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Generalization of Knuth’s Formula for the Number
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We take an elementary approach to derive a generalization of Knuth’s formula using Lassalle’s explicit formula.
In particular, we give a formula for the Kostka numbers of a shape u F n and weight (m, 1"~") for m = 3,4.
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1. Introduction

Throughout this paper, n will denote a positive integer. We write u - n if p is a partition of n, that is, a non-
increasing sequence @ = (i1, 1o, ..., Mg) of positive integers such that || = Zle u; = n. We say that k is the height
of u and denote it by A(i). We denote by D,, the Young diagram of p. If 4 = (4, 42,...,4,) Fmand D; C D, then
the skew shape /A is obtained by removing from D, all the boxes belonging to D,.

Let u,A Fn and v m < n. A semistandard Young tableau (SSYT) of shape p and weight A is a filling of the
Young diagram D,, with the numbers 1,2,...,k(1) in such a way that

(i) i occupies 4; boxes, for i = 1,2,...,h(1),

(ii) the numbers are strictly increasing down the columns and weakly increasing along the rows.

The Kostka number K(u, A1) is the number of SSYTs of shape 1 and weight A. In particular, if 2 = (1") then such a
tableau is called a standard Young tableau (SYT) of shape u, and for a skew shape u/v and weight (1"~™) such a
tableau is called a skew SYT of skew shape 11/v. We denote by f*/” the number of skew SYTs of skew shape s/ v.
Obviously, if 4 = (m,1"™") = n and m < ,, then for all SSYTs of shape . and weight 4, a box (1, j) € D,, is filled by
1 for 1 <j<m,soK(u,(@m,1"™) = f"/(’"). Naturally, if v = ¢ then f* is the number of SYTs of shape ©. We can
easily compute f* using the hook formula (see [4]), but the problem of computing Kostka numbers is in general
difficult (see [8]). There is a recurrence formula for Kostka numbers (see [6] and [7]), but we have no explicit formula
for Kostka numbers.

For z € C, the falling factorial is defined by [z],=z(z—1)---(z—n+1)= n!(;;), and [z]p=1. Let u=
(i1, U2, ..., ux) E nand ' be the conjugate of p. Knuth [5,p. 67, Exercise 19] shows:

-G (50 ()0

In fact, we can also compute f*/* using [1, p. 310], [3, Theorem] and [9, Corollary 7.16.3], but this requires evaluation
of determinants and knowledge of Schur functions. If we compute 4 = (2) using [9, Corollary 7.16.3], then we get the

following:
(& Wi : n
JAC) — (i —
=, (;(( 2) e D) i <2>> ?

Since the following equation is well known (see [7, (1.6)], also see Proposition 6 for a generalization):
k I
. K
Zm(z—n:Z( f), 3)
i=1 isT\ 2
we have (1). As previously stated, since K(u, (m, 1)) = f*/™ we know the value of K(u, (2, 1"72)) from (1), so we

are interested in the extent to which (1) can be generalized to an arbitrary positive integer m. In fact, if 1 = (3) then we
get the following using [9, Corollary 7.16.3]:

Received October 26, 2015; Accepted February 25, 2016; J-STAGE Advance published April 8, 2016
2010 Mathematics Subject Classifications. 05A15, 05A19, 05E10, 20C30.
*Corresponding author. E-mail: minwon@ims.is.tohoku.ac.jp


http://dx.doi.org/10.4036/iis.2016.R.02

102 NA

1O = [% (Zk;‘(ui(t— b+ (2)) “”_Z)Zk,:((l;) — i 1)))
G S0 ()

The proof of (4) using Lassalle’s explicit formula for characters will be given in Section 4.
Let [ be a nonnegative integer. Let C(n) = {j — i | (i, j) € D,,} be the multiset of contents of the partition x, and

plCwl= Y (=i
(@i.))eDy

be the /th power sum symmetric function evaluated at the contents of w. In this paper, we take an elementary approach
to derive a formula for /™ using [2, Section 5.3] and p;[C(w)].

This paper is organized as follows. After giving preliminaries in Section 2, we prove that p;[C(u)] can be written as
a linear combination of ¢, in Section 3. We give an expression for f*/¢" in terms of ¢}, for m <4 in Section 4.
Finally, we prove a generalization of (3) in Section 5.

2. Preliminaries

Throughout this section, 4, [, r and t be nonnegative integers. We denote by S(n, k) the Stirling numbers of the second
kind. First of all, we define

Cr,t) =t!S(r+ 1,t+ 1).

Then
Cr,t)=t!Sr+1,t+1)
=t1(S(r,t) + (t 4+ D)S(r,t + 1))
=tCr—1,t— 1D+ @+ DHCHr —1,1), (®))
since S(r + 1,1+ 1) = S(r,t) + (¢t + DS(r, t + 1).
Set
@i(h,r,t) = (2)@01, rC( — h,t). (6)
Clearly,
@i(h,r, 1) = < I h)e(l —h,t)C(h, 1)
=@l — h,t,7). @)
We define

t
RI(t) = Z il
i=1
Lemma 1. We have
t
Rip1(t) = (t + DR(1) = Y Ry(i).
i=1
Proof. We have

C+DRO=0+DY 1
i=1

Yy
i=1

i=1 j=1

=R () + Y Ri(i). O
i=1

Lemma 2. We have
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1
R/(t) = Zcu,n(ii 1).
i=0

Proof. Setting n = g = 0 in [2, Proposition 5.1.2]. We have

2()- (50 ®

We prove the statement by induction on [. If / = 0, then the statement holds since C(0,0) = 1. Assume that the
statement holds for / — 1. Then

Ri(t) = (t+ DR l(r)—ZRl () (by Lemma 1)

—<r+1>Zea ( izea—m( )

j=1 i=0

Hez Lo(t ! by (8
) 2 (—,z)(l.+2> (by (8))

-1

= Z(i +2)C(d —1,i)
i=0

-1
:Z(i—i—l)@(l 1,1)(
l:1 (

= Z(z+ DE(I —1,i)

i=0
l =1 t
=Zz@(l—1,z ( ) Zo(l+1)e(l_1’l)<i+l>

i=1

-1

ot
+ (l+l)(?(l—l,l)<i+l)

=

[=)

1
= ;(i@(l— Li— D+ G+ DHed - l,i))<i_i 1)

! t
= ; e, l)(i N 1) (by (5)). O

Lemma 3. For z € C, we have
l
z—1
= Zea,o( _ )
i=0 !
Proof. From [2,p. 211, (4.65)], we have

l
Z=> Sz
i=0

SO

1
2= Sl
i=0
!
= SUialz = 11y
i=0
1
=D SUdlz— i@ =i+
i=0
! l
=Y Sz — 10+ Y iSAilz— 11
i=0 i=1
1 -1
=Y S(Lilz— 1+ Y i+ DSLi+ Dlz—1];
i=0 i=0

i
=Y (SAi)+ (i + DSLi+ )z — 1];
i=0
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SU+1,i+ D[z — 1],

z—1
!S(l+1,i+1)( ) )
0 l

=Y e z)(z_l). O
i=0 !

Il
MN

~ |
S

~

Let u, A - n. We denote by x*(A) the value of the character of the Specht module S* evaluated at a permutation 7
belonging to the conjugacy class of type A. From [2, Example 5.3.3], we have

X2, 1) = f—2p1[C(u)]
[n]>

f n
”’ 3 ln )= _3( C B < ))’
( )= il p2AC(w)] )

X417 = f—4(p3[C(M)] — @2n=3)pi[CGu)D,

[nl4
X517 = [f—]5(174[C(M)] (3n — 10)pa[C()] — 2p1 [C())* + 5(;1) - 3(;))
5
x"(6,1"7%) = [f—]ﬁ(ps[c(ﬂ)] + (25 — 4n)ps[C()] + 2(3n — H)(n — S)p1[C(w)])
6
i 36p1[C()]p2[C(w)]- )
[nle

Remark 4. In [2,Example 5.3. 3] the coefficient of d3(4) (in this paper, we denote it by pg[C(,u)]) in the character
value X6 116 is 24(7 — n). Since C6 and c7 are incorrect 1n [2, p. 251], the value of the character } X6 116 is also incorrect.
In fact, the coefficient of d3(1) in the character value X6 1n—s 18 6(25 — 4n), as given in (9).

We obtain [2, Example 5.3.8]:

x(2,2,1"% = [f]4(171[c(l/«)] = 3pa2[C(w)] +2(2))- (10)
4

In general, for = n and A = m < n, the character x*(4,1"™™) can be expressed as a polynomial of c¥(¢) using
Lassalle’s explicit formula [2, Theorem 5.3.11].

3. plC(w)] and g7,

Let u = (g, Lo, -.., 1ug) F 1, and let r, t be nonnegative integers. We define

A=) =C0) w

Observe that if » = ¢ then

9., =0, (12)

and
a5 =4} (13)
9ri = 41, (14)

Proposition 5. Let u = (i1, w2,..., ) = n and | be a nonnegative integer. Then
2+1-h

Pt [C()] = ZZ Z (=1 par41(h, 7, 0,
=0 r=0 r=
-1 h 2l—h l ]
pulCuOI =Y "> (=D 'pu(h, 1.0, + 5 ( DY Y ol r g
h=0 r=0 =0 r=0 =0

Proof. By the definition of p;[C(u)], we get the following:
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PLCG)] = Z Z(; — i

7 h I— o Wi i—1
=Z ZZ( 1 ( )G(h,r)@(l—h,t)<r+l>< t >

k ; i—1
=2 ZZ(—l)I‘hmh,r,n(V‘i 1)(’t ) (by (6)).

i=1 h=0 r=0 t=0

where the fourth equality follows from Lemma 2 and Lemma 3. Thus

2041 h 2l+1-h i—1
p21+1[C(u)]—ZZZ Yo (= h€021+1(hrt)< )( t )

i=1 h=0 r=0 =0
1 h 214+1-h

SRR ()

i=1 h=0 r=0
k 20+1 h 2l+1—h . N l—l
DIPIIDNC gom(h,r,n( )( )
i=1 h=I[+1 r=0 =0

214+1-h

ziii 3 -1 ml(h”)( )( 1)

k ! h 214+1-h 1
+Y DD §021+1(h"f)< )( )
i=1 h=0 r=0 =0
! h 2l+1-h
=3 > (Douhrn
h=0 r=0 =0
20200
—\t+1 r \r+1 t
! h 2l1+1—-h
=0 > Vounhrog,,
h=0 r=0 =0

where the third equality can be shown as follows:

2041 204-1—h i1
> Z > gy rt)( )( )

h=l4+1r=0 =0

2141—-h h
Wi i—1
—Z Z Z(—l)"wy+l(2l+1—h,r,t>< ’ )( )
r= =0 r+ 1
I 21+1-h h
h Mi
=YY > (=ounht, r)( )( ) (by (7))
h=0 r=0 =0 r+1
] h 214+1-h
\ i i—1
=33 (—1)]§021+1(h,r,t)< )( )
h=0 r=0 =0 r+1
Similarly, we have
h 2l—h
le[C(M)]—ZZ (—1'oulh,r, 0},
=0 r=0 =0

~

i =1
(— (i, r, r)( o )(’ )
=1 =0 1=0 r+1 t

105



106 NA

-1 h 2l-h
=2 2 D _(V'outhrgf + 5 L 1)’22%(1 r0q),
h=0 r=0 =0 r=0 =0

where the second equality can be shown as follows:

>33 (" )()

i=1 r=0 t=

1 RSN i—1
=5( 1)2 to%’(l”)( 1)( ) )

i=1 r=0

i=1 r=0 =0
1 ]
( D' ol ), m
r=0 =0

By Proposition 5, we have

L
polC(n)] = 5‘]0,0 =n,
pilC()] =g + 41

=49 (by (12))
p2lCGw)] = 2g5, + 2q5, — a1 — 474
= q0.1 + 245, — 41> (by (13))
p3lC()] = =247 + 645 + 6430 — 395, — g1, — 645,
291_,0+6612_,o+693_,o—6612_,1 (by (12) and (14)). (15)

4. Main results

For any i > 1, m;(u) = |{j | n; = i}| is the multiplicity of i in u. Set
w = [T Omiu.
i1

Let 4+ n and A = m < n. From [10, Theorem 3.1], we have

Y=Y w1 ).

v-m

If 2 = (m), then
flt/(m) ZZ X' (v, 1" m)X(m)(U)

vEm

= . (16)
vEm
We already proved that p;[C(u)] can be expressed as a linear combination of qr . (Proposition 5), so the character
value x*(4,1"™) can be written as a polynomial in qr, using Lassalle’s explicit formula [2, Theorem 5.3.11]. We
compute x*(m,1"™™) for 2 <m <4 and x*(2,2,1" 4 using (9), (10) and (15).
e f*
K@) = =2 [C(w))
(1]
fu
— 241 o>
= g, o

nzy _ J" _(n
X3, 1) = nl; 3(P2[C(M)] <2>)
M n
=l <‘Io1+2402 q-ﬂl_(z))’

K41 = [f—] 4(ps[C(w)] — 2n — 3)p1[C()])
4




Generalization of Knuth’s Formula for the Number of Skew Tableaux

L
= [f—]4((4 2n)qy 5+ 6450 + 6459 — 645 1),
x(2,2,1"% = [f—]4<pl[C(u)]2 —3pa[C(w)] +2< 2))
4
{0
[f] <(‘]10) 3‘]3:1 _6613:24‘34?:14-2(;))-

Substituting (17) into (16), we find

1 1
M = — @)+ —— (1"
22) 2(1,1)

_m
_2[n] %0 f

_ I &
L ()

1 1 1
f”/(3) - X/L(3’ 1n—3) 4+ — X}L(z’ 1n—2) R X/t(ln)
23) 22,1 2(1,1,1)

1 ( n 1
= >3 g5, + 24, —q+—< >)+—— 210+ - f"
3 [l’l]3 0,1 0,2 1,1 2 2 [ ] 1,0

n
[f] (‘101 + 245, = qi1 + (0= 2)q7 + <Z> - <;)>»

1 1 1
Y = — @+ —— X G T + —— (22,17
2(4) 23,1) 2(2,2)

1
X121+ ——— (1"
Z(2,1,1) Z(l,l,l,l)

_m
4 nly

1 - n
i o+t = ()

S ‘4((410)2 — 3451 — 640, + 347, + 2<n>)
8 [nl. : 17 P02 AT A

1 po 1
__.2 -4
+ q1,0+24f

4 [n]y
_ M _ _ - R
=l ( (n—2)(n—Tq1y+ 6930+ 6439 — 6495 + 5 (410 >
4

133 9 9
(-t (D)
o (n . )

EOC) )

We get (2) and (4) by substituting (11) into (18) and (19), respectively.

and

+

44 —2n)q; o + 695 + 6459 — 6451)

5. A generalization of a polynomial identity for a partition and its conjugate

Proposition 6. Let u be a partition of an integer. Then (' is the conjugate of u if and only if

>0 =)0

i=1

for all nonnegative integers r and t.

Proof. First, we show the “only if” part. Then

107
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w \(Jji—1
Z<V-f-jl>< t ):Z Z KI|IxJ<S Dy, |I|=r+1}

=1 JE IS L ),
[J|=t+1,
max J=j
= Z Z |{J|I><J§DM, | =1+ 1}
i=r+11<{1,2,.
|1| r+1
max /=i
k
=Y Y WimaxJ <, =141}
i=r+1 IC{1.2,....k),
[I|=r+1,
max /=i
k
=3 Y WIS L2 W =+ 1)]
i=rt1 I1C{12....k},
[H|=r+1,
max =i

Il

.
s
+ F
N—"

i=r+11<{1,2,....,k},
|I|=r+1,
max =i

-2 ()0

Next, let A be the conjugate of . Set (1) = h. Then

2

SR

(20)

Il
v
N
o
+ F
N————"
7N
~
~ |
-
N———"

Setting h(u') =1 and r = 0 in (20), we have
j—1 ! i—1
S =) @n
=1 ! i=1 4

Suppose & > [ and set t = h — 1 in (21), then 4, = 0. Similarly, suppose & <l and set t =/ — 1 in (21). Then u; =0,
and both cases are contradictions. Thus & = [.

We show that A;,_; = u;,_; for all i with 0 <i < h — 1 by induction on i. If i = 0, setting t = = — 1 in (21), then
Ay = /’L;f

Assume that the assertion holds for some i€ {0,1,...,h—2}. Let t=h—(i+2) in (21). By the inductive

hypothesis, we have
h : h :
j—1 S T
A = - .
2 ’(h—i—2> AZAMJ(h—i—Z)

h— Jj=h—i
1

Jj=h—i
Therefore, Ay = t_;_, since (,/7')) =0 for all j with 1 <j<h—j—2. Thus 2 = ' and ' is the conjugate
of u. ([l

From Proposition 6, we have

k . / .
+ i i—1 W ><J—1>
qr,f—;(r+l>( t >i;<r+l t ) @2)

By substituting (22) into (18) and (19), we get (1) and

fu/<3)=ﬁ qae +2q8, — g, + (n—2)q, + e
[y \T0 7 02 =4 PoAs

n
2
M _ n n
= s <410+2420 ‘]1,1+(”_2)41,o+<3)_<2)> (by (13))
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BT ) A5 2)
- (i(“)( “D+ 2(% >(’ ) D)

(o225 -29) () -(2)
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