: Choose x1; x2 2r Zq, and compute y1 ¼ gx1 , y2 ¼ gx2 , fx1; jgnj¼1 ¼ SSt;nð0Þ and fx2; jgnj¼1 ¼ SSt;nðx2Þ.
I40: Choose x̂ 2r Zq, h; ĥ; �g 2r Gq and r1;d; r2;d 2r Zq, and set ĝ ¼ g1. Then compute ŷ ¼ ðĝÞx̂.
I5: Choose a password p 2r Zq, and set up ¼ g2 and vp ¼ gx1

2 h
p.

(2) When A enters the �-th Server’s query phase with a query ðV ; u; ej; u ~p; v ~p; û ~p; v̂ ~p; �2; jÞ,
. if up ¼ u ~p and �2; j is valid, then output û ~p, and halt.
. Otherwise, output z 2r Gq, and halt.

We note that if the event :ESS
U;� ^ R� occurs in N

�
5;�, then û ~p ¼ CDHðQ; g; g1; g2Þ follows. In addition, we see that the

probability that the event :ESS
U;� ^ R� occurs in N

�
5;� is equal to that in M

�
5;� by the construction of N �

5;�. If the running
time of N �

5;� is less than Tddh, then by Lemma 2.1, we have

Pr
w2fDH

½M�
5;�ðwÞ ¼ 1 ^ :ESS

U;� ^ I� ^ R�� � Pr
w2fDH

½:ESS
U;� ^ R�� � Pr½N �

5;�ðQ; g; g1; g2Þ ¼ CDHðQ; g; g1; g2Þ� < "ddh þ
1

2k
:

We next construct the machine eN �
5;�.

eN �
5;� works as follows: On input ðQ; g; g1; g2Þ,

(1) Choose 
1; 
2 2r Zq, and simulate eM�
5;� on input w ¼ ðQ; g; g
1 ; g
2 ; g1Þ except for the following steps:

I5: Choose a password p 2r Zq, and set up ¼ g2 and vp ¼ g
2

2 hp.
Sj1-2: if CS ¼ �, then set aj ¼ g
1 , bj ¼ g
1

2 and �aj ¼ �g
1 . Otherwise, choose tj 2r Zq, and compute aj ¼ gtj ,
bj ¼ u

tj
p and �aj ¼ ð �gÞtj .

(2) When A enters the �-th Server’s query phase with a query ðV ; u; ej; u ~p; v ~p; û ~p; v̂ ~p; �2; jÞ,
. if up ¼ u ~p and �2; j is valid, then output (û ~pÞ1=r3 , and halt, where r3 is chosen in Step I4 of eM�

5;�.
. Otherwise, output z 2r Gq, and halt.

If the event :ESS
U;� ^ R� occurs in eN �

5;�, then ðû ~pÞ1=r3 ¼ CDHðQ; g; g1; g2Þ follows. In addition, the probability that the
event :ESS

U;� ^ R� occurs in eN �
5;� is equal to that in eM�

5;� by the construction of eN �
5;�. Hence, if the running time of eN �

5;�

is less than Tddh, then, by Lemma 2.1, we have

Pr
w2fDH

½eM�
5;�ðwÞ ¼ 1 ^ :ESS

U;� ^ I� ^ R�� � Pr
w2fDH

½:ESS
U;� ^ R�� � Pr½eN �

5;�ðQ; g; g1; g2Þ ¼ CDHðQ; g; g1; g2Þ� < "ddh þ
1

2k
:

Note that the maximum T7 of the running times of machines fM�
5;�;

eM�
5;�;N

�
5;�;

eN �
5;�g

qS
�¼0 is at most T7 ¼ T þ 4TS þ

qU f
U
7 þ qS f

S
7 þ f I7 for some polynomials f U7 , f S7 and f I7 in n, t and k. So, if T7 � Tddh, then second term on the right-

hand side of (6.10) is at most "ddh. Consequently, we have

j Pr½F5;0;d� � � Pr½F5;qS;d� �j � qSð2"ddh þ 2"SS þ e!7Þ;
where e!7 is negligible in k.

6.7 Proof of Lemma 5.8

We construct an intermediary machine eM�
6;�. On input w ¼ ðQ; g; g1; g2; g3Þ, eM�

6;� simulates M
�
6;� except for the

following steps:

I30: Set y1 ¼ g2. Then, choose x2 2r Zq, and compute y2 ¼ gx2 , fx1; jgnj¼1 ¼ SSt;nð0Þ and fx2; jgnj¼1 ¼ SSt;nðx2Þ.
I40: Choose rp; r1;d ; r2;d; x̂; r0 2r Zq, r1 2r Z�q and h; ĥ 2r Gq, and set ĝ ¼ gr0 and �g ¼ gr11 . Then, compute ŷ ¼ ðĝÞx̂.
U1-300: If CU ¼ �, then choose v̂ ~p 2r Gq, and set u ~p ¼ g1, û ~p ¼ gr01 and v ~p ¼ g3h

p. Otherwise, execute Step U1-300 of
M

�
6;�.

U1-5: if CU ¼ �, then set ej ¼ ð �ajÞ1=r1 for each j 2 ½n�. Otherwise, execute Step U1-5 of M�
6;�.

Noting that ’�6;� is independent of g1, g2 and g3, we have

j Pr½F6;��1;d� � � Pr½F6;�;d� �j

� Pr
w2DH
½’�6;��1 ¼ 1� � Pr

w2DH
½e’�6;� ¼ 1�

����
����þ Pr

w2DH
½e’�6;� ¼ 1� � Pr

w2fDH

½e’�6;� ¼ 1�

�����
�����

þ Pr
w2fDH

½e’�6;� ¼ 1� � Pr
w2fDH

½’�6;� ¼ 1�

�����
�����: ð6:15Þ

We estimate the first and the last terms on the right-hand side of (6.15). Let ESS
S1;� denote the event defined as in the

proof of Lemma 5.1. If the running time of SðLpub
S1 Þ used in M

�
6;��1, M�

6;� and eM�
6;� is at most TS, and maxfnqU ; qSg �

qSH ; q
S
P holds, then we have
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Pr
w2DH
½’�6;��1 ¼ 1� � Pr

w2DH
½e’�6;� ¼ 1�

����
����þ Pr

w2fDH

½e’�6;� ¼ 1� � Pr
w2fDH

½’�6;� ¼ 1�

�����
�����

� 2n"SS þ Pr
w2DH
½’�6;��1 ¼ 1 ^ :ESS

S1;�� � Pr
w2DH
½e’�6;� ¼ 1 ^ :ESS

S1;��
����

����
þ Pr

w2fDH

½e’�6;� ¼ 1 ^ :ESS
S1;�� � Pr

w2fDH

½’�6;� ¼ 1 ^ :ESS
S1;��

�����
�����: ð6:16Þ

In order to estimate other terms, we assume that the event ESS
S1;� does not occur.

(A) We first consider the second term on the right-hand side of (6.16). Let w 2 DH. Using the similar argument to (A)
of the proof of Lemma 5.1, we see that the differences between M

�
6;��1 and eM�

6;� are the choice of y1 in Step I30, those
of ĝ, �g and ŷ in Step I40 and that of u ~p in Step U1-300 of the �-th User’s query phase. The distribution

�1
6;� ¼ fðg2; g

r0 ; gr11 ; g
r0 x̂; g1Þ j r0; x̂ 2r Zq; r1 2r Z�q; g1; g2 2r Gqg

over G5
q is identical to the distribution of ðy1; ĝ; �g; ŷ; u ~pÞ constructed in eM�

6;�ðwÞ, and the distribution

��1
6;� ¼ fðy1; ĝ; �g; ĝ

x̂; gr ~p Þ j x̂; r ~p 2r Zq; y1; ĝ; �g 2r Gqg

over G5
q is identical to the distribution of ðy1; ĝ; �g; ŷ; u ~pÞ constructed in M

�
6;��1ðwÞ. The second term on the right-hand

side of (6.16) is bounded by the statistical distance between �1
6;� and ��1

6;�. Note that the distribution fðg2; g
r0 ; gr0 x̂Þ j

r0; x̂ 2r Zq; g2 2r Gqg over G3
q is identical to the distribution fðy1; ĝ; ĝ

x̂Þ j y1; ĝ 2r Gq; x̂ 2r Zqg over G3
q. So, the

statistical distance between �1
6;� and ��1

6;� is less than the distance between U
G

2
q

and e�1
1;�;	 defined in the proof of

Lemma 5.2. Hence, the statistical distance between e�1
6;� and U

G
2
q

is at most 4ðq� 1Þ=q2, which is negligible in k.

(B) We next consider the last term on the right-hand side of (6.16). Let w 2gDH. By the similar argument to (A), we see
that the differences between eM�

6;� and M
�
6;� are the choice of y1 in Step I30, those of ĝ, �g and ŷ in Step I40 and those of u ~p

and v ~p in Step U1-300 of the �-th User’s query phase. The distribution

�2
6;� ¼ fðg2; g

r0 ; gr11 ; g
r0 x̂; g1; g3h

pÞ j r0; x̂; p 2r Zq; r1 2r Z�q; g1; g2; g3; h 2r Gqg

over G6
q is identical to the distribution of ðy1; ĝ; �g; ŷ; u ~p; v ~pÞ constructed in eM�

6;�ðwÞ, and the distribution

e�2
6;� ¼ fðy1; ĝ; �g; ĝ

x̂; gr ~p ; v ~pÞ j x̂; r ~p 2r Zq; y1; ĝ; �g; ŷ; v ~p 2r Gqg

over G6
q is identical to the distribution of ðy1; ĝ; �g; ŷ; u ~p; v ~pÞ constructed in M

�
6;�ðwÞ. The last term on the right-hand side

of (6.16) is bounded by the statistical distance between �2
6;� and ~�2

6�. Note that for any fixed p 2 Zq and h 2 Gq the
distribution fg3h

p j g3 2r Gqg over Gq is uniform. So, by the same argument as above, the statistical distance between
�2

6;� and e�2
6;� is less than the distance between e�1

6;� and U
G

2
q
.

Note that, for any 0 � � � qU , the running time of eM�
6;� is at most T8 ¼ T þ 4TS þ qU f

U
8 þ qS f

S
8 þ f I8 for some

polynomials f U8 , f S8 and f I8 in n, t and k. So, if T8 � Tddh, then the second term on the right-hand side of (6.15) is at most
"ddh. Hence, we have

j Pr½F6;0;d� � � Pr½F6;qU ;d� �j � qUð"ddh þ 2n"SS þ e!8Þ;

where e!8 is negligible in k.

6.8 Proof of Lemma 5.9

We construct an intermediary machine eM�
7;0. On input w ¼ ðQ; g; g1; g2; g3Þ, eM�

7;0 simulates M
�
7;0 except for the

following steps:

I30: Set y1 ¼ g1. Then, choose x2 2r Zq, and compute y2 ¼ gx2 , fx1; jgnj¼1 ¼ SSt;nð0Þ and fx2; jgnj¼1 ¼ SSt;nðx2Þ.
I50: Choose p 2r Zq, and set up ¼ g2 and vp ¼ g3h

p.

(A) Let w 2 DH. Using the similar argument to (A) of the proof of Lemma 5.5, we see that the differences between
M

�
7;0 and eM�

7;0 are the choice of y1 in Step I30 and that of up in Step I50. The distribution �1
7;0 ¼ fðg1; g2Þ j g1; g2 2r Gqg

is identical to the distribution of ðy1; upÞ constructed in eM�
7;0ðwÞ. The distribution �1

7;0 is uniform over G2
q, and is

identical to the distribution of ðy1; upÞ constructed in M
�
7;0ðwÞ.

(B) Let w 2gDH. By the similar argument to (A), we see that the differences between eM�
7;0 and M

�
7;1 are the choice of

y1 in Step I30 and those of up and vp in Step I50. For any fixed p 2 Zq and h 2 Gq the distribution �2
7;0 ¼

fðg1; g2; g3h
pÞ j g1; g2; g3; h 2r Gq; p 2r Zpg over G3

q is identical to the distribution of ðy1; up; vpÞ constructed ineM�
7;0ðwÞ. The distribution �2

7;0 is uniform, and is identical to that constructed in M
�
7;1ðwÞ.

Since the running time of eM�
7;0 is at most T9 ¼ T þ 4TS þ qU f

U
9 þ qS f

S
9 þ f I9 for some polynomials f U9 , f S9 and f I9 in

n, t and k, if T9 � Tddh, then we have
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j Pr½F7;0;d� � � Pr½F7;1;d� �j ¼ Pr
w2DH
½’�7;0 ¼ 1� � Pr

w2fDH

½’�7;1 ¼ 1�

�����
����� ¼ Pr

w2DH
½e’�7;0 ¼ 1� � Pr

w2fDH

½e’�7;1 ¼ 1�

�����
����� < "ddh:

7. Concluding Remarks

We have studied the PPSS scheme PPSS2 proposed in [4], and pointed out that PPSS2 can be broken by an attack
based on public parameters, and the proof of PPSS-security leaves room for refinement. The former difficulty was
resolved in [7], where they introduced another security notion for PPSS schemes, called pparam-secure, showed how to
enhance the protocol, and proved that the enhanced protocol is pparam-secure. We have investigated the latter point in
this paper. Namely, we have made the proof of PPSS-security rigorous, and proved that ePPSS2 is PPSS-secure as well
as pparam-secure.
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