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The password-protected secret sharing (PPSS, for short) and its security notion, called in this paper the PPSS-
security, were proposed by Bagherzandi, Jarecki, Saxena and Lu. However, another security notion for PPSS
schemes, the pparam-security was proposed by Hasegawa, Isobe, Iwazaki, Koizumi and Shizuya, because they
pointed out an attack which can break the original protocol proposed by Bagherzandi et al. Hasegawa et al. also
showed how to enhance the protocol, and proved that the enhanced one is pparam-secure. In this paper, we prove
that the enhanced one is PPSS-secure as well.
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1. Introduction

Today a wide range of services are available via the Internet. Among those is a file-hosting service such as Google
Drive, Dropbox and iCloud Drive. This service enables us to easily store and access documents or data files from
mobile terminals as well as PC’s, and to share them with others. Although the file-hosting service is so popular in the
Internet community, we should note that there is a latent risk that we would lose the files we have stored. For example,
the server could be attacked by malware or be corrupted by some malicious attackers, and consequently the stored
documents might be destroyed, erased, fabricated or stolen.

In order to safely store some secret documents or data distributedly in several servers via insecure networks such as
the Internet, Bagherzandi et al. proposed a password-protected secret sharing (PPSS, for short) scheme [4] in 2011.
Intuitively, a PPSS scheme consists of several parties: a user, n servers and initialization algorithm. For a pair (p, d) of
a password p and a document d, the initialization first sets a public parameter and secret seeds, where the public
parameter includes encryptions of p and d. Then the initialization sends the public parameter and the secret seeds to the
user and the servers, respectively. Using the password p, the user interacts with the servers, and recovers the document
d. A formal description of PPSS schemes will be given in Section 2.3. In [4], they proposed the protocol PPSS; which
has the following three properties: (i) PPSS; is secure against the corruption of the coalition of servers of size less than
the threshold, which means that one can obtain no useful information about the password and the document even if
some servers are corrupted, (ii) the user can be authenticated with a single password by all the servers, and (iii) there is
no useful information about the password and the document in the interaction.

We now see more on the security notion for PPSS schemes formulated in [4]. They focused on the interaction
between the user and the servers, and defined a security notion which we call the PPSS-security (Definition 2.3). A
PPSS protocol is PPSS-secure if no polynomial time adversary could determine, on any given two documents and
any public parameter, which document is stored in the public parameter, even though the adversary is allowed to
adaptively interact with the servers and the user in impersonating manner. They showed that the protocol PPSS,; is
PPSS-secure [4].

In contrast, Hasegawa et al. [7] focused on the process of generating a public parameter, and proposed another
security notion for PPSS schemes named the pparam-security (Definition 2.4). Intuitively, the pparam-security means
that any public parameter does not include any clue to the stored document in a way that an adversary could recognize.
Namely, no adversary could determine, on any given two documents and any public parameter, which document is
stored in the public parameter, even though the adversary is allowed to adaptively receive the sample pairs of the public
parameter and the stored document. The pparam-security means that the adversary could learn nothing from the sample
pairs. In [7], they showed that the protocol PPSS, is not pparam-secure. Then they proposed an enhanced protocol
ePPSS, (a.k.a. “Protocol 1” in this paper) of PPSS;, and proved that the enhanced protocol is pparam-secure.
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It should be noted that these two security notions are independent in a sense that the pparam-security does not imply
the PPSS-security in general and vice versa. As stated above, the protocol PPSS, is PPSS-secure but not pparam-
secure. On the other hand, one can easily construct a protocol which is pparam-secure but not PPSS-secure (see
Protocol 2 in Section 4). Hence, we should say that a PPSS scheme is preferable if it is both PPSS-secure and pparam-
secure.

The purpose of this paper is to prove that the protocol ePPSS, is PPSS-secure. The proof is similar to that of
Theorem 1 in [4] since ePPSS; is an enhanced protocol of PPSS,. However, the latter proof lacks an estimate of a
specific statistical distance which is a key to prove the PPSS-security, and the proof does not seem to be refined in this
sense in a later version of the paper [3] (see Remark 6.1). We therefore supplement the proof in [4] and demonstrate
that ePPSS,; is rigorously PPSS-secure. The title of this paper comes from this fact.

In Section 2, we introduce notations and notions needed later. In Section 3, we recall the protocol ePPSS;, and state
our main result. Before proving the result, we give a protocol which is pparam-secure but not PPSS-secure in Section 4.
We prove our result in Sections 5 and 6. Concluding remarks are given in Section 7.

2. Preliminary

Let A be a distribution over a finite set A. We write x € A to denote that x is chosen from A according to the
distribution A. In particular, if A = Uy, the uniform distribution over A, then we write x €, A instead of x € U4. N and
Z denote the set of the natural numbers and the ring of the rational integers, respectively. For any n € N, we use Z, and
Z* to denote the residue ring Z/nZ and its group of units, respectively. Let 1¥ denote the string of k ones. For any finite
set V, #V denotes the cardinality of V. Let SS;, be the Shamir (z, n)-threshold secret sharing scheme [8].

2.1 Cryptographic Assumptions

Let O be a safe prime, that is, Q is a prime of the form Q = 2¢g + 1 for some prime g. We note that it is not shown
that there are infinitely many safe primes. However, it is widely believed that the set of safe primes, or alternatively the
set of Sophie Germain primes is not finite [1]. Throughout this paper, we assume that there are infinitely many safe
primes.

We define the decisional Diffie-Hellman (DDH, for short) problem [2]. Let Q = 2g + 1 be a safe prime, and let G,
denote the subgroup of Z*é of order gq. We define

DH = {(Q, g, 5% g".g®) | g is a generator of Gy, and a,b € Z,},
and
DH = {(0, g, g“,gh,gc) | g is a generator of G, and a,b,c € Z,}.

The DDH problem is to determine, for a tuple w = (Q, g, g%, gb , &%), whether or not w € DH. Let Gen be a probabilistic
polynomial-time (PPT, for short) algorithm which works as follows: On input 1¥, Gen randomly chooses a safe prime
O =2q+ 1 of length k +2 and a generator g € G, and outputs a pair (Q, g). For a probabilistic Turing machine A
called an adversary and a security parameter k, we define the advantage AdvRDH(k) as follows:

AdvEPH (k) = | PrA(Q, g, 8% 8", g*") = 1] — Pr[A(Q, g, 8%, 8", &) = 111,

where (Q, g) = Gen(1¥ and a,b, ¢ € Z4. The probability is taken over the random tapes of + and Gen, and the random
choice of a, b, c € Z,;. The DDH problem is (Tyan, £4an)-hard if AdvaDH(k) < &4qn holds for any k and any adversary +4
whose running time is at most Tygp.

We next define the computational Diffie-Hellman problem [2]. Set

CDH = {(Q, g, 8°,&") | g is a generator of G, and a,b € Z,}.

The CDH problem is to compute CDH(w) = g™ for a tuple w = (Q,g,8".¢") € CDH. The CDH problem is
(Tean, £can)-hard if

Pr{M(Q, g g% 8") = 1 < ecan

holds for any k and any probabilistic Turing machine M whose running time is at most T,q,, where (Q, g) = Gen(1*)
and a, b € Z,. The probability is taken over the random tapes of M and Gen, and the random choice of a,b € Z,.
We state the relationship between the DDH and CDH problems.

Lemma 2.1. If the DDH problem is (Tygn, €aan)-hard, then the CDH problem is (T, €aan + 27%)-hard.

Proof. Assume that the CDH problem is not (T4gh, €ddn + 2-K)-hard. Then there exist a probabilistic Turing machine M
whose running time is at most T4gy such that

1
Pr{M(Q,g.8% ") = g1 > eqan + >
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holds for some k(, where (Q, g) = Gen(1%) and the probability is taken over the random tapes of M and Gen, and the
random choice of a,b € Z,. We now construct a probabilistic machine 4 as follows: On input w = (0, g, &1, 82, &3)s
(1) Simulate M on input (Q, g, g1, g2), and get an output C.
(2) If C = g3, then output 1, and halt. Otherwise, output 0, and halt.
We see that the running time of »4 is almost the same as that of M. If (Q, g) = Gen(1%), then we have

1
P [Aw) =11= Pr [M(Q.8,81,82) = 831 = eaan + T
and
Pr [Aw)=1]= Pr[M(Q,g81,8)=gl= ) Pr[MQ gg,g) =g g =¢]
weDH weDH g'€G, weDH
/ 1 1
=Y Pr[MQgeg.g)=glg=¢] Prlgz=gl=-) Pr[MQgg.g) =gl=-.
¢'cG, weDH weDH 4 ¢cG, weDH q
Hence, we have
1 1
AdvEPH (ko) > <8ddh(k0) + k) — — > &aan(ko).
2%0 q
This implies that the DDH problem is not (Tyqn, £4dn)-hard, and the lemma follows. O

2.2 Simulation-Sound Non-Interactive Zero-Knowledge Proofs

A non-interactive proof system for a language £ consists of two probabilistic polynomial-time algorithms $(L) and
V(L):

e Prover (L) produces a proof 7 on input an instance x and its witness w.

e Verifier V(L£), on input an instance x and a proof 7, decides whether or not 7 is a correct proof of the membership

of x € L.

A proof m is said to be valid if 7 is correct. If 7 is not correct, then 7 is said to be invalid.

We give the definition of simulation-sound non-interactive zero-knowledge (SS-NIZK, for short) proof systems in
the random oracle model [4]. We consider the following two games for a non-interactive proof system ($(L), V(L))
between an adversary + and a challenger C:

Game ZK
(1) C first chooses 8 €, {1,2}.
(2) A is allowed to access a random oracle. If A queries any instance o, then C answers a hash value H(o).
(3) A is allowed to access a prover oracle. When + queries any pair (x, w) of an instance x and a witness w,
a. if B =1, then C answers a proof = = P(L)(x, w).
b. if =2, then C answers a “simulated proof” w = &(L)(x), where §(L) is a probabilistic algorithm called
simulator.
(4) A sends B € {1,2} to C.
In Game ZK, A is allowed to adaptively execute Steps (2) and (3) polynomially-many times in arbitrary order.

Game SS

(1) Csets S=40.

(2) A is allowed to access a random oracle. If A queries any instance o, then C answers a hash value H(o).

(3) A is allowed to access a simulator §(«L£). If A queries any instance x, then C answers a simulated proof

7 = 8(L)(x), and sets S = S U {(x, 7)}.

(4) A sends a pair (x*, ") of an instance x* and a proof 7* to C.

In Game SS, #4 is allowed to adaptively execute Steps (2) and (3) polynomially-many times in arbitrary order.
We use the following notation. Let Pr[E;] denote the probability that an event E; occurs, and let Pr[E; |E;] denote the

conditional probability of E| occurrence of event E,.

Definition 2.2 ([4]). A proof system (P(L), V(L)) for a language L is (T, q,s,, qfq, &7k, €ss)-SS-NIZK if there exists
a simulator algorithm $(.£) whose running time is at most Ts such that the following conditions hold for any adversary
A
(1) (P(L), V(L)) is a non-interactive proof system,
(2) In each of Game ZK and Game SS, +4 is allowed to access a random oracle and a prover oracle (or a simulator
8(L)) at most g3, and g} times, respectively.
(3) In Game ZK, the following inequality holds for any adversary «:

|Pr{f=1|p=11-Pr[f=1|=2]| < ex.
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(4) In Step (4) of Game SS, the probability that -4 outputs (x*, 7*) which satisfies the following conditions is at most
gss: () (", ) & S, (ii) x* & £, and (iii) 7* is valid.

2.3 Password-Protected Secret Sharing Schemes

We now introduce a formal description of PPSS schemes [4]. There are three sorts of participants in PPSS schemes:
the initialization algorithm, the user algorithm and the algorithms for the servers. We formalize the setting for PPSS
schemes in the following way.

Let k denote a security parameter. A PPSS scheme involves a PPT algorithm Setup. This takes 1¥ as an input, and
outputs a setup parameter 4 € A(k), where A(k) is a finite set of all possible setup parameters with respect to the
security parameter k. The setup parameter A specifies the following items:

e a set PW, of all passwords;

a set Doc, of all documents;

a set Pub, of all public parameters;
a set Sec, of all secret seeds;

a number n of the servers; and

e a number 7 with 0 < ¢t < n for the (¢, n)-threshold secret sharing that will be employed in the PPSS scheme.
We note that the numbers n and ¢ are at most {(k) for some polynomial ¢ since Setup is a PPT algorithm.

For the PPSS scheme, the following three items are designated in addition to the algorithm Setup:

e Init: This is the initialization algorithm that takes a tuple (4, p, d) of a setup parameter A, a password p € PW, and

a secret document d € Doc, as an input, and outputs a pair (pub, sec) of a public parameter

pub = (puby, pub,, pub;) = (pub; (1), pub,(pub, (1), p), pubs(pub,(1),d)) € Pub,

and a set sec = {sec;}/_, of the seeds of the shares, where sec; € Sec, denotes the seed stored with the j-th server.
We assume that Init is a PPT algorithm.

e User and Server = {Serverj}_;.’= 1 The algorithms User and Server; are PPT algorithms, and they are employed by
the user and the j-th server, respectively. The user’s algorithm User interacts with the server’s algorithm Server;
for each j. At first, User is given a tuple (4, p, pub) of a setup parameter A, a password p € PW, and a public
parameter pub as an input, and the algorithm Server; for each j is given a tuple (4, pub, sec;) of a setup parameter
A, a public parameter pub and a seed sec; € Sec,. Interacting with the n servers, User eventually outputs either a
document d’ or 1, where L denotes that User has failed to recover the secret document d.

We write & = (Setup, Init, User, Server) to denote a PPSS scheme. For a PPSS scheme 4 and p € PW,, the output of
User is denoted by P(p, (pub, {secj}]’.‘zl)) on an input (4, p, pub), where (pub, {secj}j’?:l) = Init(p, d) for some p € PW,
and d € Doc,. A PPSS scheme P is valid if P(p, Init(1, p,d)) = d holds for any 4 € A(k), p € PW, and d € Doc,. The
PPSS schemes we consider in this paper are all valid.

2.4 A Security Notion for PPSS schemes: PPSS-security

We state the security of PPSS schemes defined in [4]. Let # = (Setup, Init, User, Server) be a PPSS scheme. Then a
PPSS adversarial game for & between an adversary 4 and a challenger C is defined as follows:

Initialization phase: C first executes Setup on input 1¥, and gets a setup parameter A. Then € sends A to A. A chooses
two documents dy,d, € Doc, and a subset V' C [n] = {1,...,n} with#V’ = ¢ < ¢, and sends a tuple (d;,d,, V') to C. C
chooses B €, {1,2} and p €, PW,. Then C executes Init on an input (1, p, dg), and gets a tuple (pub, {secj};‘:l). Finally,
C sends (pub, {sec;}icy) to A.

User’s query phase: A is allowed to interact with C. In each interaction, #4 freely chooses the index j, and sits at the
J-th server’s position. C plays the role of the user who is given the tuple (4, p, pub). A and C follow a single round of
the scheme in each interaction. It should be noted that 4 may deviate from the regular protocol according to his
strategy, but C strictly follows the protocol. A may adaptively interact with C in the manner.

Server’s query phase: 4 is allowed to interact with C. In each interaction, + sits at the user’s position and freely
chooses a number j € [n] \ V'. € plays the role of j-th server given the pair (pub, sec;). A and € follow a single round
of the scheme in each interaction. It should be noted that 4 may deviate from the regular protocol according to his
strategy, but C strictly follows the protocol. 4 may adaptively interact with € in the manner.

Challenge phase: 4 sends 8 € {1,2}.

For B = {1,2}, let P(dg;d;,d>) denote the probability that 4 sends 1 in Challenge phase of the PPSS adversarial
game under the following conditions: In Initialization phase,
(1) A chooses two documents d; and d,, and
(2) € chooses B,
where the probability is taken over random tapes of + and C.

Definition 2.3 ([4]). A PPSS scheme £ is (qu,qgs, T, €)-PPSS-secure if for any security parameter k, any setup



A Rigorous Security Proof for the Enhanced Version of Password-Protected Secret Sharing Scheme 35

parameter A € A(k), any documents dj,d, € Doc,, any subset V' C [n] with #V' =1 <t and any adversary A, the
inequality

qs .
t—1t | #PW,

|P(d1;d1,d2)—P(dz;dl,d2)|S\\ +¢
holds under the following conditions:

(1) A chooses the subset V' C [n] in Initialization phase,

(2) the running time of the adversary +4 is at most 7,

(3) A is allowed to enter User’s query phase at most gy times, and

(4) A is allowed to enter Server’s query phase at most gg times.

2.5 Another security notion for PPSS schemes: pparam-security

We state another PPSS security notion called pparam-secure [7]. A pparam-attack game for a PPSS scheme &
between an adversary -+ and a challenger C is as follows:

Initialization phase: C first executes Setup on input 1¥, and gets a setup parameter 1. Then € sends A to A. A chooses
two documents d;,d, € Doc,, and sends them to C. C chooses B €, {1,2}. Then C executes Init on an input (4, p, dg),
and gets a pair (pub, sec), where pub = (pub,, pub,, pub;). Finally, C sends the public parameter pub to +4.

Attack phase: # is allowed to interact with C. In each interaction, 4 sends a public parameter pub’ =
(pub/, pubj, pub}) € Pub, to C. € plays the role in computing the “inverse” of the initialization algorithm if pub, =
pub] and pub; # pubj. Then € returns a document d € Doc, which satisfies Init(1, p,d) = (pub’,sec’) for some
p € PW, and sec’ € Sec,. Otherwise, C returns a special symbol L.

Challenge phase: 4 sends 8 € {1,2}.

For B = 1,2 and a security parameter k, let Pﬁpmm_atk(k) denote the probability that 4 sends 1 in Challenge phase of
the pparam-attack game under the condition that € chooses S in Initialization phase, where the probability is taken over
the random tapes of 4 and C.

For a security parameter k and an adversary -+, we define Adv 4(k) by

Adv (k) = |P, ;l)param—atk(k) —-P iparam—alk(k) :

Definition 2.4 ([7]). A PPSS scheme P is (7, €, g4)-pparam-secure if for any security parameter k and any adversary
A, Adv4(k) < ¢ holds under the following conditions:

(1) - is allowed to enter Attack phase at most g4 times, and

(2) the running time of 4 is at most 7.

It should be noted that the pparam-security is independent of the PPSS-security in a sense that the pparam-security
does not imply the PPSS-security in general and vice versa. Indeed, the protocol PPSS, proposed in [4] is PPSS-secure
[4], but not pparam-secure [7]. On the other hand, one can easily construct a protocol which is pparam-secure but not
PPSS-secure. We give the protocol in Section 4. Hence, one prefers PPSS schemes which are both PPSS-secure and
pparam-secure.

3. The protocol ePPSS; and Main Theorem

We depict a protocol ePPSS;, in Protocol 1: the proof systems (?(£§L1'b), 'V(£glfb)) and (J’(ﬂ;}'b), 'V(QClz,Ub)) are given
in [4], and (P(LY), V(LX) is given in [7]. In [4], they stated that, for any given ¢5 and ¢, these systems are
(Ts,qlsg,qlsq,EZK, £ss)-SS-NIZK, where ezx = qls,qfl/q, £ss = qfl/q and Ty is the same as the running time of the
corresponding prover. The non-interactive proof system (ﬂ’(oC’,f;”b), "V(oC%”b)) is similarly defined (see also [6]).

The protocol ePPSS; is the same as the protocol PPSS, except for the following three points:

(1) In Init, one constructs two pairs ((g,y1),x;) and ((g,y2),x2) of the public and secret keys, and generates two
ElGamal encryptions (#; 4, v14) and (#24, v24) of the document d.
(2) In order to prove that (1] 4, v1 4) and (uy 4, V2 4) are encryptions of the same document d, a proof = is added in the
public parameter.
(3) The verification process of the proof 7 is added in Step Sj1-1.
It was shown that ePPSS; is pparam-secure in [7]. Our main result is as follows:

Theorem. Assume that the following properties hold:
o the DDH problem is (T4an, Edan)-hard, ‘ '
o the proof systems (P(LE), V(LE®)), (P(LE), V(L)) and (P(LE), V(LE)) are (Ts, ¢5, ¢5» ess, £2x)-SS-
NIZK, and
® the proof system (P(£§“b), 'V(£%Ub)) is (Ts, 1, q%, &ss, £zk)-SS-NIZK.
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The setup algorithm Setup:

1: Input 1%,

2: Run Gen on input 1%, and get a pair (Q, g).

3: Choose natural numbers ¢ and n with # < n < Tgen(k), where Tgen is a running time of Gen. Then output
A =(q,g8,t,n), where g = (Q — 1)/2.

The initialization algorithm Init:
I1: Input a tuple (4, p,d), where A =(q,g,t,n) is a setup parameter output by Setup, p € Z, =PW, and
d € G, = Doc;,.
12: Choose X1, X2 € Zg4, and compute y; = g, y» = g2, {xl,j}J’.':1 =SS, ,(x1) and {xz,j}]’.‘=1 = SS; 1(x2).
I3: Choose h,8,h,9,8 €- G, and 1y, 114,124 € Zy.
I4: Compute u, = g, v, = VIRP, uyg = g9, upg = 874, vy 4 = y}*'d and vy = y5'd.
I5: Choose ryj, 12 € Zg, and compute y; ; = g*"h" and y, ; = g**/h"/ for each j € [n].
16: Run ?(£pE”b) on an input ((u; 4, vy 4, U24, vz"i)’ r14,72.4), and get a proof .
I7: Set pub; = (g, y1,y2,h, {y1,i}i215 {V2,111215 8. h. 9, &), puby = (uy, vp), puby = (u1,4, V1.4, U2,45 2,4) and
sec; = (x1,j,71,j,X2,j, 72,j) for each j € [n], and output (pub, sec) = ((pub,, pub,, pubs, 7), {secj};’zl).
The interaction between the user algorithm User and the server algorithms Servery, ..., Server,:
e User’s input is a tuple (4, pub, ), where p € Z, = PW,.
e For each j, Server;’s input is a tuple (4, pub, sec;).
U and S; are the same as those of PPSS,.
S;1-1: If 7 is invalid, then halt.
S;1-2: Choose ¢; €, Z,, and compute a; = g4, b; = u,t,f and a; = &),
S;j1-3: Run :P(OC‘S“llb) on an input ((a;, bj, ), 1), and get a proof 7 ;.
S;1-4: Send a tuple (a;, bj, a;, my j) to User.

U1-1: Choose a subset V C [n] with #V = 1.

U1-2: If 7, ; is invalid for some j € V, then halt.

U1-3: Choose r; €, Z,, and compute u; = g'7, v; = y?’ihi’, iy =(8)7 and V5 = ()7)’17(};)13.
Ul-4: Compute e; = (a;)"? for each j € [n].

Ul-5: Compute u = [, (b;/¢)).

U1-6: Run J’(OC‘,’]“b) on an input ((a;, ej, us, V3,45, 05), 75, P), and get a proof my ;.

U1-7: Send a tuple (V,u, ej, us, vp, i, U5, 72 ;) to Server; for each j € [n].

S;2-1: If j & V or 7, ; is invalid, then halt.
S;2-2: Compute w; = (uy qu)™i, where

A= l_[ ,_—Emodq.

cenipd —¢
S;2-3: Compute v; = (v,/vp)".
S;j2-4: Compute z; = v;/w;.
S;2-5: Choose r;, € Z,, and compute u;, = g's and v, = (u3)"~z;.
$;2-6: Run £(L25"7) on an input (), vy, 5, a1, v/ V5, (1 qu)Y), 1y, 17, %1, 71,j), and get a proof 3 ;.
S;2-7: Send a tuple ((u;, v;), 73;) to User.

452

U2-1: If 3 is invalid for some j € V, then halt.
U2-2: Compute d' = Ul,d(l_[jev vzj/(]_[jev u;)'7), and output d'.
The languages £L5°, L%, £/ and L™ are defined as follows:

cCglllb = {(Clj,bj, &J) € GSI | Eltj € Zq S.t. (Clj, bj,t_lj) = (gtf, (Ltp)tj, (g)tj)},
oCLZ/Ub = {(aj, ej,us, 5,05, 05) € GS | A(rp, p) € Z; s.t. (e, up, vp, i, U5) = (a;’i,g’f’,y"’h"’, @, (}A’)r”(ﬁﬁ)}’
LY = (. vy, U, a7, Vp /05, (ua)V) € GS | 3ry 17, x,17) € 72

St () aj, ), vz) = (g9, 8%, 8", ()7 (v /v5)" (uqu) ~59)}
and

b 4 2 . FLd )
L = {14, V1.0: 2,4, V24) € Gy | 314, 124) € Ly St rg = g7 Uz 0 = 874, 01.4/v20 = Y /57

Protocol 1. The protocol ePPSS;
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Then the protocol ePPSS,; is (qu,qs, T, €)-PPSS-secure, where max{nqy, qs} < qf,, qli,,
T < Taan — 4Ts — quf’ — qsf° — f
for some polynomials Y, 5 and f' in n, t and k, and
¢ < 8ezx + (4nqugs + 6nqu — 4ngs + 6qs)ess + (2quqs + 3qu + 2qs + Deaan + qugswr + quews + gsws + ws,
where w|, wy, w3 and w4 are negligible in k.

The proof of the theorem is given in Section 5.

4. A protocol which is pparam-secure but not PPSS-secure

As stated in the last of Section 2, the pparam-security is independent of the PPSS-security. In this section, we give a
protocol which is pparam-secure but not PPSS-secure. The protocol is depicted in Protocol 2. We see that Protocol 2 is
pparam-secure.

The setup algorithm Setup and Init are the same as those of ePPSS;.

The interaction between the user algorithm User and the server algorithms Servery, ..., Server,:
e User’s input is a tuple (4, pub, p), where p € Z, = PW,.
e For each j, Server;’s input is a tuple (4, pub, sec;).

U and Sj are the same as those of PPSS;.

U1-1: Choose a subset V C [n] with #V = 1.

U1-2: Send V to Server; for each j € [n].

S;1: If 7 is invalid, then halt.
S;2: If j € V, then send the secret x;; to User. Otherwise, halt.

U2-1: Compute x| = Xjeyxy jd;, where 4; is defined in Step S;2-2 of the protocol ePPSS;.
U2-2: Compute d' = vy4/(u14)"1, and output d’.

Protocol 2. A protocol which is pparam-secure but not PPSS-secure

Proposition 4.1. Assume that the following properties hold:

e the protocol PPSS, is (T, &,0)-pparam-secure, and

o the proof system (P(LY), V(LY®)) is (Ts, 1,45, €7k £55)-SS-NIZK.
Then Protocol 2 is (T, €, q4)-pparam-secure, where

T <T—Ts—qafs, g2 <qy and & < 2e+ bess
for some polynomial f, in n, t and k.
The proof of this proposition is the same as Theorem in [7]. On the other hand, Protocol 2 is not PPSS-secure.
Proposition 4.2. Protocol 2 is not PPSS-secure.

Proof. In the PPSS adversarial game for Protocol 2, assume that the adversary + receives the public parameter pub
and the subset {x; j};cy of secret seeds. Entering Server’s query phase at most ¢ — ¢’ times, - receives another subset
{x1./}jev, of secret seeds, where V) is a subset of [n] \ V' with #V = ¢ — ¢'. Then, in time polynomial in the length of the
setup parameter, computing x; from the subset {x; ;}y,uy of secret seeds, + can recover the stored document. This
implies that this protocol is not (0,¢ — ¢, T, &’)-PPSS-secure, where T is the running time of + and ¢’ is any positive
number which satisfies 1 > 1/#PW, + ¢’ |

5. Proof of Main Theorem

We now give the proof of the theorem. We state several lemmas in order to prove the theorem. The proofs of the
lemmas are given in Section 6.

We use the hybrid argument. Let 4 be a probabilistic machine followed by an adversary of the PPSS adversarial
game for ePPSS;. Assume that the running time of 4 is 7. Using the adversary -+, we define sequences of games
{Game(u, v)},,, and {Game(u,v,8)}, ¢ Let (Q,g) = Gen(1%). We first depict the game Game(0,0) in Protocol 3.
This game models the real PPSS adversarial game for ePPSS, with the exception that the real proofs constructed in
ePPSS; are replaced by the simulated proofs and that Output phase is added. We convert the game Game(0, 0) so that
the game does not depend on the document d and the password p.
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Initialization phase

10: Set Cy = Cs = Cr = 0, F = false and Upset = Idset = (.

I1: Choose n,t € N with n > ¢, and send a tuple (g, g,n,1) to A, where g = (Q — 1)/2.

I2: If A sends two documents d,d, € G, and a subset V' C [n] with #V' =1’ < 1, then choose g €, {1,2}.

13: Choose X1, X2 € Zg4, and compute y; = g, y, = g2, {xl,j};’zl =SS, ,(x1) and {xzsj}j’?=1 =SS, ,(x2).

I4: Choose h, g,h 9.8 € Gy and 1y, 114,124 € Zy.

I5: Choose a password p €, Z,, and compute u, = g'» and v, = y? h?P.

16: Compute (114, v14) = (g, y)""dp) and (2,4, v2.4) = (87, y5"dp).

I7: Choose ryj, 12, € Zg, and compute y; ; = g*7h" and y, ; = g**/h"/ for each j € [n].

I8: Run the simulator /3(5(32“1’) on an input (i1 4, V1,4, Uz,4, v2,4), and get a proof 7.

I9: Set pub, = (g, y1,y2, h, {1}z, {24215 & 1. 9, 8), puby = (up, vp), pubs = (1,4, V1.a), (U2,4, V2,4), 70) and
sec; = (x1,5, 1'1,j,X2,j, 12,j) for each j € [n], and send (pub, secy’) = ((pub,, pub,, pubs), {sec;}jcy/).

User’s query phase

If A enters User’s query phase with n-tuple {(j, a;, b;, a;, 71 j)} (s, then execute the following procedure:
U1-0: Set CU = CU + 1.

Ul-1: If 7, is invalid for some j € [n], then halt.

U1-2: Choose a subset V C [n] with #V = 1.

U1-3: Choose rj €, Z,, and compute u; = g'7, vy = y'h?, fi; = (8)7 and d; = (§)"?(h)".

Ul-4: Set u;(Cy) = uy and Upset = Upset U {u(Cy)}.

U1-5: Compute ¢; = (a;)"? for each j € [n].

U1-6: Compute u = [ ], (b; /ej)

U1-7: Run the simulator 8(L) ) on an input tuple (a;, ej, u3, v, i3, D5), and get a proof my ; for each j € [n].
U1-8: Send (V,u, ej, us, v, 5, U5, w2 ;) for each j € [n].

If A returns a tuple {(u;, v, 73 7)}jev, then execute the following procedure:

U2-1: If 73 is invalid for some j € V, then halt.

U2-2: Compute d' = vl,d(njev vzl./(]_[jev u;)'7), and send d’ to .

Server’s query phase

If A enters Server’s query phase with an index j € [n] \ V/, then executes the following procedure:
S;1-0: Set Cs = Cs + 1.

S;1-1: If 7 is invalid, then halt.

S;1-2: Choose t; €, Z,, and compute a =g b= up and a; = (g)".

S;1-3: Run the 51mulat0r 5(06 1 ) on an input (aj, ,a;) and get a proof my ;.

S;j1-4: Send a tuple (j,a;, bj, a;, 7y ;).

If A returns a tuple (V,u, e, us, v5, 05, 05, 72,5), then execute the following procedure:

Si2-1: If j &V or T2,j is invalid, then halt.

S;2-2: If v,,/(u,,)x h”, then Idset = Idset U {j}. If #Idset > — ¢, then set F = true.

S;2-3: Compute w; = (uy, Ju)*1i, where A; is defined in Step S;2-2 of the protocol ePPSS;.
S;j2-4: Compute v; = (v,/vp)".

S;2-5: Compute z; = v;/w;.

S;2-6: Choose r;, € Z,, and compute u;, = g'v and v, = (u3)"z;.

S;2-7: Run the simulator 5(£pUb ’) on an input (u;, vz, iz, aj, U/ Vs, (Ug du) ), and get a proof 73 ;.
S;2-8: Send (uy;, vy, 3 ).

Output phase
If A outputs 1, then set ¢ = 1. Otherwise, set ¢ = 0.

Protocol 3. Game(0, 0)

For 8 = 1,2, we define the probabilistic machine 'Mg,o as follows: On input w = (Q, g, g1, 82, 83),

(i) Simulate Game(0, 0) by using (Q, g), and choose 8 in Step I2 of Initialization phase.
(i) Output ¥ set in Output phase.
Let Eg.4, be the event that the adversary -4 outputs 1, and let ‘Poo be the output of =M00
We similarly define probabilistic machines Mﬂ and M’ ., events Eyva, and E) ¢ q,, and outputs <p’f’ and gpM e
We set p,.(dg) = Pr[E}l.,U,dﬁ] and p,,,£(dp) = Pr[E/L védﬁ]
We note the following facts: in Game(0, 0),
(1) in Initialization phase, the challenger queries 5(66%“'3) one time in order to make a proof 7.
(2) When 4 enters User’s query phase,
® A queries the random oracles at most n and 7 times in order to make proofs {7y ;};c(, and {73 ;} ey, respectively.

NI 34
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e the challenger queries 8(Ly' ) n times in order to make proofs {ms ;};c(u-
(3) When 4 enters Server’s query phase,
e A queries the random oracles at most one time in order to make a proof 5 ;.
e the challenger quenes S(L2") and 8(L2™) one time in order to make proofs 7 ; and 73 j, respectively.

We also note that ‘Poo only depends on Q and g, and is mdependent of g1, g» and g3. Hence, if the running t1mes of
the simulators 5(£p”b) 5(£p”b) 5(£pub) and 5(£p”bj) used in Moo(w) are at most Ts and max{nqu,qs} < ¢ q%
holds, then we have

|P(dg; dy, d2) — pooldp)| < dezx

for B = 1,2. This implies that
|[P(d;dy,dy) — P(dy; dy, da)| < |poo(di) — poo(dr)] + 8ezk. (5.1

(I) We define the sequence of games {Game(0,v)}?” . In Game(0, v), we replace Step U1-3 of Game(0,0) by the
following step:

U1-3': If Cy < v, then choose U5 €, G, and r; €, Z,, and compute u; = g'7, v = yl’ h? and ii5 = (8)"7. Otherwise,
choose r; €, Z,, and compute u; = g'7, v; = y;ﬁhp, ip=(2)7 and V5 = (y)’”(h)p

Lemma 5.1 (cf. Claim 5 [4]). If T < Taan — 4Ts — qufl — qsf> — f! holds for some polynomials fV, £ and f! in n,
t and k, then

[Po0(dp) — Pog,(dp)| < qu(2ness + €adn + @)
Sollows for B € {1,2}, where @ is negligible in k.

(II) We define the sequence of games {Game(1,v, &)}, where v=0,...,quy — 1l and £ =0,...,gs. In Game(l, v, §), we
replace Step S;2-5 of Game(1,0,0) = Game(0, gy) by the following step:

S;2-5': 1If either of the following conditions (1) and (2) hold, then choose z; €, Gy.
(1) up € {up(1), ..., us(min{Cy, v})}.
2) Cg<& Cy=>v+1and Us = Mﬁ(\)—i- 1).
Otherwise, compute z; = v;/w;.
We note that Game(1, v,0) = Game(l,v — 1, gs) holds.

Lemma 5.2 (cf. Claim 6 [4]). IfT < Tgan — 4Ts — quzU - quZS — f21 holds for some polynomials fZU, fZS and f21 in n,
t and k, then

1P1,00(dg) — P1.gu—1.45(dp)| < (qu — 1gs(2ness + €qan + @2)
follows for B € {1,2}, where @, is negligible in k.

(IIT) We define the sequence of games {Game(2, v)}% ;. In Game(2, v), we replace Steps I4 and S;2-4 of Game(2,0) =
Game(l, gy — 1, gs) by the following steps, respectively:

I4’: Choose h, 8, ﬁ,g € Gy and £, 1, r1as 2 € Zg, and compute y = ®"*.
S;2-4’: If Cg < v and (ﬁ,,/ ) # h?, then choose v; €, G,. Otherwise, compute v; = (v,/v;)".

Lemma 5.3 (cf. Claim 7 [4]). IfT < Tgan — 4Ts — qu3 - q5f3 — f3 holds for some polynomials f3U, ff and f31 in n,
t and k, then

|P2.0(dp) — Prgs(dp)| < qs(€aan + 2€ss + @3)
follows for B € {1,2}, where @3 is negligible in k.
Using Lemmas 5.1-5.3, we have
|Po.o(d1) — poo(da)l
< 4(nquqs + nqu — nqs + gs)ess + 2qu(gs + Deaan + quor + (qu — Dgs@s + qs@3 + |pags(di) — Pag(do)]. (5.2)

(IV) We define the two games Game(3, 1) and Game(3,2). In Game(3, 1), we replace Step I3 and Output phase of
Game(3,0) = Game(2, gs) by the following steps, respectively:

I3’: Choose x, €, Z, and y; €, G,, and compute y, = g*, {xl,j}j’f:l =SS, ,(0) and {xz,j}le = 8S,,(x2).
Output phase: If F = false and A’s output equals 1, then set ¢ = 1. Otherwise, set ¢ = 0.

In Game(3,2), we replace Output phase of Game(3, 1) by the following procedure:

QOutput phase: If F = true, then set ¢ = 1. Otherwise, set ¢ = 0.
For each M* v let F), .4, denote the event that F = true holds. We write pﬂ’v(dﬂ) = Pr[E,va; A Fpuva,] and
pildp) = py, V(dﬁ) pl.,(dp). Then we have
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Ip3o(dy) — pao(d)] < 1P o(d)) — Pho(d)] + |p36(d) — pig(da)l + max{Pr{F3 041, Pr{F304,1}. (5.3)

Lemma 5.4 (cf. Claim 8 [4]). One has
| Pr[F304,] — PrlF324,]| < &4

and
|P30(d) = pio(dd)] < & + |p3 () — p3f (b)),
where @4 and wy' are negligible in k.

(V) We define the two games Game(4, 1) and Game(4,2). In Game(4, 1) and Game(4,2), we replace Step 16 of
Game(3, 1) and Game(3,2) by the following step, respectively:

16': Choose uy 4, v14 €, G,, and compute (12,4, v2.4) = (g7, y5dp).

Lemma 5.5 (cf. Claim 9 [4]). IfT < Tgah — 4Ts — quSU — qsfss — fI holds for some polynomials f5U, fSS and f! in n,
t and k, then

P31 (dp) — p3’ (dp)] < £aan
and
| PrlF32.4,] — PrlFa2.4,]] < €dan
follow for B € {1,2}.

As we employ the twin-encryption version of the ElGamal encryption, which has not been involved in PPSS;, we
also need to replace the “second term” (up4,v24) by random values of Gﬁ. So, we define the following games
Game(4, 3) and Game(4,4). In Game(4, 3) and Game(4, 4), we replace Step 16’ of Game(4, 1) and Game(4, 2) by the
following step, respectively:

16”: Choose u; 4, V14,24, V24 € Gy
Lemma 5.6. If T < Toan — 4Ts — qufl — qsfs — f holds for some polynomials fU, f5 and f! in n, t and k, then
P31 (dp) — pi5(dp)] < €aan
and
| PrlFs2.4,] — PrliFa44,]] < €dan
follow for B € {1,2}.

Since the values vy 4 and v, 4 are uniformly chosen in Step 16” of Game(4, 3), A’s output does not depend on the
choice of § in Step I2 of the game. Hence, we see that ng (d)) = ng (d»). Using Lemmas 5.4-5.6, we have

P36 () = Py (d)] < 4eaan + @i, 54

(VI) We define the sequence of games {Game(5,v)}? . In Game(5,v), we replace Step S;2-4' of Game(5,0) =
Game(4, 4) by the following step:

Sj2-4": If Cs < v or (0/it5) # h”, then choose v; €, G,. Otherwise, compute v; = (v,/vj)".

Lemma 5.7 (cf. Claim 10 [4]). If T < Tygqnh — 4Ts — qu7U — q5f7S - f71 holds for some polynomials f7U, f7s and f71 in
n, t and k, then

| Pr[Fs0.4,]1 — Pr[Fs 454,11 < gs(2eaan + 2&ss + 07)
follows for B € {1,2}, where @7 is negligible in k.

(VII) We define the sequence of games {Game(6,v)}?”,. In Game(6,v), we replace Step U1-3' of Game(6,0) =
Game(5, gyy) by the following step:

U1-3": If Cy < v, then choose D5, v5 €, G, and r5 €, Z,, and compute u; = g)” and i = (§)'7. Otherwise, choose
95 €, G, and r; €, Z,, and compute u; = g'7, v; = y,’h? and i; = ().

Lemma 5.8 (cf. Claim 11 [4]). If T < Tuan — 4Ts — qufy — qsfy — fa holds for some polynomials f{, f3 and fi in
n, t and k, then

| Pr{F60.4,] — Pt[Feg,.4,11 < qu(eaan + 2ness + )
follows for B € {1,2}, where wg is negligible in k.
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(VIII) We define the game Game(7,1). In Game(7, 1), we replace Step I5 of Game(7,0) = Game(6, gqy) by the
following step:

IS’: Choose p €, Z, and up, v, €, Gy.

Lemma 5.9 (cf. Claim 12 [4]). If T < Tuan — 4Ts — qufy — qsfo — fi holds for some polynomials f{, f5 and fi in
n, t and k, then

| Pr[F7,0.45] — PrlF7,1.4,]] < €dan
follows for B € {1,2}.
For B € {1,2}, using Lemmas 5.4-5.9, we have
Pr(F30.4,] < Pr{F714,] 4+ (2gs + qu + 3)eaan + 2(nqu + gs)ess + w4 + qsw7 + quids. (5.5)

The values v, v; and 05 constructed in Steps I5” and U1-3” of Game(7, 1) are independent of the choice of p in Step
I5’. Hence, for 8 € {1,2}, we have

PeFy 1< | B | L (5.6)
T =T | aw, '

Hence, if T < Tyqn — 4Ts — qufY — qsf> — f holds for some polynomials fU, f5 and f’ in n, ¢ and k, then, by the
inequalities (5.1)—(5.6), we obtain

1
\P(dy; dy,do) — Pda; dy, do)| < | —2 |- + 82k + (4ngugs + 6nqy — 4ngs + 6qs)ess
t—t #PW,l

+ 2qugs + 3qu + 2gs + T)edan + qugswi + quwr + qsws + wy,

where w;, w,, w3 and w4 are negligible in k. This completes the proof of the theorem.

6. Proof of Lemmas

In this section, we prove Lemmas 5.1-5.9.

6.1 Proof of Lemma 5.1

We construct an intermediary machine I{{fu On input w = (0, g, 81,82, 83), J\:tgv simulates Mg,v except for the
following steps:

I4: Choose h, h €r Gy, 15,114,724 € Zy and ro,rl €, Z Then set ¢ = g, g = g1 and y = g».
U1-3': If Cy = v, then set u; = g™ v e, up =g and 05 = gl/ro(h)” Otherwise, execute Step U1-3’ of
M,
U1-5: if Cy = v, then set ¢; = (a;)"/*™ for each j € [n]. Otherwise, execute Step U1-5 of M
Let goﬂ be the outputs of Mﬂ Noting that % , 1s independent of g, g» and g3, we have

PI‘ [QDOV  =1]1— Pr [(00]) 1]
weDH

|Po.v—1(dp) — po(dp)| =

B ~B ~B ~B
< = — = = — =
< ‘wggH[soo,vl - P (7, 1]‘ | P g, = 11— P, =11

weDH

Pr [gh,=11— Pr_[¢), =1l
weDH weDH

6.1)

For any 0 < v < gy, the running time of ;(g’v isat most Ty = T + 4Ts + qufU + qsfS + f! for some polynomials f,
fls and fll in n, t and k. So, if T; < T4an, then the second term on the right-hand side of (6.1) is at most &4qp.

We now estimate the first and the last terms on the right-hand side of (6.1). Let ngv denote the event such that 4
enters the v-th User’s query phase W1th a query {(J, @), bj, a;, 71 j)}jen) Which satisfies the following two conditions for
some jo € [n]: (i) (g}, bj,» aj,) & £51 , and (ii) my j, is a valid proof. Then we have

B _ 1 ~ _
P =10 Py (7 = 1)

P SS
= wggl-l[(pov = =1 ESI u] wE]gH[(pO’” =1A ESl,v]
P SS
+ ngH[(p()\) 1 — =1A _'ES ]_ wgél—[[wo'v =1A _|ESI,U] . (62)
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Since (P(LE), V(L)) is (Ts, q,,, qH, £7K. £s5)-SS-NIZK, if the running time of 8(£L5;") used in M, | and M, is at
most T, and max{nqy, qs} < qH, qP holds, then we have

[%V 1_1/\E§: J— Pr [agvzl/\Eﬁls’v]’ <1—(1—ggq)" < néss.
weDH ’

weDH

By the similar argument, we have

Pr [gh,=1A—ES 1 — Pr[¢h, =1A—ES ] (6.3)
weDH weDH

Pr [¢h,=11— Pr_[¢h, =1]| < ness +

weDH weDH

In order to estimate other terms, we assume that the event Esn , does not occur.
(A) We first consider the last term on the right-hand side of (6.2). Let w € DH. In the v-th User’s query phase of MO »
if we set r5 = a0 /ro, where gy = g, then one has u; = g'7, v; =y\"h?, iy = (g)’P, U5 = ()7 (h)? and ej = (a)'7:
these values are the same as the values obtamed in the v-th User s query phase of MO w1 With r5 = a/rg. Therefore,
the only differences between °M0 ,—; and 'Mo , are the choices of ¢, g and J in Step I4 and that of u; in Step U1-3’ of the
v-th User’s query phase. We define the following distribution over G

Ad, =1(8".8}". 2.8 | r0.71 € L. 81,82 € Gy}

The distribution Aé , 18 1dentlca1 to the distribution of (g, 8,9, up) constructed in M ,(w). In addition, the distribution of
(8,8,9, us) constructed in =M0 ,—1(w) is uniform over G Hence, the last term on the right-hand side of (6.2) is bounded
by the statistical distance between AO , and Ugs.

We see that the following statements hold:
For any g,y,u; € G,, one has

Pr [g=(1,89,u5)]=0.
geh,,

For any g,g,u; € G, \ {1} and § € G,, one has

Pr{g=@LJu)l= Prlg=(@gyDI=0 Prlg=(@ELyDl= %
gEAOV geh,, geap,, q (61 1)
and
Pr [g=(§ gﬁ”ﬁ)]=%~
g, g*(g—1)

So the statistical distance between A(l) , and UG4 is given by 2(3¢> — 4qg + 2)/4°. This value is negligible in the security
parameter k.

(B) We next consider the last term on the rlght -hand side of (6.3). Let w € DH. Using the similar argument to (A), we
see that the differences between =Mo , and <M0 , are the choices of & g, g and Y in Step I4 and those of u; and ¥ in Step
U1-3 of the v-th User’s query phase. We define the distribution A , over G5 by

AG, =1{(g". 8. 82.8)". 8y ") | ro.71 € L7, 81.82.83 € Gy}.

The distribution A%v is 1dentlca1 to that of (g,g,¥,us,0;) constructed in M ,(w). In addition, the distribution of

(8,89, up,05) constructed in =M0 ,(w) is identical to UGs The last term on the rlght -hand side of (6 3) is bounded by the

statistical distance between A, and UGs We note that for any fixed ry € Ly, p € Ly and he (Gq, the distribution

{gl/ "hP | g3 €, G,) over G, is uniform. This implies that the statistical dlstance between A , and Ugs is

less than the distance between A 0 and Ugs. !
Consequently, we have ’ !

|Pow—1(dp) — po(dp)| < 2ness + gaan + @1,
where ) is negligible in k, and hence
|Po.o(dp) — Pogy(dp)| < qu(2ness + Eaan + @1)
follows.

Remark 6.1. In the proof of Lemma 5.1, the construction of the machine J{ggv, the estimation of the second term on
the right-hand side of (6.1) and that of the first term on the right-hand side of (6.2) are the same as those in the proof of
Claim 5 in [4]. On the other hand, in [4], the second term on the right-hand side of (6.2) and that of (6.3) are regarded to
be zero without precise estimation. However, one has to estimate these terms precisely since the statistical distance
between AO , and Ué and that between A% , and Uf; are not necessarily zero as analyzed in (A) and (B) of our proof.
The same applies in other lemmas.
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6.2 Proof of Lemma 5.2

We construct an intermediary machine MP g On input w = (0, g, &1, &2, 83)» ';(/ls,v,é simulates ‘Mf,v,éfl except for the
following steps:

I4: Choose h,h €, Gy, 1p> 1.4, 124,10, % € Zg and 1y €, ZZ Then set § = g", g = g|' and § = &*.
U1-3': if Cy = v, then choose 0; €, G, and set u; = g1, v; = &'h” and i1; = g}°. Otherwise, execute Step U1-3’ of
MY,
vE—1"*
Ul-5: if Cy = v, then set ¢; = (q; )Y for each Jj € [n]. Otherwise, execute Step U1-5 of =M1 1
Sj2-6: if CS =& Cy 2 v+ 1and u; = uz(v + 1) hold, then set u;, = g> and v, = g3z;. Otherwise, execute Step §;2-6
of M} wE-1"

In each M?v,&. and J’({},u,g’ let Ul‘j’E denote the event that Cyy > v+ 1 and up = uz(v + 1) hold in the &-th Server’s
query phase. _
Let (Zﬁ’% be the output of Mﬁ,ug' Noting that (,0‘{}%E is independent of g;, g, and g3, we have

|P1,ve—1(dp) — p1ve(dp)

~8 17 _ ~5 _
wggH[(p],v,g =1] wfg\ﬁ[‘ﬁl,ugg 1]

weDH

Pri¢f e =1~ Prig, = 1]‘ +

Pr (@], =11— Pr[g}, =11 (6.4)

weDH weDH

We estimate the first and the last terms on the right-hand side of (6. 4) Let Eglsv denote the event defined as in the

proof of the Lemma 5.1. If the running time of 5(£§‘fb) used in Ml =1 M/ls,v,é and QM’]SMg is at most Tg, and
max{nqy, qs} < qH, qP holds, then we have

[(pl WE=1 =11- PI' [wlUS - 1]‘ PL[EZ?,V,E =1] - PL[(pf,v,E =1]

“’EDH weDH weDH
I _ 5SS 1_ ~8 _pSS
= 2'1855 + 'wggH[(p]’v’E_] =1 ESI’V] wglgH[wl’v’E =1 ESI’V]
| P[], = 1A—ES 1 — Pr (e}, =1A-ES . (6.5)
weDH weDH

In order to estimate other terms, we assume that the event Eglsv does not occur.

(A) We first consider the second term on the right-hand side of (6.5). Let w € DH. In the v-th User’s query phase of
vag’ if we set 75 = ay, where g; = g%, then one has u; = g'7, v; = y\"h”, ii; = (§)'7, 05 €, G, and ¢; = (a;)"?: these
values are the same as the values obtained in the v-th Server s query phase of ,M’lS e1- We consrder the &-th Server’s
query phase of =M1
e Assume that the event U"g occurs. If we set r;, = a,, where g» = g2, then one has u; =g and v, = u 7z;: these
values are the same as the values obtained in the &-th Server’s query phase of M, ve—1 Withry; = a5. In partlcular
g» is randomly chosen, and is independent of the choices of g, g,  and up
o If the event U, v$ does not occur, then the &t th Server’s query phase of M ve 18 the same as that of Ml vE-1-
Hence, the dlfferences between MP Lvg1 and MP 1vg are the choices of &, & and ¥ in Step I4 and that of u; in Step
U1-3'. The distribution

Al,e=1g"81.8"" 8 | ro.8 € Zg. 11 € L2, g1 €, Gy

over G is 1dent1ca1 to the distribution of (g, g, y, u) constructed in MP 1.vz(w). In addition, the distribution of (&, g, ¥, u5)
constructed in =M1 e (w) is uniform over Gq The second term on the right-hand side of (6.5) is bounded by the
statistical distance between Al v and UGA We define the following two distributions over G2

Al,u,g = {(g" 78W) | ro, X €, q}
and
ALe=1@e) | n & Zi g1 & Gy).
For any g, g, 9, u3,u;, € G, \ {1}, we have

Pr [g=(0.9)1=0, Pr [g=(D]= Pr [¢=0.D]=-

1
gEAlts 8EA| ¢ 8€ 1»5
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1
[g=@@ D= Pr [g=@N=—, Prilg=Euwl=

geA] g geA| . q 8€A| ,; qig—1)

and

Pr [g=(Lupl= Pr [g=(@D]=0.

geA I\E geAlvE

Since Al vt and A} ¢ are independent, the statistical distance between A}, . and UG4 is at most the sum of the distance
between Af | ¢ and UGz and that between A1 ¢ and UG Hence, the statistical distance between Al v and UG4 is at
most 6(q — 1)/q°, which is negligible in k.

(B) We next consider the last term on the right-hand side of (6.5). Let w € DH. We have

PL [a}iv,é =1A _lEgls,v] - PI; [(pllg,v,é =1A _'Egls,v]

weDH weDH
<| Pr [aff,vf =1 A=ES, AUS]— Pr_ [<pf,v§ =1 A=Eg, AU
weDH weDH
+| Pr_ [(Zf’v’é =1 A—E§, A=US— Pr_ [(p’iv’é =1 A—Eg, A=US]. (6.6)
weDH weDH

(B-1) In order to estimate the last term on the last-hand side of (6.6), we assume that the event U[‘,”E does not occur.
Then, by the similar argument to (A), the differences between M’f v and M’f v are the choices of ¢, g and y in Step I4
and that of u; in Step U1-3' of the v-th User’s query phase. Hence, the last term on the right-hand side of (6.6) is at most
the statistical distance between A{ ¢ and UGA, and is negligible in k.

(B-2) In order to estlmate the ﬁrst term on the right-hand side of (6.6), we assume that the event U[‘j‘§ occurs. The
differences between M, »e and Ml ¢ are the choices of ¢, g and § in Step 14, that of u; in Step Ul- 3’ of the v-th User’s
query phase and those of Zjs Uz and vy, of the &-th Server’s query phase. Let Z be the distribution of z; € G, computed
in the &-th Server’s query phase of ,Ml & The distribution Z depends on g", gy , g and g, and is independent of g,
and gs.

The distribution

AL =1{(g" 818" 81.82.83%) | r0. % € Zg, 11 €, LY, 81.82.83 €+ Gy 5 € Z)
is identical to the distribution of (g, g, 7, Uj, Uz, Vz,) constructed in M E(w) Let m' = (my,my, m3, my) € (G =
(ms, mg) € G2 and m = (m/,m”). Then we have

Pr [g=m]= Pr [g"=m"| g =m] Pr g =m],

gEAlvs g€ 1Vs ge 1\5

where we have set g = (g, g”). We note that

Pr [g'=m]= Pr [g'=m]

geA] geat

It follows that
Pr [g'=m"|g =m]= Pr g3z = mg | (8,82 =(m',ms)] Pr [go=ms|g =m']
geA] geAT 8]

1
- Pr [z =memy' | (g, 82.83) = (m',ms, mp)] Pr [gs =mo | (g, 82) = (m',ms)]
qmoeGé,g Alvs 8¢< 1vs

1 /
e 2 P lg= memy ' | (8,82, 83) = (m',ms, mo)].
myeG, 8210

Since {mea1 | mp € G} = G, for any mg € G,, we have
Pr[g'=m"|g =ml=—.
geA? q*
The distribution

r,;r

A?]}E = {(§7§’y,gl‘ﬁ grq g :JZ]') | rﬁ’rZ/ er th g g’y7zj Gr Gq}

is identical to that constructed in ,M’f ; g(w) and is uniform over G® 7 Since the first term on the right-hand side of (6.6) is
bounded by the statistical distance between A2 Lo and Al e WE have
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PLIG e = LA—ES, AUST— Prlgf, . =1A—ER, AU

weDH weDH

m’ EGZ m'eG,

1l_6¢-D

q2

<

6
meG,

Pr [g'=m']—

2
gEA]V‘g

Pr [g=m]— Pr [g=m]| =
ge

2
8EAT IvE

where the last equation follows from the argument in (A). This value is negligible in k.
Note that, for any 0 < v < gy — 1 and 0 < § < g5, the running time of M ¢1sat most o =T +4Ts + qufy +
qs f2 + f2 for some polynomials f2 , f2 and f2 inn, t and k. So, if 7o < T4qap, then the second term on the right-hand side
of (6.4) is at most g4qy. Consequently, we have
1P1.00(dg) — P1gu—1.45dp)| < (qu — Dgs(2ness + €aan + @2),

where @, is negligible in k.

6.3 Proof of Lemma 5.3

We construct an intermediary probabilistic machine X{ﬁv On input w = (Q, 8, 1, 82, 83)s I{Qv simulates Mg’v except
for the following steps:

o

I4': Choose g €, G, X, 1y, 114,124, T1 Er Z and ry €, Zq and set h = g, h= g,y = gA and g_ =g".
Sj1-2: if Cs = v, then set a; = g1, b; = g/ and G; = g'. Otherwise, execute Step Sj1-2 of =M2U

Sj2-4': if Cs = v, then set
b\ " b5 \ 1
() el
¢ @@p)
Otherwise, execute Step S;2-4' of Mg "

Noting that <p2 , 18 1ndependent of g1, g» and g3, we have
[P2,v—1(dg) — p2.,(dp)|

— _ — — _ > _
< ggﬂ[wzv =11 wggH[ 2w 1]‘ Jr [sz 1] wgﬁ[%’” 1]
+| PL[@h, = 11— Prl¢y, =11 ©.7)
weDH weDH

We estimate the first and the last terms on the right-hand side of (6.7). Let E?,Sv denote the event such that -4 enters
the v-th Server’s query phase with a query (V, u, ¢;, Up. Up» ii5, 05, 5,j) which satisfies the followmg two conditions: (i)
75,; is a valid proof, and (11) (aj, ej, Uz, V5, 05, 05) & £p Smce (J’(oﬁp“b) V(OC‘,’]“b)) is (Ts, ¢, qH,ezK,ess) SS-NIZK, if
the running time of $(L}; ®) used in va 1s Mzﬁv and Mz , is at most Ts, and max{nqu, gs} < q3;, g holds, then we
have

Pr [¢h,=11— Pr[¢5, =1]

weDH weDH weDH

Pr [(p2v 1= 1] lg]gH[ag,v = 1]| +

< 2e5s +

B 1 A—ESST_ ~B 1 . _pSS
wng[goz’U71 =1 EU’V] u)ggH[wl” =1A EU,V]

+| Pr(gh, =1A=E}]— Prl¢h, =1A-ER].

weDH weDH

(6.8)

In order to estimate other terms, we assume that the event E?,Sv does not occur.

(A) We first consider the second term on the right-hand side of (6. 8) Let w € DH. In the v-th Server’s query phase of
Mz .- 1f we set #; = ay, where g; = g*', then one has a; = g%, b; = u,,, aj = ()7 and v = (v,,/vp)’f these values are the
same as the Values obtained in the v-th Server’s query phase of ,/\/{2’3 o1 With t; = ;. Hence, the differences between
=M2 ,—1 and M , 18 the choices of £, h and g in Step I4’ and that of a; in Step S;1-2 of the v-th Server’s query phase. We
define the dlstrlbutlon A}, over G4 by

AL, ={(g". 8", 8", 8" | ran, 0 € Zy, 1o €, L3}

The distribution A' , 18 1dentlcal to the distribution of (A, h 8, a;) constructed in M ,(w). In addition, the distribution of
(h, h ,8,4)) constructed in ,Mz b 1(w) is identical to UG4 The second term on teh rlght -hand side of (6.8) is bounded by
the statistical distance between A2 , and UG4 Since the distribution {g" | r1 € Zg} over G, is uniform, the statistical
distance between A}, and UG4 is at most the distance between the distribution
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A}, =18 8", ¢") | ar, 00 € Ly, 1o € L)
over G?/ and UGs For any h, h, aj € G, \ {1}, we have
Pr [g=(1, h,ap)] = Pr [g— (1h 1] = Pr [g (h,h, 1)] = Pr [g (h,1,a)] =0,

8EA; geA geA

R 1
Pr =0Mha)]=——
g 8= R =050

and

1
Pr[g=011Dl= Prlg=(1a)]= Pr [g—(lll)]—q—

gEsz gEsz geh,,
Hence, the statistical distance between A} =~ and Ugs is at most 2(3¢> — 5g + 2)/q°, which is negligible in k.
B q
(B) We next consider the last term on the right-hand side of (6.8). Let w € DH. We have

PL [ag,v =1n ﬁE?]?v] - PI;, [¢§,v =1n _|E§]S,v]

weDH weDH
<| Pr [, =1 A=EP ALI— Pr [¢f, =1A—E} AL
weDH weDH
+| P, = LA=ED A=L]— Pr[¢h, =1A—EP A-Ll, (6.9)
weDH weDH

where I, denotes the event such that A enters the v-th Server’s query phase with a query (V,u, ej, us, vs, 5, U5, 72, ;)
which satisfies 05/(ii5)" = h?.

(B-1) In order to estimate | the first term on the right-hand side of (6.9), we assume that the event I, occurs. In the v-th
Server’s query phase of M2 »» if we set ; = a;, where g; = g*', then one has a; = g, b; = up, a; = (g)" and
U':b;;g: ugxlhpt/ _ & 1
gt e\,
This shows that these values are the same as the values obtained in the v-th Server’s query phase of M’S with t; = «;.

Hence, the differences between M2 , and M2 , are the choices of £, h and g in Step 14’ and that of ajin Step Sj1-2 of the
v-th Server’s query phase. The distribution

= {(g2,85.8".81) | 10 € L), 11 € Zgs 81,82, 85 € Gy}

over G* is identical to the dlstnbutlon of (h, h , 8, a;) constructed in M (w), and is uniform. Since the distribution of
(h, h 8, a;) constructed in ,Mz ,(w) is also uniform over Gg we have

Pr [¢h, = 1A—Ep, ALl= Pr[¢h, =1A—ES AL
weDH weDH

(B-2) In order to estimate the last term on the right-hand side of (6.9), we assume that the event /,, does not occur and
that - enters the v-th Server’s query phase with a query (V, u, ¢j, u, v, 45, U5, 72 ;). The differences between M , and
Mgv are the choices of &, i and g in Step I4’, and those of a; and v; in the v-th Server’s query phase.

We set §; = x1(r, —r5) and 6, = p — p, where u; = g7 and vp/(up)" = h”. Then the value v; computed in the v-th
Server’s query phase of Jtzﬂv is equal to g} ggz Let D and D, be the distributions of §; € Z, and 8, € Z,, respectively.
The distributions Dy and D, depend on 4, h, g and a;.

The distribution

ASV = {(g2,8%.8",81,8)82) | 81,82.83 €, Gy, 10 €, Ly, 11 €r Ly 81 € Dy, & € Do}

is 1dentlcal to the distribution of (h, A, 8, aj, v;j) constructed in M ,(w), and the distribution of (#, h, 8, aj, v;) constructed
in M2 ,(w) is uniform over (GS The last term on the right- hand side of (6.9) is bounded by the statistical distance
between A3, and UGs We note that 8, # 0 holds if the event /, does not occur. Hence, we have

Pr [¢5, = L A—=Ep, A=L]— Pr[¢h, =1 A—ES, Al
weDH weDH

=

Pr [g=mAd #0]— Pr [g =mA s #0].
gehd, 8€Ug;

meGS
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We write m = (my, my, mz, mg,ms) = (m',ms) € G; and g = (g', g5). For any m € Gfl, we have

1
Prig=mns#0l=— Prig=mns#0|g =n]

geU, (‘5 q geU, (~5

1
_E Pr [g5—m5|827£0/\g _m] Pr [827&O|g =m']

= %gePJGZ[Sz #0|g =m].
Since the value 8, depends on m’, we have

gEPUrgg 6#0]g =m= gePAr;v[Sz #0|g =m'l.
We denote this value by D(m').

(i) When my = my = ms = 1, we have

1
Prg=mA8 #0]=— Prlgs=1A8#0|g =m]

geA}, q* genl,
1 D m,
= Pr [18‘+82—1 |8, A0A g =m'|Dim') = (4).
q geA q

(ii) When my; = my = 1 and ms # 1, we have

1
Pr [g—m/\82750] — Pr (1542 = ms | 8, 0 A g = m'1D(m) = 0.
gEA qge 7\)

(iii) When m, # 1 and my = 1, we have

1
Pr [g=mA8#0]=— Pr (g2 =ms |8, #0A g =mDim')
geas, geay,

1
=— Pr [¢2 =ms ASr =1 |82 # 0 A g =m'1D(m)
q 70 geh;,

1
=— Prg=ms|&=0aA&#O0Ag =n] Pr [62_1:2|827é0/\g = m'|1D(m’)
q Tﬁgog Az g€
0 lfM5=1,
= D(m') .
- otherwise.
q*(q—1)

(iv) When m, = 1 and my # 1, we have

1
Pr [g=mné #0]=—; Pr [m4_m5|82;£0/\g’=m’]D(m’).
gen], q’ ge

Since, for fixed my # 1, the function Z; > §; — mi‘ € Gq is bijective, we have

D 7
P

ms €Gq

(v) When m, # 1 and my4 # 1, we have

Pr [g=mA8 #0]
gea;3,

1
=— Y P [mjlggz_msw—maﬁé()Ag—m] P [S_r/\Sz;éO/\g—m]D(m)

q* reZyx; 803
where § = (81, 8,) and t = (11, 72). By the similar arguments to (iii) and (iv), we have
0 if my' = ms
EPr;”[mZ‘ g? =msld=tAbh#Ong =m]= ql otherwise,
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and we see that

2

Pr [g:mAéSg;éO]— PLr [g =mAd #0]
8¢€ @fl

mseG, 8¢
D(m’) 1 1
== 2=, Pr B # 0 1H#0Ng —m]——‘
7 4 q
D(m") 1 2D(m)
=472—— r [fi=1|6H#A0Ag =m] < — .
aq—1 5719 s, q*(g—=1)
Since D(m') < 1, we obtain
4q> — 1
Z Prg=mA8;#0]— Pr [g=mAd #0] < )
mEGi gEA UGZ

This value is negligible in k. ~

Note that, for any 0 < v < gs, the running time of Mg,v is at most T3 = T +4Ts + qufy + qsfs + fi for some
polynomials f3U, f3s and f3’ in n, t and k. So, if T3 < T44n, then the second term on the right-hand side of (6.7) is at most
e4qdn- Consequently, we have

|p2.0(dp) — P2gs(dp)| < qs(€qan + 2ess + @3),

where @3 is negligible in k.

6.4 Proof of Lemma 5.4

The distribution of y; constructed in M 3018 1dentlcal to that constructed in M ,- This 1mp11es that the distribution of
(g, y1,y2,h, g,h ¥, 8, pub,, pubs) constructed in tMgo is identical to that constructed in eMg Y
We note the following two facts:

F1 This fact is due to the property of the secret sharing SS,,. For any x,x" € Z,, we set {x;}}_; = 8S,,(x) and
{)c]/.}]’»’:1 =8SS,,(x"). Let¢ <tand 1 <j; <--- < jy <n. Then, for any m; ,...,m;, € Z,, one has

, 1
Pr{(x;,,...,x;,) = (mj,...,m;,)] = Pr[(xj],...,xj/-[,) = (m,...,m;,)] = ?,

where the probability is taken over the random tape of SS,,. In particular, if ¥ < ¢ — 1, then for any jy €
[(n]\ {j1,.-..jr} and m;, € Z,, one has

1
Prlxj, = mj, | (x5,,....,%;,) = (mj,,...,mj,)] = Pr[xj/-0 =mj, | (xj/.l,...,xj/-t,) = (mj,,...,m;,)] = ;

F2 Let g and & be generators of G,. Then for any x,x" € Z, and y € G, one has
Pr[y=gW]= Prly=g"Il.
re Zy

re,Z q

Using these facts, we see that, for any subset V/ C [n] with #V’ < ¢, under the condition that & # 1, the distribution
of ({y; J}j s {yzj}J 15 {secj}jev +) constructed in M3 o 1s identical to that constructed in M3 ,. Namely, the distribution of
(pub, secy) constructed in M’f o 1s also identical that constructed in M32

Assume that & # 1. We note that the only difference between M 30 and M;z is the construction of the secret
seeds {x;, j}}’zl. In User’s query phase, the challenger does not use the secret seeds in order to respond to the query.
Hence, when A enters User’s query phase with a query {(j,a;,bj,q;,m; J)}je[n], the distribution of the answer
(V,u,ej,us,v5,05, 05, 72, j) constructed in M%o is identical to that Constructed in M3 2

In Server’s query phase, the answer (u,, v;;, 73 ;) depends on the secret seed x; ; although the answer (j, a;, b;, a;, 71,5)

is independent of it. There are the followmg two cases to consider:

e Assume that U;/ (up)x # hP. Then vj is randomly chosen in Step S;2-4. So we may regard that in Step S;2-5, the
value z; is unlformly chosen from G,. Hence, the distribution of (uz , Uy;) constructed in M3 o 18 1dentrca1 to that
constructed in eMg 5

e Assume that 95/ (up)x = h” holds. Then the distribution of (u;, v;;) depends on the secret seed x; ;. However, if
#ldset < r — ¢/, that is, F = false, then the fact F1 implies that the dlstrlbutlon of x;; € Z, is uniform. Hence,
under the condition that F = false, the distribution of (u;, v;) constructed in eM2 (o is identical to that constructed in
sz 20

The same argument can be applied even when we replace ,M3’3 , by M“ In summary, we see that Pr[F304, A

h# 1] =Pr{Fs54, Ah # 1] and p3o""7'(dg) = p37""7!(dp), where p_'FAh#(d ) = Pr[E3 4, A —F34, A h # 1] for
v=20,1. We have
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Pr{F304,] < |Pr{F304,] — PtlF32.4,1| + PrF324,]
< |Pr[F304, A b # 11 = Pr[F3nq, A # 11| + |Pr[F304, Ah = 11— Pr[F304, A b= 1]] + Pr[F3,,4,]

1
< =+ Pr[F324,]
q
The symmetric argument yields
1
Pr[F32.4,] < p + Pr[F3,0,4,]-
Set p3i=1(dg) = p3t(dp) — p;fAh#l(dﬂ) Since p3i""=1(dg) < 1/q, we have
|P50(d) = P3| < [p3g (dl) P3| + |p (d1) = p3y(dd)]

+ |31 (o) — p3o(dy)| < 5 +|p3id) —

proving the lemma.

6.5 Proof of Lemmas 5.5 and 5.6

We first prove Lemma 5.5. We construct two intermediary machines J:{ 4, and M 42- Oninput w = (0, 8,81, 82, 83);
er’l and :Mf’z simulate M 4, and M42, respectively, except for the following steps:

I3': Set y; = g1. Then, choose x; €, Z,, and compute y» = g2, {x1;}}_; = $S,,(0) and {x2;}7_; = SS;,(x2).
I16’: Set Uig = &2 and Vig = ngﬁ, and Compute (u2d’ v2d) _ (glzd rz(ld )

(A) Let w € DH. In Step 16’ of M4 » if we set ry 4 = o, where g, = g%, then one has u; 4 = g"< and vy 4 = y1 ‘dg:
these values are the same as the values obtained in Initialization phase of M3 , with 1 ;4 = ap. Hence, the differences
between ,M’3 and Mﬂ are the choice of y, in Step I3’ and that of u; 4 in Step I6' The distribution Ai v = = {(g1,82) |
21,82 e, G } over (Gr2 is identical to the distribution of (y;, u;4) constructed in M4 ,(w). In particular, A , 1s uniform
over G and is 1dentlcal to the distribution of (y;, u; 4) constructed in M4 LWw).

B) Let w € DH. By the similar argument to (A), we see that the differences between ,x( , and Mff are the choice of
v in Step I3’ and those of u; 4 and vy 4 in Step 16’. The dlStrlbuthIl Aﬁ by = {(gl,gz,ggdﬂ) | 81,82, 83 € Gy} over (G‘v3 is
identical to the distribution of (y;, u; 4, V1,4) constructed in M? 4y (w). The distribution A , 1s uniform, and is 1dent1ca1 to
the d1str1but10n of (y1, u1,4,v1,4) constructed in M4 H(w).

Note that ga3 , and gaf , are independent of g1, g» and g3. Since the maximum 7’ of the running times of Mﬁ 4 and M- 42
is at most T + 475 + qu f5 +gs f5 + fI for some polynomials f5 , f5 and f! in n, t and k, if Ts < Tyan, then we have

| Pr[F32.4,] — PrlFa2.4,]l = Pr [<P32 =1]—- Pr [<P42 =1]| = Pr [(p32 =1]—- Pr [€042 = 1]| < &aan
weDH weDH
and
P31 (dg) = Pl dp)l = | Prlgh; =11~ Prl¢f, =11\=| Pr (@, =11~ Pr (@, =1 < ean.
weDH weDH

We next prove Lemma 5.6. We construct two intermediary machines M 43 and M4 4 Oninput w = (0, g, 81, &2, 83);
M43 and M’s 44 Simulate M43 and M4 4> resptectively, except for the following steps:

I3': Set y, = g;. Then, choose x, €, Z, and y; €, G,, and compute {xl,j};.“zl =SS, ,(0) and {)cz,j}j'-’:1 = S8, 1(x2).
16”: Choose u14,v14 € G4, and set up 4 = g» and vy 4 = g3dp. '
Then, by using the similar argument to the proof of Lemma 5.5, we see that the lemma follows.

6.6 Proof of Lemma 5.7

We construct an intermediary machine JT{S’SV On input w = (0, g, 81,82, 83), M‘U simulates Mgv except for the
following steps:

I3': Set y; = g». Then, choose x, €, Z,, and compute y, = g*, {xl,j};’:] =SS, ,(0) and {xz,j}J’-Z:l =SS, (x2).

I4': Choose r,,r1.4,724,%, 70,12 € Zg and ry, 13 €, Z, and set h = g", § = g¥, h = g}' and g = g". Then, compute
y=(@"

Sj1-2: If Cs = v, then set a; = gy, b; = g?’ and a; = g’. Otherwise, execute the Step S;1-2 of Mﬁv

S;j2-4": If Cs = v and 95/(ii5)* = h” hold, then set

, ﬁp” —r0/11 y

— p P10 ~ N1/

=838 ( - > (@p)~ ",
(@) g
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If Cs = v and 9;/(i1;)" # h” hold, then choose v; €, G,. Otherwise, execute Step S;2-4" of Msﬂ’v.
Noting that (pg’v is independent of g, g» and g3, we have

| Pr[Fs.—1.4,] — Pr[Fs,.4,]l

< P B =11— P =1 P —11— P ~B -1
N ‘weéﬂ[%"’“ ] welgH[ v ]‘ > [(p5v ] weéﬁ[%’v ]
+| P (@, =11— Pr[¢f, =1]|. (6.10)
weDH weDH

We estimate the first and the last terms on the rlght -hand side of (6.10). Let Ej?, denote the event defined as in the
proof of Lemma 5.3. If the running time of )S(DC%” ) used in MS b1 ,va and Mﬁ is at most Ty, and max{nqy, gs} <
q3;» g holds, then we have

Pr [¢h,=11— Pr[¢f, =1]

b 11— o =
Pr [‘Ps,u—l = 1] wggﬁ[(ps’v ]]‘ * weDH weDH

B SS ~B SS
< 2€SS + ‘wggl—[[gos""I =1A _'EU,U] — wggH[(in =1A _'EU,U]

+| PI@E, = 1A-ER]— Prl¢h, =1A—ED].

weDH weDH

6.11)

In order to estimate other terms, we assume that the event Ef,sv does not occur.

(A) We first consider the second term on the right-hand side of (6.11). Let w € DH. We have

_pSS _ ~8 _SS
By = A ER = B, = 1B

B SS ~f SS
< ‘ng[gos,U_l =1A —Ep, A 1] — wggH[(in =1A —Ep, A 1]

B _ ZFSS A 71 =~ _ _ESS A
+| Prlgf, = LA—ER, A=L]— Pr (35, =1A—Ep, ALl (6.12)

where I, denotes the event defined as in the proof of Lemma 5.3.

(A-1) In order to estimate ~the first term on the right-hand side of (6.12), we assume that the event [, occurs. In the v-th
Server’s query phase of engv, if we set #; = «;, where g; = g*', then one has a; = g, b; = uZ, a; = (g)" and

5iX1 1 pt; t
o A—1/r; _up hPU U\’
v =gy == = .

u[t;xl h pt; Uﬁ
This shows that these values are the same as the values obtained in the v-th Server’s query phase of M -1 with #; = a.

Hence, the differences between Mﬂ _, and M’s are the choice of y; in Step 13, those of &, &, h and g in Step I4 and
that of a; in Step S;1-2 in the v- th Server ] query phase. We define the distribution A5 , over G6 by

1
As, =1{(g",8", 8", 8", 8", 8") | ro,ra, 01,0 €, Zy, 11,13 € Ly}

The distribution A;v is identical to the d15tr1but1on of (yi1,h, g,h g,a;) constructed in Mﬁ ,(w). In addition, the
distribution of (yy, 4, &, h, 8, a;j) constructed in =M5 _l(w) is uniform over Gq The first term on the right-hand side of
(6 12) is bounded by the statistical distance between A5 , and UGo Since the distribution {(g", g") | ro, 72 €, Zg} over
G is uniform, the statistical distance between A} and UG(» is less than the distance between the distribution

Aé,u = {(gaz’gtxlazm’ga]rl’ al)|al7a2 €y Zq» r,r &, Zq}
over Gg and Ugs. For any § € G, \ {1} and h, a; € G4, we have
q

Pr [g=(1,8,ha)] = 0.
geA;V

For any yi, 8. h, aj € G, \ {1}, we have
Pr [g=(yi.L.h, apl = Pr (g =011 1L,a)]= P_r] [g=( LA D= Prlg=0né L ay)]

geA ge 5‘ geAs, geA

= Pr [g (1,8 h, D] = Pr [ =08 L D= Pr [g—(l,l,h D= Pr [g=(,1,1,4)] =0,
geA geA geA geA
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1 .\
P_r [g:(yl’1’171)]: P_r [82(1,1,1,1)]2_2, P_r [gz(lalahaaj)]zzi
gedl, geAl, q°  geAl, q°(q = 1)

and

gGPT [g= ()’b&ha/)] W

Hence, the statistical distance between Al  and Ugs is at most 2(g — 1)(4¢*> — 3q + 2)/4*, which is negligible in k.
’ q

(A-2) In order to estimate the last term on the right-hand side of (6.12), we assume that the event /,, does not occur.
Then, the Value v is unlformly chosen in the v-th Server’s query phase of both Mﬂ _, and CM‘B Hence, the differences
between MS ,— and MS , are the same as the case where I, occurs, and we have

4(g — D(4q* —3q+2)
q* '

—FSS 1 _ ~B —FSS
wE[I;H[(pSV 1= 1 A E ] wlenlgH[(pS’v - 1 A EU’V] S

This value is negligible in k.
(B) We next consider the last term on the right-hand side of (6.11). Let w € DH. We have

Pr (@, =1A=Ep,]— Prl¢f, =1A—Ep]

weDH weDH
<| Pr (g, =1A=EP ALI— Pr [¢f, =1A—ED AL
weDH weDH
+ | Pr (@, =1 A=ER, A=L]— Pr[gf =1A—E} A-Ll|. (6.13)
weDH weDH

(B-1) In order to estimate the last term on the right-hand side of (6.13), we assume that the event /, does not occur.
Then the differences between Msﬂ,v and ,MS'S’U are the same as the case of (A-2). The distribution
gu = {(gZ’grO g?,g?,grz gl) | ro, 12 € an r,r &, ZZ» 81,82,83 € G }

over G is identical to the dlstrlbutlon of (y1,h, g,h g, a;) constructed in eMﬂ ,(w). In addition, the distribution of
i1, h, 8, h 8, a;) constructed in M ,(w) is uniform over (G6 The last term on the rlght -hand side of (6.13) is bounded by
the statistical distance between As,u and Ugs. Since the dlstrlbutlon

{(82.8".85.8™) | 10,12 € Zy, 13 €, Ly, 82,83 € Gy}

over G is uniform, the statistical distance between A , and UGé is less than the distance between UGz and Al vE

deﬁned in the proof of Lemma 5.2. Hence, the statistical dlstance between A5 , and UGs is at most 4(q — 1)/q which
is negligible in k.

(B-2) In order to estimate the first term on the right-hand side of (6.13), we assume that the event /, occurs. Let R,
denote the event such that 4 enters the v-th Server’s query phase with a query (V,u,e;, us, vp, 15, Up, w2 ;) which
satisfies the following two conditions: (i) us = u, and (ii) 7, ; is a valid proof. We have

Pr. [ag,v =1A=EP, AL]— Pr [wsﬁ,v =1 A=EP, AL

weDH weDH
<| Pr [, =1A—ES ALAR]— Pr [¢f, =1A—=EP AL AR,
weDH weDH
+| P, =1 A—ES ALA=R]— Pr [¢f =1A=EP AL A=R,| (6.14)
weDH ' weDH '

(1) In order to estimale the last term on the right-hand side of (6.14), we assume that the event R, does not occur. The
differences between M? , and :/\/{5’3 , are the choice of y; in Step 13, those of 4, g, h and g in Step 14, and those of a; and
vj in the v-th Server’s query phase.

If 5 ; is invalid, then the value v; is not computed in the v-th Server’s query phase. So the differences between M
and M? , are the same as the case of (B-1).

Assume that 7o, j 18 vahd We set § = r, — 7},, where us = g'7. Then the value v; computed in the v-th Server’s query
phase of M , 1s equal to g; Let D be the distribution of 8 € Zg. The distribution D depends on yy, A, &, h, g and a;. The
d1str1but10n
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Al =1{(g2.8".85.81".87.81.80) | ri.13 € Ly, 10,12 € Lq, 81,82,83 €r Gy, & € D}

is identical to the dlStI‘lbuthIl of (y1,h, 8, h 8. aj,v;) constructed in M ,(w), and the distribution of (yy, &, g, h 8, aj,v))
constructed in *Ms V(w) is uniform over G’. o~ The last term on the rlght hand side of (6.14) is bounded by the statistical
distance between AS , and UG7 We note that § # 0 if 5 ; is valid. Hence, we have

Pr (@, = L A—=ES AL A=R,)] — Pr_[gf =1A—=EP AL A—R,)]

weDH weDH
4(g—1
M—}—Z Pr [g_m/\S;AO] Pr [g =mAS#0].
6] G7g A UGZ
We write m = (my,...,mg,m;) = (m',my) € GZI and g = (g’, g7). For any m € GZI, we have

1
Pr [g=mA8#0]=— Pr [g=mAs#0| g =m]
gEUG; qgeUGZI

1 / /
=— Prgy=m|8#0Ag =m] Pr [§#0]|g =m]
qgeU EUGZ

1
= 7R 8 £01g =,

Since the value § depends on m’, we have
Pr[§£0|g =m]= Pr [§£0]|g =m]
EUGZ ge eA3

Sw

We denote this value by D(m').

(i) When m3 = my = mg = m; = 1, we have

1 / / 1 $ / / / D(m/)
Prg=mAd#0l=— Prg,=1A8#£0g=ml=—= P [I’=1|8£0ng =m1D0m)= )
geal, q° genl, g° genl, @

(ii) When m3 = m7 = 1 and my, mg # 1, we have

1 s D(m")
Pr [g=mAd#0] = Pr [1°=1|8#0Ag =m'D(m') = — -
geAl, Pq—1)ge A3 ¢(q—1)

(iii) When my = mg = 1 and m3,m7 # 1, we have

1
Pr [g=mA8+#0]= 7 Pr [g§=m7|8;é0/\g/=m’]D(m/)
geA q Ad

—Z Pr [g3—m7|8—r/\87éOAg—m] Pr 8—t|87é0/\g—m]D(m)
q t;éOgEASV

_ D(n)
U

(iv) When m3, my, mg, my # 1, by the similar argument to (iii), we have

P =mAS#0=——
g (8= 0=

1
=m2 Pr [gy=my|§=TA8#£0Ng =l Pr B—flé;«éOAg = m'1D(m)
TV 1ez, 8555y

_ D(m)
g — D

If m does not apply to any cases above, then Pr . A} [g = m A 8 # 0] = 0 follows. Since D(im’) < 1, we obtain

r[&—mﬂ8¢0Ag—mumm

847 — 164> + 169 — 8
S| Prlg=mAs#£01— Prlg=mns#0]| < il q4+ -2
8€ ]

€A;
meG) 885, q

which is negligible in k.
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(2) In ordeg to estimate the first term on the right-hand side of (6.14), we assume that R, occurs. Using the machines
Mjﬁ’v and Msﬂ’v, we construct new machines g/\/sﬂ’v and Ng’v which solve the CDH problem. On input (Q, g, g1, 82), Ng’v
works as follows:
(1) Choose oy, 0, a3 €, Z,, and simulate ,M’S on input w = (Q, g, 8%, g%, g*) except for the following steps:
I3’: Choose x1,x; €, Zq, and compute y; = g%, y» = g2, {x1;}7_; = SS,,(0) and {xgj}” 1 =SS 4(x2).
I4’: Choose % €, Zy, h, h g€ Gyand ri 4,14 € Zy, and set § = g;. Then compute y = (g)x
I5: Choose a password p €, Z,, and set u, = g and v, = g'h’.
(2) When 4 enters the v-th Server’s query phase with a query (V,u, e, us, vs, li5, 05, 72, j),
e if u, = u; and 7, ; is valid, then output 7, and halt.
e Otherwise, output z €, G, and halt.
We note that if the event —-E,S] , A R, occurs in N g ,» then ii; = CDH(Q, g g1, &») follows. In addition, we see that the
probabllrty that the event ESUSV AR, occurs in N 5., 1s equal to that in =M5 , by the construction of N5 ’3 . If the running
time of N , 18 less than Tyqy,, then by Lemma 2.1, we have

1
Pr_ [M?,v(w) =1A=ER, AL AR < Pr_[—ES, AR < PN, (0.8.81.82) = CDH(Q. 8. 81.82)] < aan + = o
weDH weDH

We next construct the machine N g " N? , works as follows: On input (0, g, g1, £2),

(1) Choose ay,a; €, Z4, and simulate Mﬁ on input w = (Q, g, g*', g**, g1) except for the following steps:
I5: Choose a password D €r Zg, and set up = g, and v, = g3?h".
S;1-2: if Cs = v, then set a; = g*', b; = g3' and a; = g*'. Otherwise, choose ; €, Z,, and compute a; = g4,
b; = uy and a; = (g)".
(2) When A enters the v-th Server’s query phase with a query (V,u, ej, us, vs, 5, 5, 72 )),
e if u, = u; and 7, is valid, then output (up)l/" and halt, where r3 is chosen in Step 14 of Mﬁ
e Otherwise, output z €, Gq, and halt.
If the event —-ESS AR, occurs in N 5.0 then (i )1/ " = CDH(Q, g, g1,82) follows In addition, the probability that the
event —|ESUSU A R occurs in N 5., 1s equal to that in M5 , by the construction of Nt 5.,- Hence, if the running time of Nt S
is less than Tygp, then, by Lemma 2.1, we have

~ 1
Pr [ME (w) =1 A—ES AL AR < Pr[—Ef AR, <PiN: (Q,8,81,82) = CDH(Q, g, 81, 82)] < €aan + =7 o
weDH weDH
Note that the maximum 77 of the running times of machines {=M5 ” Ms‘gv, N’Ssv, N?V}‘“ o is at most T7 =T + 4T +
quf¥ + qsfF + f1 for some polynomials £/, 5 and fI in n, t and k. So, if T7 < Tqan, then second term on the right-
hand side of (6.10) is at most eq44n. Consequently, we have
| Pr[Fs0.4,] — PrlFs 450,11 < gsQeaan + 2ess + @7),

where @7 is negligible in k.

6.7 Proof of Lemma 5.8

We construct an intermediary machine ,/T{gv. On input w = (0, g, 81,82, 83), ,;{6’31) simulates Mg,v except for the
following steps:

I3': Set y; = g». Then, choose x, €, Z,, and compute y; = g7, {xlj}j | = S8,,(0) and {xzj}j” | = S8, n(x2).
I4': Choose 7,114,124, %, 70 €, Zq, r €, Z and h, h €, Gy, and set g = g’ and g = g}'. Then, compute j = ®"*.
U1-3": If Cy = v, then choose ?; €, G, and set us = g1, i = g\ and v; = g3h”. Otherwise, execute Step U1-3” of
M,
Ul-5: if Cy = v, then set ¢; = (zij)'/" for each j € [n]. Otherwise, execute Step Ul-5 of ,Mg’v
Noting that ‘Pg,u is independent of g, g» and g3, we have

| Pr(Fe,—1.4,] — Pr[Fe .4l

= PlgH[(p6U 1:1]— Pr _1]‘ Pr [(pﬁv_l]— Pr [%u—l]
e weDH
+| P[P, =11— Pr[¢), =1]. (6.15)
weDH weDH

We estimate the first and the last terms on the right-hand side of (6.15). Let E§} , denote the event defined as in the

proof of Lemma 5.1. If the running time of /S(prl]’ ) used in M6V 15 Mgu and C/Tftév is at most Ts, and max{nqy, gs} <
q3;» g holds, then we have
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Pr l¢f, =11~ ggH[aZU=1]‘+ Pr [, =11~ Pr_lgg, = 1]

weDH weDH weDH
B _ SS ~8 SS
=< 2ness + ‘wggl_{[(pﬁvl =1A=Eg, 1= Prlge,=1A"Eg,]
+| Pr g, =1A—ES 1~ Pr g}, =1A—Es ] (6.16)
weDH weDH

In order to estimate other terms, we assume that the event ngv does not occur.

(A) We first consider the second term on the right-hand side of (6.16). Let w € DH. Using the similar argument to (A)
of the proof of Lemma 5.1, we see that the differences between ngvfl and Mg’v are the choice of y; in Step I3, those
of g, g and § in Step 14" and that of u; in Step U1-3" of the v-th User’s query phase. The distribution

Ay, =1(g2.87. 8. 8" g1) | r0.% € Ly, 11 €, L2, 81,82 € Gy}

over (GZ is identical to the distribution of (y;, g, g, ¥, u3) constructed in J/{év(w), and the distribution

A, =1{(1,8.8.8¢" | 2,15 € Zg, ¥1,86,2 € Gy)
over (Gq is identical to the distribution of (yy, g, g, 9, u5) constructed in M ,—1(w). The second term on the right-hand
side of (6.16) is bounded by the statistical distance between Ag, and A6 ,- Note that the distribution {(g2, ", g"%) |
ro,X €, Zy, & €, Gy} over G3 is identical to the distribution {(v1,2,8%)|y1,8 &, Gq, % e, Zy} over G3 So, the

statistical distance between AG and A6 is less than the distance between UGv and A v¢ defined in the proof of
Lemma 5.2. Hence, the statistical distance between Aév and UGz is at most 4(g — 1)/¢°, Wthh is negligible in k.

(B) We next consider the last term on the right-hand side of (6.16). Let w € DH. By the similar argument to (A), we see
that the differences between ,Mgv and ,Mg’v are the choice of y; in Step I3, those of g, g and § in Step 14’ and those of u;
and v; in Step U1-3" of the v-th User’s query phase. The distribution

Ag, =1{(82.8°. 8. 8" . g1.83h") | ro. %, p € Zg, 11 € Zys 81,82,83:h € Gy}

over Gf] is identical to the distribution of (y, &, g, ¥, us, v;) constructed in e/f{:{g’v(w), and the distribution

éVZ{()’l,g’g gx grﬁ vﬁ)lerﬁ Gqu, yl’g’gyA’vﬁ S q}

over Gq is identical to the distribution of (y1, &, g, 9, u3, v;) constructed in Mﬂ ,(w). The last term on the right-hand side
of (6.16) is bounded by the statistical distance between Ag , and A2 Note that for any fixed p € Z, and h € G, the
distribution {gghf’ | g3 € G4} over Gy is uniform. So, by the same argument as above, the statistical dlstance between
A%V and A6V is less than the dlstance between A6v and UGz

Note that, for any 0 <v < gy, the running time of Mﬂv is at most Ty = T+ 4Ts + quf{ + qsfy + f¢ for some
polynomials £, f5 and f{ inn, t and k. So, if Ty < T4q4n, then the second term on the right-hand side of (6.15) is at most
&4dn- Hence, we have

| Pr[Fs.04,] — Pr[Fogy.a5]] < qu(eaan + 2ness + wy),

where @g is negligible in k.

6.8 Proof of Lemma 5.9

We construct an intermediary machine M,O. On input w = (Q, g, 81,82, 83), 547'3,0 simulates =/\17’3’0 except for the
following steps:

I3’: Set y; = gi. Then, choose x; €, Z,, and compute y, = g2, {x|, j}_;’:l = 8S,,(0) and {xz,]’};l:l = 85, ,(x2).
I5’: Choose p €, Z,, and set u, = g, and v, = g3h”.

(A) Let w e DH. Using the similar argument to (A) of the proof of Lemma 5.5, we see that the differences between

o and M2 7,0 are the choice of y; in Step I3’ and that of upJn Step I5'. The distribution Al 70 = 1(81,82) 1 81,82 € G4}
is 1dentlca1 to the distribution of (y;,u,) constructed in M7 o(w). The distribution A 70 1s uniform over Gz and is
identical to the distribution of (yi, u,) constructed in M7 o(w).

B) Let w € DH. By the similar argument to (A), we see that the differences between ﬂﬂ 70 and M7 , are the choice of
y1 in Step I3’ and those of u, and v, in Step IS'. For any fixed p € Z, and h € G, the distribution A%O =
{(gl,gg, 3h?) | g1,82,83.h €, Gy, p €, Z,} over G is identical to the d1str1but10n of (yl,up,vp) constructed in
M, P (w). The distribution A2 0 is uniform, and is 1dentlca1 to that constructed in M5 7.1(w).
Since the running time of ME 70 isatmost To = T + 4T + qufl + qsf3 + f2 for some polynomials £, f5 and fJ in
n, t and k, if T9 < T44n, then we have
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|Pr{F704,]1 — Pt[F714,]1 = | Pr [¢hg=11— Pr_[¢}, =1]
weDH weDH

~8 _ 11_ > _
wgg]_[[‘ﬂlo =1] wf}%{{[‘ﬂm 1]| < €ddn-

7. Concluding Remarks

We have studied the PPSS scheme PPSS; proposed in [4], and pointed out that PPSS; can be broken by an attack
based on public parameters, and the proof of PPSS-security leaves room for refinement. The former difficulty was
resolved in [7], where they introduced another security notion for PPSS schemes, called pparam-secure, showed how to
enhance the protocol, and proved that the enhanced protocol is pparam-secure. We have investigated the latter point in
this paper. Namely, we have made the proof of PPSS-security rigorous, and proved that ePPSS, is PPSS-secure as well
as pparam-secure.
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