On the Classification of Self-Dual $\mathbb{Z}_{\boldsymbol{k}}$-Codes II

Masaaki HARADA ${ }^{1, *}$ and Akihiro MUNEMASA ${ }^{2}$
${ }^{1}$ Research Center for Pure and Applied Mathematics, Graduate School of Information Sciences, Tohoku University, Sendai 980-8579, Japan
${ }^{2}$ Research Center for Pure and Applied Mathematics, Graduate School of Information Sciences, Tohoku University, Sendai 980-8579, Japan

In this short note, we report the classification of self-dual \mathbb{Z}_{k}-codes of length n for $k \leq 24$ and $n \leq 9$.
KEYWORDS: self-dual code, frame, unimodular lattice

1. Introduction

Let \mathbb{Z}_{k} be the ring of integers modulo k, where k is a positive integer greater than 1 . A \mathbb{Z}_{k}-code C of length n is a \mathbb{Z}_{k}-submodule of \mathbb{Z}_{k}^{n}. A code C is self-dual if $C=C^{\perp}$, where the dual code C^{\perp} of C is defined as $C^{\perp}=\left\{x \in \mathbb{Z}_{k}^{n} \mid\right.$ $x \cdot y=0$ for all $y \in C\}$ under the standard inner product $x \cdot y$. Two \mathbb{Z}_{k}-codes C and C^{\prime} are equivalent if there exists a monomial $(\pm 1,0)$-matrix P with $C^{\prime}=C \cdot P$, where $C \cdot P=\{x P \mid x \in C\}$. A Type $I I \mathbb{Z}_{2 k}$-code was defined in [2] as a self-dual code with the property that all Euclidean weights are divisible by $4 k$ (see [2] for the definition of Euclidean weights). It is known that a Type II $\mathbb{Z}_{2 k}$-code of length n exists if and only if n is divisible by eight [2]. A self-dual code which is not Type II is called Type I.

As described in [24], self-dual codes are an important class of linear codes for both theoretical and practical reasons. It is a fundamental problem to classify self-dual codes. Much work has been done towards classifying self-dual \mathbb{Z}_{k}-codes for small k and modest n (see [24]). Let $n_{\max }(k)$ denote the maximum integer n such that self-dual \mathbb{Z}_{k}-codes are classified up to length n. For $k=2,3, \ldots, 10$, we list in Table 1 our present state of knowledge about $n_{\max }(k)$. We also list the reference for the classification of self-dual \mathbb{Z}_{k}-codes of length $n_{\max }(k)$.

Table 1. Known classification of self-dual \mathbb{Z}_{k}-codes.

k	2	3	4	5	6	7	8	9	10
$n_{\max }(k)$	40	24	19	16	12	12	12	12	10
Reference	$[5]$	$[11]$	$[12]$	$[16]$	$[12]$	$[15]$	$[12]$	$[12]$	$[12]$

A classification method of self-dual \mathbb{Z}_{k}-codes based on a classification of k-frames of unimodular lattices was given by the authors and Venkov [14]. Then, in [12], using this method, self-dual \mathbb{Z}_{k}-codes were classified for $k=$ $4,6,8,9,10$ (see Table 1). Using the same method, in this short note, we complete the classification of self-dual codes \mathbb{Z}_{k}-codes of length n for $k \leq 24$ and $n \leq 9$. All computer calculations in this short note were done by MAGMA [4].

2. Classification of self-dual $\mathbb{Z}_{\boldsymbol{k}}$-codes

2.1 Method for classifications

A classification method of self-dual \mathbb{Z}_{k}-codes based on a classification of k-frames of unimodular lattices was given by the authors and Venkov [14]. We describe it briefly here (see [12] and [14] for undefined terms and details).

A set $\left\{f_{1}, \ldots, f_{n}\right\}$ of n vectors f_{1}, \ldots, f_{n} in an n-dimensional unimodular lattice L with $\left(f_{i}, f_{j}\right)=k \delta_{i, j}$ is called a k-frame of L, where (x, y) denotes the standard inner product of \mathbb{R}^{n}, and $\delta_{i, j}$ is the Kronecker delta. The following construction of lattices from codes is called Construction A. If C is a self-dual \mathbb{Z}_{k}-code of length n then

[^0]$$
A_{k}(C)=\frac{1}{\sqrt{k}}\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}^{n} \mid\left(x_{1} \bmod k, \ldots, x_{n} \bmod k\right) \in C\right\}
$$
is an n-dimensional unimodular lattice. Moreover, C is Type II if and only if $A_{k}(C)$ is even. Let $\mathcal{F}=\left\{f_{1}, \ldots, f_{n}\right\}$ be a k-frame of L. Consider the mapping
\[

$$
\begin{aligned}
& \pi_{\mathcal{F}}: \frac{1}{k} \bigoplus_{i=1}^{n} \mathbb{Z} f_{i} \rightarrow \mathbb{Z}_{k}^{n} \\
& \pi_{\mathcal{F}}(x)=\left(\left(x, f_{i}\right) \bmod k\right)_{1 \leq i \leq n} .
\end{aligned}
$$
\]

Then $\operatorname{Ker} \pi_{\mathcal{F}}=\bigoplus_{i=1}^{n} \mathbb{Z} f_{i} \subset L$, so the code $C=\pi_{\mathcal{F}}(L)$ satisfies $\pi_{\mathcal{F}}^{-1}(C)=L$. This implies $A_{k}(C) \simeq L$, and every code C with $A_{k}(C) \simeq L$ is obtained as $\pi_{\mathcal{F}}(L)$ for some k-frame \mathcal{F} of L, where $L \simeq L^{\prime}$ means that L and L^{\prime} are isomorphic lattices. Moreover, every Type I (resp. Type II) \mathbb{Z}_{k}-code of length n can be obtained from a certain k-frame in some n-dimensional odd (resp. even) unimodular lattice.

Let L be an n-dimensional unimodular lattice, and let $\mathcal{F}=\left\{f_{1}, \ldots, f_{n}\right\}, \mathcal{F}^{\prime}=\left\{f_{1}^{\prime}, \ldots, f_{n}^{\prime}\right\}$ be k-frames of L. Then the self-dual codes $\pi_{\mathcal{F}}(L)$ and $\pi_{\mathcal{F}^{\prime}}(L)$ are equivalent if and only if there exists an automorphism P of L such that $\left\{ \pm f_{1}, \ldots, \pm f_{n}\right\} \cdot P=\left\{ \pm f_{1}^{\prime}, \ldots, \pm f_{n}^{\prime}\right\}[14]$. This implies that the classification of codes C satisfying $A_{k}(C) \simeq L$ reduces to finding a set of representatives of k-frames in L up to the action of the automorphism group of L.

2.2 Results

Here, we report the classification of self-dual \mathbb{Z}_{k}-codes of length n for $k \leq 24$ and $n \leq 9$. Our classification method of self-dual \mathbb{Z}_{k}-codes of length n requires a classification of n-dimensional unimodular lattices. For $n \leq 7$, any n-dimensional unimodular lattice is isomorphic to \mathbb{Z}^{n}. Up to isomorphism, there are two 8-dimensional unimodular lattices, one of which is the even unimodular lattice denoted by E_{8} and the other is \mathbb{Z}^{8}. Also, up to isomorphism, there are two 9-dimensional unimodular lattices, \mathbb{Z}^{9} and $E_{8} \oplus \mathbb{Z}$ (see [7, p. 49]).

In Table 2, we list the number of inequivalent self-dual \mathbb{Z}_{k}-codes C with $A_{k}(C) \simeq L$ for $k \in\{2,3, \ldots, 24\}$ and $L \in\left\{\mathbb{Z}^{i} \mid i=1,2, \ldots, 9\right\} \cup\left\{E_{8}, E_{8} \oplus \mathbb{Z}\right\}$. Note that all self-dual \mathbb{Z}_{k}-codes C with $A_{k}(C) \simeq E_{8}$ are Type II. A classification of self-dual \mathbb{Z}_{k}-codes of lengths $n \leq 9$ was known for some k. In this case, we list the references in the last columns of the table. Generator matrices can be obtained electronically from [13]. All the zero entries in Table 2 are explained as follows. For $k \in\{3,6,7,11,12,14,15,19,21,22,23,24\}$, if there is a self-dual \mathbb{Z}_{k}-code of length n, then n is divisible by four (see [9, Corollary 2.2]). For $k \in\{2,5,8,10,13,17,18,20\}$, if there is a self-dual \mathbb{Z}_{k}-code of length n, then n is even (see [8, Theorem 4.2], [9, Corollary 2.2]). If k is a square, then there is a self-dual \mathbb{Z}_{k}-code for every length (see [6], [8]). If a self-dual \mathbb{Z}_{k}-code is Type II, then k is even.

Table 2. Classification of self-dual \mathbb{Z}_{k}-codes of lengths $n \leq 9$.

k	\mathbb{Z}	\mathbb{Z}^{2}	\mathbb{Z}^{3}	\mathbb{Z}^{4}	\mathbb{Z}^{5}	\mathbb{Z}^{6}	\mathbb{Z}^{7}	\mathbb{Z}^{8}	E_{8}	\mathbb{Z}^{9}	$E_{8} \oplus \mathbb{Z}$	Reference
2	0	1	0	1	0	1	0	1	1	0	0	$[22]$
3	0	0	0	1	0	0	0	1	0	0	0	$[19]$
4	1	1	1	2	2	3	4	7	4	7	4	$[6,10]$
5	0	1	0	1	0	2	0	3	0	0	0	$[18]$
6	0	0	0	1	0	0	0	3	2	0	0	$[9,12,17,20]$
7	0	0	0	1	0	0	0	4	0	0	0	$[23]$
8	0	1	0	1	0	3	0	20	9	0	0	$[8,12]$
9	1	1	2	3	3	6	9	16	0	28	7	$[1,12]$
10	0	1	0	2	0	5	0	16	11	0	0	$[12]$
11	0	0	0	1	0	0	0	8	0	0	0	$[3]$
12	0	0	0	2	0	0	0	73	22	0	0	0
13	0	1	0	2	0	5	0	21	0	0	0	0
14	0	0	0	1	0	0	0	27	18	0	0	0
15	0	0	0	2	0	0	0	51	0	0	0	
16	1	1	1	2	3	7	23	295	63	697	141	
17	0	1	0	2	0	6	0	47	0	0	0	0
18	0	1	0	4	0	12	0	178	69	0	0	0
19	0	0	0	2	0	0	0	57	0	0	0	0
20	0	1	0	2	0	17	0	725	176	0	0	0
21	0	0	0	3	0	0	0	208	0	0	0	0
22	0	0	0	2	0	0	0	166	75	0	0	0
23	0	0	0	1	0	0	0	120	0	0	0	0
24	0	0	0	1	0	0	0	3690	456	0	0	

2.3 Remark on length 4

A classification of self-dual \mathbb{Z}_{k}-codes of length 4 was given in [3] for $k=19,23$, and in [21] for prime $k \leq 100$. We note that the definition of equivalence employed in [21] is different from our definition. Let $N_{4}(k)$ denote the number of inequivalent self-dual \mathbb{Z}_{k}-codes of length 4 . We give in Table 3 the numbers $N_{4}(k)$ for integers k with $25 \leq k \leq 200$. We remark that the classification can be extended to $k=1000$. However, in order to save space, we do not list the result.

Table 3. Classification of self-dual \mathbb{Z}_{k}-codes of length 4 ($25 \leq k \leq 200$).

k	$N_{4}(k)$	k	$N_{4}($ k $)$								
25	5	55	5	85	10	115	9	145	14	175	20
26	3	56	1	86	6	116	5	146	11	176	2
27	4	57	7	87	7	117	15	147	18	177	14
28	3	58	5	88	2	118	8	148	8	178	13
29	2	59	3	89	5	119	8	149	7	179	8
30	5	60	5	90	19	120	5	150	30	180	19
31	2	61	4	91	9	121	9	151	7	181	9
32	1	62	4	92	3	122	9	152	3	182	19
33	4	63	8	93	8	123	11	153	20	183	15
34	4	64	2	94	6	124	6	154	15	184	3
35	3	65	8	95	8	125	13	155	12	185	17
36	6	66	9	96	1	126	20	156	14	186	20
37	3	67	4	97	6	127	6	157	8	187	14
38	3	68	4	98	10	128	1	158	10	188	6
39	5	69	5	99	13	129	12	159	12	189	26
40	2	70	9	100	12	130	21	160	2	190	23
41	3	71	3	101	5	131	6	161	10	191	8
42	5	72	4	102	14	132	9	162	27	192	2
43	3	73	5	103	5	133	11	163	8	193	10
44	2	74	6	104	3	134	9	164	7	194	14
45	7	75	11	105	16	135	22	165	25	195	31
46	3	76	5	106	8	136	4	166	11	196	16
47	2	77	5	107	5	137	7	167	7	197	9
48	2	78	10	108	9	138	15	168	5	198	33
49	6	79	4	109	6	139	7	169	15	199	9
50	10	80	2	110	14	140	9	170	26	200	10
51	6	81	12	111	10	141	10	171	21		
52	5	82	7	112	3	142	9	172	8		
53	3	83	4	113	6	143	10	173	8		
54	8	84	9	114	14	144	6	174	20		

Let $s_{1}, s_{2}, \ldots, s_{u}$ be positive integers. An orthogonal design of order n and of type ($s_{1}, s_{2}, \ldots, s_{u}$), denoted $O D\left(n ; s_{1}, s_{2}, \ldots, s_{u}\right)$, on the commuting variables $x_{1}, x_{2}, \ldots, x_{u}$ is an $n \times n$ matrix A with entries from $\left\{0, \pm x_{1}, \pm x_{2}, \ldots, \pm x_{u}\right\}$ such that

$$
A A^{T}=\left(\sum_{i=1}^{u} s_{i} x_{i}^{2}\right) I_{n},
$$

where A^{T} denotes the transpose of A and I_{n} is the identity matrix of order n. The following matrix

$$
M\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(\begin{array}{rrrr}
x_{1} & x_{2} & x_{3} & x_{4} \\
-x_{2} & x_{1} & -x_{4} & x_{3} \\
-x_{3} & x_{4} & x_{1} & -x_{2} \\
-x_{4} & -x_{3} & x_{2} & x_{1}
\end{array}\right)
$$

is well known as an $O D(4 ; 1,1,1,1)$. From Lagrange's theorem on sums of squares, for each positive integer k, the matrix M gives a k-frame of \mathbb{Z}^{4}. However, there are k-frames which are not obtained in this way. Indeed, if k is a square, then a k-frame can be obtained from a k-frame of \mathbb{Z}^{3}, for example,

$$
\mathcal{F}_{9}=\{(1,2,2,0),(-2,-1,2,0),(-2,2,-1,0),(0,0,0,3)\}
$$

is a 9 -frame. Although the following matrix

$$
N\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(\begin{array}{rrrr}
x_{1} & x_{2} & x_{3} & x_{4} \\
-x_{2} & x_{1} & -x_{4} & x_{3} \\
x_{4} & -x_{3} & x_{1} & x_{2} \\
x_{3} & x_{4} & -x_{2} & x_{1}
\end{array}\right)
$$

is not an orthogonal design, if $x_{1} x_{3}+x_{1} x_{4}-x_{2} x_{3}+x_{2} x_{4}=0$ then

$$
N\left(x_{1}, x_{2}, x_{3}, x_{4}\right) N\left(x_{1}, x_{2}, x_{3}, x_{4}\right)^{T}=\left(\sum_{i=1}^{4} x_{i}^{2}\right) I_{4}
$$

A 15 -frame \mathcal{F}_{15} is obtained from $N(3,1,2,-1)$. We also found the following 21-frame \mathcal{F}_{21} :

$$
\mathcal{F}_{21}=\{(4,1,0,2),(0,-4,1,2),(1,0,4,-2),(-2,2,2,3)\} .
$$

Note that $N_{4}(9)=3, N_{4}(15)=2$ and $N_{4}(21)=3$. The two other 9 -frames are obtained from $M(3,0,0,0)$ and $M(2,2,1,0)$. The other 15 -frame is obtained from $M(3,2,1,1)$. The two other 21 -frames are obtained from $M(0,1,2,4)$ and $M(2,2,2,3)$.

2.4 Remark on length 8

Let $N_{8, I}(2 k)$ (resp. $N_{8, I I}(2 k)$) be the number of inequivalent Type I (resp. Type II) $\mathbb{Z}_{2 k}$-codes of length 8 . From Table 2, we see $N_{8, I}(2)=N_{8, I I}(2)$ and $N_{8, I}(2 k)>N_{8, I I}(2 k)(k=2,3, \ldots, 12)$. We conjecture that $N_{8, I}(2 k)>N_{8, I I}(2 k)$ for all integers k with $k \geq 2$.

Acknowledgments

This work is supported by JSPS KAKENHI Grant Number 26610032.

REFERENCES

[1] Balmaceda, J. M. P., Betty, R. A. L., and Nemenzo, F. R., "Mass formula for self-dual codes over $\mathbf{Z}_{p^{2}}$," Discrete Math., 308: 2984-3002 (2008).
[2] Bannai, E., Dougherty, S. T., Harada, M., and Oura, M., "Type II codes, even unimodular lattices, and invariant rings," IEEE Trans. Inform. Theory, 45: 1194-1205 (1999).
[3] Betsumiya, K., Georgiou, S., Gulliver, T. A., Harada, M., and Koukouvinos, C., "On self-dual codes over some prime fields," Discrete Math., 262: 37-58 (2003).
[4] Bosma, W., Cannon, J., and Playoust, C., "The Magma algebra system I: The user language," J. Symbolic Comput., 24: 235265 (1997).
[5] Bouyukliev, I., Dzhumalieva-Stoeva, M., and Monev, V., "Classification of binary self-dual codes of length 40," IEEE Trans. Inform. Theory, 61: 4253-4258 (2015).
[6] Conway, J. H., and Sloane, N. J. A., "Self-dual codes over the integers modulo 4," J. Combin. Theory Ser. A, 62: 30-45 (1993).
[7] Conway, J. H., and Sloane, N. J. A., Sphere Packing, Lattices and Groups (3rd ed.), Springer-Verlag (1999).
[8] Dougherty, S. T., Gulliver, T. A., and Wong, J., "Self-dual codes over \mathbb{Z}_{8} and \mathbb{Z}_{9}," Des. Codes Cryptogr., 41: 235-249 (2006).
[9] Dougherty, S. T., Harada, M., and Solé, P., "Self-dual codes over rings and the Chinese remainder theorem," Hokkaido Math. J., 28: 253-283 (1999).
[10] Gaborit, P., "Mass formulas for self-dual codes over Z_{4} and $F_{q}+u F_{q}$ rings," IEEE Trans. Inform. Theory, 42: 1222-1228 (1996).
[11] Harada, M., and Munemasa, A., "A complete classification of ternary self-dual codes of length 24," J. Combin. Theory Ser. A, 116: 1063-1072 (2009).
[12] Harada, M., and Munemasa, A., "On the classification of self-dual \mathbb{Z}_{k}-codes," Lecture Notes in Comput. Sci., 5921: 78-90 (2009).
[13] Harada, M., and Munemasa, A., Database of Self-Dual Codes, http://www.math.is.tohoku.ac.jp/~munemasa/selfdualcodes.htm
[14] Harada, M., Munemasa, A., and Venkov, B., "Classification of ternary extremal self-dual codes of length 28," Math. Comput., 78: 1787-1796 (2009).
[15] Harada, M., and Östergård, P. R. J., "Self-dual and maximal self-orthogonal codes over \mathbb{F}_{7}," Discrete Math., 256: 471-477 (2002).
[16] Harada, M., and Östergård, P. R. J., "On the classification of self-dual codes over \mathbb{F}_{5}," Graphs Combin., 19: 203-214 (2003).
[17] Kitazume, M., and Ooi, T., "Classification of type II Z_{6}-codes of length 8," AKCE Int. J. Graphs Comb., 1: 35-40 (2004).
[18] Leon, J. S., Pless, V., and Sloane, N. J. A., "Self-dual codes over GF(5)," J. Combin. Theory Ser. A, 32: 178-194 (1982).
[19] Mallows, C. L., Pless, V., and Sloane, N. J. A., "Self-dual codes over GF(3)," SIAM J. Appl. Math., 31: 649-666 (1976).
[20] Park, Y. H., "Modular independence and generator matrices for codes over \mathbb{Z}_{m}," Des. Codes Cryptogr., 50: 147-162 (2009).
[21] Park, Y. H., "The classification of self-dual modular codes," Finite Fields Appl., 17: 442-460 (2011).
[22] Pless, V., "A classification of self-orthogonal codes over GF(2)," Discrete Math., 3: 209-246 (1972).
[23] Pless, V. S., and Tonchev, V. D., "Self-dual codes over GF(7)," IEEE Trans. Inform. Theory, 33: 723-727 (1987).
[24] Rains, E., and Sloane, N. J. A., Self-Dual Codes: Handbook of Coding Theory. In: V. S. Pless and W. C. Huffman (eds.), Elsevier, Amsterdam 1998, pp. 177-294.

[^0]: Received June 10, 2015; Accepted September 24, 2015; J-STAGE Advance published October 28, 2015
 2010 Mathematics Subject Classification: Primary 94B05.
 *Corresponding author. E-mail: mharada@m.tohoku.ac.jp

