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In this short note, we report the classification of self-dual Zk-codes of length n for k � 24 and n � 9.
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1. Introduction

Let Zk be the ring of integers modulo k, where k is a positive integer greater than 1. A Zk-code C of length n is a
Zk-submodule of Zn

k . A code C is self-dual if C ¼ C?, where the dual code C? of C is defined as C? ¼ fx 2 Zn
k j

x � y ¼ 0 for all y 2 Cg under the standard inner product x � y. Two Zk-codes C and C0 are equivalent if there exists a
monomial ð�1; 0Þ-matrix P with C0 ¼ C � P, where C � P ¼ fxP j x 2 Cg. A Type II Z2k-code was defined in [2] as a
self-dual code with the property that all Euclidean weights are divisible by 4k (see [2] for the definition of Euclidean
weights). It is known that a Type II Z2k-code of length n exists if and only if n is divisible by eight [2]. A self-dual code
which is not Type II is called Type I.

As described in [24], self-dual codes are an important class of linear codes for both theoretical and practical reasons.
It is a fundamental problem to classify self-dual codes. Much work has been done towards classifying self-dual
Zk-codes for small k and modest n (see [24]). Let nmaxðkÞ denote the maximum integer n such that self-dual Zk-codes
are classified up to length n. For k ¼ 2; 3; . . . ; 10, we list in Table 1 our present state of knowledge about nmaxðkÞ. We
also list the reference for the classification of self-dual Zk-codes of length nmaxðkÞ.

A classification method of self-dual Zk-codes based on a classification of k-frames of unimodular lattices was given
by the authors and Venkov [14]. Then, in [12], using this method, self-dual Zk-codes were classified for k ¼
4; 6; 8; 9; 10 (see Table 1). Using the same method, in this short note, we complete the classification of self-dual codes
Zk-codes of length n for k � 24 and n � 9. All computer calculations in this short note were done by MAGMA [4].

2. Classification of self-dual Zk-codes

2.1 Method for classifications

A classification method of self-dual Zk-codes based on a classification of k-frames of unimodular lattices was given
by the authors and Venkov [14]. We describe it briefly here (see [12] and [14] for undefined terms and details).

A set f f1; . . . ; fng of n vectors f1; . . . ; fn in an n-dimensional unimodular lattice L with ð fi; fjÞ ¼ k�i; j is called a
k-frame of L, where ðx; yÞ denotes the standard inner product of Rn, and �i; j is the Kronecker delta. The following
construction of lattices from codes is called Construction A. If C is a self-dual Zk-code of length n then

Table 1. Known classification of self-dual Zk-codes.

k 2 3 4 5 6 7 8 9 10

nmaxðkÞ 40 24 19 16 12 12 12 12 10

Reference [5] [11] [12] [16] [12] [15] [12] [12] [12]
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AkðCÞ ¼
1ffiffiffi
k
p fðx1; . . . ; xnÞ 2 Zn j ðx1 mod k; . . . ; xn mod kÞ 2 Cg

is an n-dimensional unimodular lattice. Moreover, C is Type II if and only if AkðCÞ is even. Let F ¼ f f1; . . . ; fng be a
k-frame of L. Consider the mapping

�F :
1

k

Mn
i¼1

Z fi! Z
n
k

�F ðxÞ ¼ ððx; fiÞmod kÞ1�i�n:
Then Ker�F ¼

Ln
i¼1 Z fi � L, so the code C ¼ �F ðLÞ satisfies ��1

F ðCÞ ¼ L. This implies AkðCÞ ’ L, and every code C

with AkðCÞ ’ L is obtained as �F ðLÞ for some k-frame F of L, where L ’ L0 means that L and L0 are isomorphic
lattices. Moreover, every Type I (resp. Type II) Zk-code of length n can be obtained from a certain k-frame in some
n-dimensional odd (resp. even) unimodular lattice.

Let L be an n-dimensional unimodular lattice, and let F ¼ f f1; . . . ; fng, F 0 ¼ f f 01; . . . ; f 0ng be k-frames of L. Then the
self-dual codes �F ðLÞ and �F 0 ðLÞ are equivalent if and only if there exists an automorphism P of L such that
f�f1; . . . ;�fng � P ¼ f�f 01; . . . ;�f 0ng [14]. This implies that the classification of codes C satisfying AkðCÞ ’ L reduces to
finding a set of representatives of k-frames in L up to the action of the automorphism group of L.

2.2 Results

Here, we report the classification of self-dual Zk-codes of length n for k � 24 and n � 9. Our classification method of
self-dual Zk-codes of length n requires a classification of n-dimensional unimodular lattices. For n � 7, any
n-dimensional unimodular lattice is isomorphic to Zn. Up to isomorphism, there are two 8-dimensional unimodular
lattices, one of which is the even unimodular lattice denoted by E8 and the other is Z8. Also, up to isomorphism, there
are two 9-dimensional unimodular lattices, Z9 and E8 � Z (see [7, p. 49]).

In Table 2, we list the number of inequivalent self-dual Zk-codes C with AkðCÞ ’ L for k 2 f2; 3; . . . ; 24g and
L 2 fZi j i ¼ 1; 2; . . . ; 9g [ fE8;E8 � Zg. Note that all self-dual Zk-codes C with AkðCÞ ’ E8 are Type II. A
classification of self-dual Zk-codes of lengths n � 9 was known for some k. In this case, we list the references in
the last columns of the table. Generator matrices can be obtained electronically from [13]. All the zero entries in
Table 2 are explained as follows. For k 2 f3; 6; 7; 11; 12; 14; 15; 19; 21; 22; 23; 24g, if there is a self-dual Zk-code of
length n, then n is divisible by four (see [9, Corollary 2.2]). For k 2 f2; 5; 8; 10; 13; 17; 18; 20g, if there is a self-dual
Zk-code of length n, then n is even (see [8, Theorem 4.2], [9, Corollary 2.2]). If k is a square, then there is a self-dual
Zk-code for every length (see [6], [8]). If a self-dual Zk-code is Type II, then k is even.

Table 2. Classification of self-dual Zk-codes of lengths n � 9.

k Z Z
2

Z
3

Z
4

Z
5

Z
6

Z
7

Z
8 E8 Z

9 E8 � Z Reference

2 0 1 0 1 0 1 0 1 1 0 0 [22]

3 0 0 0 1 0 0 0 1 0 0 0 [19]

4 1 1 1 2 2 3 4 7 4 7 4 [6, 10]

5 0 1 0 1 0 2 0 3 0 0 0 [18]

6 0 0 0 1 0 0 0 3 2 0 0 [9, 12, 17, 20]

7 0 0 0 1 0 0 0 4 0 0 0 [23]

8 0 1 0 1 0 3 0 20 9 0 0 [8, 12]

9 1 1 2 3 3 6 9 16 0 28 7 [1, 12]

10 0 1 0 2 0 5 0 16 11 0 0 [12]

11 0 0 0 1 0 0 0 8 0 0 0 [3]

12 0 0 0 2 0 0 0 73 22 0 0

13 0 1 0 2 0 5 0 21 0 0 0 [3]

14 0 0 0 1 0 0 0 27 18 0 0

15 0 0 0 2 0 0 0 51 0 0 0

16 1 1 1 2 3 7 23 295 63 697 141

17 0 1 0 2 0 6 0 47 0 0 0 [3]

18 0 1 0 4 0 12 0 178 69 0 0

19 0 0 0 2 0 0 0 57 0 0 0

20 0 1 0 2 0 17 0 725 176 0 0

21 0 0 0 3 0 0 0 208 0 0 0

22 0 0 0 2 0 0 0 166 75 0 0

23 0 0 0 1 0 0 0 120 0 0 0

24 0 0 0 1 0 0 0 3690 456 0 0
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2.3 Remark on length 4

A classification of self-dual Zk-codes of length 4 was given in [3] for k ¼ 19; 23, and in [21] for prime k � 100. We
note that the definition of equivalence employed in [21] is different from our definition. Let N4ðkÞ denote the number of
inequivalent self-dual Zk-codes of length 4. We give in Table 3 the numbers N4ðkÞ for integers k with 25 � k � 200.
We remark that the classification can be extended to k ¼ 1000. However, in order to save space, we do not list the
result.

Let s1; s2; . . . ; su be positive integers. An orthogonal design of order n and of type ðs1; s2; . . . ; suÞ, denoted
ODðn; s1; s2; . . . ; suÞ, on the commuting variables x1; x2; . . . ; xu is an n	 n matrix A with entries from
f0;�x1;�x2; . . . ;�xug such that

AAT ¼
Xu
i¼1

six
2
i

 !
In;

where AT denotes the transpose of A and In is the identity matrix of order n. The following matrix

Mðx1; x2; x3; x4Þ ¼

x1 x2 x3 x4

�x2 x1 �x4 x3

�x3 x4 x1 �x2

�x4 �x3 x2 x1

0
BBBB@

1
CCCCA

is well known as an ODð4; 1; 1; 1; 1Þ. From Lagrange’s theorem on sums of squares, for each positive integer k, the
matrix M gives a k-frame of Z4. However, there are k-frames which are not obtained in this way. Indeed, if k is a
square, then a k-frame can be obtained from a k-frame of Z3, for example,

Table 3. Classification of self-dual Zk-codes of length 4 (25 � k � 200).

k N4ðkÞ k N4ðkÞ k N4ðkÞ k N4ðkÞ k N4ðkÞ k N4ðkÞ

25 5 55 5 85 10 115 9 145 14 175 20

26 3 56 1 86 6 116 5 146 11 176 2

27 4 57 7 87 7 117 15 147 18 177 14

28 3 58 5 88 2 118 8 148 8 178 13

29 2 59 3 89 5 119 8 149 7 179 8

30 5 60 5 90 19 120 5 150 30 180 19

31 2 61 4 91 9 121 9 151 7 181 9

32 1 62 4 92 3 122 9 152 3 182 19

33 4 63 8 93 8 123 11 153 20 183 15

34 4 64 2 94 6 124 6 154 15 184 3

35 3 65 8 95 8 125 13 155 12 185 17

36 6 66 9 96 1 126 20 156 14 186 20

37 3 67 4 97 6 127 6 157 8 187 14

38 3 68 4 98 10 128 1 158 10 188 6

39 5 69 5 99 13 129 12 159 12 189 26

40 2 70 9 100 12 130 21 160 2 190 23

41 3 71 3 101 5 131 6 161 10 191 8

42 5 72 4 102 14 132 9 162 27 192 2

43 3 73 5 103 5 133 11 163 8 193 10

44 2 74 6 104 3 134 9 164 7 194 14

45 7 75 11 105 16 135 22 165 25 195 31

46 3 76 5 106 8 136 4 166 11 196 16

47 2 77 5 107 5 137 7 167 7 197 9

48 2 78 10 108 9 138 15 168 5 198 33

49 6 79 4 109 6 139 7 169 15 199 9

50 10 80 2 110 14 140 9 170 26 200 10

51 6 81 12 111 10 141 10 171 21

52 5 82 7 112 3 142 9 172 8

53 3 83 4 113 6 143 10 173 8

54 8 84 9 114 14 144 6 174 20
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F 9 ¼ fð1; 2; 2; 0Þ; ð�2;�1; 2; 0Þ; ð�2; 2;�1; 0Þ; ð0; 0; 0; 3Þg
is a 9-frame. Although the following matrix

Nðx1; x2; x3; x4Þ ¼

x1 x2 x3 x4

�x2 x1 �x4 x3

x4 �x3 x1 x2

x3 x4 �x2 x1

0
BBB@

1
CCCA

is not an orthogonal design, if x1x3 þ x1x4 � x2x3 þ x2x4 ¼ 0 then

Nðx1; x2; x3; x4ÞNðx1; x2; x3; x4ÞT ¼
X4

i¼1

x2
i

 !
I4:

A 15-frame F 15 is obtained from Nð3; 1; 2;�1Þ. We also found the following 21-frame F 21:

F 21 ¼ fð4; 1; 0; 2Þ; ð0;�4; 1; 2Þ; ð1; 0; 4;�2Þ; ð�2; 2; 2; 3Þg:

Note that N4ð9Þ ¼ 3, N4ð15Þ ¼ 2 and N4ð21Þ ¼ 3. The two other 9-frames are obtained from Mð3; 0; 0; 0Þ and
Mð2; 2; 1; 0Þ. The other 15-frame is obtained from Mð3; 2; 1; 1Þ. The two other 21-frames are obtained from Mð0; 1; 2; 4Þ
and Mð2; 2; 2; 3Þ.

2.4 Remark on length 8

Let N8;Ið2kÞ (resp. N8;IIð2kÞ) be the number of inequivalent Type I (resp. Type II) Z2k-codes of length 8. From
Table 2, we see N8;Ið2Þ ¼ N8;IIð2Þ and N8;Ið2kÞ > N8;IIð2kÞ (k ¼ 2; 3; . . . ; 12). We conjecture that N8;Ið2kÞ > N8;IIð2kÞ
for all integers k with k 
 2.
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