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The adjacency matrix of the lexicographic product of graphs is decomposed into a sum of monotone
independent random variables in a certain product state. The adjacency matrix of the strong product of graphs
admits an expression in terms of commutative independent random variables in a product state. Their spectral
distributions are obtained by using the monotone, classical and Mellin convolutions of probability distributions.
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1. Products of Graphs

A graph G ¼ ðV ;EÞ is a pair, where V is a non-empty set of vertices and E a set of edges, i.e., a subset of unordered
pairs of distinct vertices. If fx; yg 2 E, we say that x and y are adjacent and write x � y. We deal with both finite and
infinite graphs, but always assume that a graph is locally finite, i.e., degðxÞ <1 for all vertices x 2 V . The adjacency
matrix of G, denoted by A ¼ A½G�, is a matrix with index set V � V defined by

ðAÞxy ¼
1; if x � y,

0; otherwise.

�

Given two graphs G1 ¼ ðV1;E1Þ and G2 ¼ ðV2;E2Þ there is a large variety of forming their product to obtain a larger
graph, see e.g., [4] and references cited therein. From the quantum probability viewpoint we have so far studied the
Cartesian, star, comb and free products of graphs [1, 6, 9, 10]. In this paper, being based on a similar spirit, we will
discuss the lexicographic and strong products of graphs, and derive their spectral distributions using certain concepts of
independence in quantum probability.

Definition 1.1. The lexicographic product of G1 and G2, denoted by G1 BL G2, is the graph on V ¼ V1 � V2, where
two distinct vertices ðx1; y1Þ and ðx2; y2Þ are adjacent whenever (i) x1 � x2; or (ii) x1 ¼ x2 and y1 � y2.

Lemma 1.2. Let G1 and G2 be graphs with adjacency matrices A1 and A2, respectively. Then the adjacency matrix of
the lexicographic product G1 BL G2 satisfies

A½G1 BL G2� ¼ A1 � J2 þ I1 � A2; ð1:1Þ
where J2 is the matrix with index set V2 � V2 whose entries are all one, and I1 is the identity matrix with index set
V1 � V1. In particular, the graph operation BL is associative: ðG1 BL G2Þ BL G3 ¼� G1 BL ðG2 BL G3Þ, but it is not
commutative.

The proof is straightforward by definition and is omitted. The Cartesian product of G1 and G2, denoted by G1 �C G2,
is the graph on V ¼ V1 � V2, where two distinct vertices ðx1; y1Þ and ðx2; y2Þ are adjacent whenever (i) x1 ¼ x2 and
y1 � y2; or (ii) x1 � x2 and y1 ¼ y2. The adjacency matrix of G1 �C G2 is given by

A½G1 �C G2� ¼ A1 � I2 þ I1 � A2: ð1:2Þ

The Cartesian product is associative and commutative. By definition, G1 �C G2 is a subgraph of G1 BL G2, which is
viewed also from the adjacency matrices ð1:1Þ and ð1:2Þ.

Definition 1.3. The strong product of G1 and G2, denoted by G1 �S G2, is the graph on V ¼ V1 � V2, where two
distinct vertices ðx1; y1Þ and ðx2; y2Þ are adjacent whenever (i) x1 ¼ x2 or x1 � x2; and (ii) y1 ¼ y2 or y1 � y2.
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Lemma 1.4. Let G1 and G2 be graphs with adjacency matrices A1 and A2, respectively. Then the adjacency matrix of
the strong product G1 �S G2 satisfies

A½G1 �S G2� ¼ A1 � I2 þ I1 � A2 þ A1 � A2: ð1:3Þ

The proof is obvious. In the recent paper [7] we studied the spectral distribution of the Kronecker product G1 �K G2,
which is the graph on V ¼ V1 � V2, where two distinct vertices ðx1; y1Þ and ðx2; y2Þ are adjacent whenever x1 � x2 and
y1 � y2. Then, the adjacency matrix is given by

A½G1 �K G2� ¼ A1 � A2: ð1:4Þ

It is noted that the Kronecker product is a subgraph of the distance-2 graph of the Cartesian product G1 �C G2.
There are quite a few concepts of ‘‘graph product’’ and the terminologies have not been unified in literatures. Our

definitions are mostly in accordance with those in the handbook [4]. The Kronecker product is called conjunction in
[2], the cardinal product in [3], the direct product in [4], and the strong product in [8].

2. Adjacency Matrices As Algebraic Random Variables

Let G be a (locally finite) graph and A the adjacency matrix. The adjacency algebra of G is the �-algebra generated
by A and I ¼ A0 (identity matrix), and is denoted by AðGÞ. Equipped with a state, AðGÞ becomes an algebraic
probability space and the adjacency matrix A is regarded as a real algebraic random variable, where a state means a
linear function ’ : AðGÞ ! C satisfying ’ða�aÞ � 0 and ’ðIÞ ¼ 1. Then it is well known (see e.g., [6, 10]) that there
exists a probability distribution �, called the spectral distribution of A in the state ’, such that

’ðAmÞ ¼
Z þ1
�1

xm�ðdxÞ; m � 0: ð2:1Þ

The left-hand side is called the mth moment of A in the state ’, while the right-hand side is the usual mth moment of a
probability distribution �. Note that the spectral distribution � is not necessarily determined uniquely by ð2:1Þ due to
the famous indeterminate moment problem, but it is unique if supfdegðxÞ; x 2 Vg <1.

Let CðVÞ be the space of all C-valued functions on V . A matrix T with index set V � V acts on CðVÞ by means of
usual matrix multiplication:

T f ðxÞ ¼
X
y2V
ðTÞxy f ðyÞ;

whenever the right-hand side converges absolutely. It is convenient to define the ‘‘inner product’’ of f ; g 2 CðVÞ by

h f ; gi ¼
X
x2V

f ðxÞgðxÞ;

whenever the right-hand side converges absolutely. With each x 2 V we define ex 2 CðVÞ by exðyÞ ¼ �xy. Then we have
hex; eyi ¼ �xy and ðTÞxy ¼ hex; Teyi.

A state ’ on AðGÞ is called a vector state if it is of the form ’ðaÞ ¼ h�; a�i, where � 2 CðVÞ with h�; �i ¼ 1. In
particular, the vacuum state at a vertex o 2 V is defined by

haio ¼ heo; aeoi ¼ ðaÞoo; a 2 AðGÞ:

If a graph G is finite, the normalized trace is defined by

’trðaÞ ¼
1

jV j
TrðaÞ ¼

1

jV j

X
x2V
ðaÞxx ¼

1

jV j

X
x2V
hex; aexi; a 2 AðGÞ:

We are also interested in the vector state with state vector given by

 ¼
1ffiffiffiffiffiffiffi
jV j
p

X
x2V

ex:

In fact, slightly abusing symbols, we see easily that

 ðaÞ ¼ h ; a i ¼
1

jVj

X
x;y2V
hex; aeyi ¼

1

jV j

X
x;y2V
ðaÞxy; a 2 AðGÞ: ð2:2Þ

It is noteworthy that the moments ’ðAmÞ are related to counting walks in the graph G. Let Wmðx; y;GÞ denote the
number of m-step walks from a vertex x to another y in a graph G. As is easily verified by definition, we have

Wmðx; y;GÞ ¼ ðAmÞxy ¼ hex;Ameyi; m � 0:

Therefore, hAmio coincides with the number of m-step walks from a fixed vertex o 2 V to itself. Moreover, ’trðAmÞ is
the average number of m-step walks from a vertex to itself (the average is taken over all vertices). Let Wmðx; �;GÞ
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denote the number of m-step walks starting from x, and �Wm the average of Wmðx; �;GÞ over all vertices x 2 V . Then we
have

�Wm ¼
1

jVj

X
x2V

Wmðx; �;GÞ ¼
1

jV j

X
x;y2V

Wmðx; y;GÞ ¼
1

jV j

X
x;y2V
hex;Ameyi ¼ h ;Am i ¼  ðAmÞ:

3. Lexicographic Products

Theorem 3.1. Let G ¼ G1 BL G2 be the lexicographic product of two graphs G1 and G2, where the latter is assumed
to be finite. Then the adjacency matrix A ¼ A½G1 BL G2� is expressed as in ð1:1Þ and the right-hand side is a sum of
monotone independent random variables in the product state ’�  , where ’ is an arbitrary state on AðG1Þ and  is
the vector state on AðG2Þ defined as in ð2:2Þ.

Proof. Set T1 ¼ A1 � J2 and T2 ¼ I1 � A2. It is sufficient to show the following factorization property:

’�  ð	 	 	T�1 T
�
2 T

�
1 	 	 	Þ ¼ ’�  ðT

�
2 Þ 	 ’�  ð	 	 	 T

�þ�
1 	 	 	Þ; �; �; � � 1:

The verification is straightforward from definition. In fact, since J2 is a constant multiple of a rank-one projection such
that J2 ¼ jV2j , the argument is similar to the case of comb products [1, 6]. �

Corollary 3.2. Notations and assumptions being as in Theorem 3.1, let �1 and �2 be the spectral distributions of A1

in ’ and that of A2 in  , respectively. Let � be the spectral distribution of A ¼ A½G1 BL G2� in ’�  . Then
� ¼ ðD�1Þ B �2, where D�1 is the dilation defined by D�1ðdxÞ ¼ �1ðjV2j�1dxÞ and B is the monotone convolution.

Proof. Since Jm2 ¼ jV2jm�1J2 we have

’�  ððA1 � J2ÞmÞ ¼ ’ðAm
1 Þ ðJ

m
2 Þ ¼ ’ðA

m
1 ÞjV2jm�1 ðJ2Þ ¼ ’ðAm

1 ÞjV2jm�1 	 jV2j ¼ jV2jm’ðAm
1 Þ; m � 0:

Hence the spectral distribution of A1 � J2 in the product state ’�  is D�1. On the other hand, the spectral distribution
of I1 � A2 in the product state ’�  is �2. Since A ¼ A1 � J2 þ I1 � A2 is a sum of monotone independent random
variables, the spectral distribution of A is given by the monotone convolution of D�1 and �2. �

For explicit calculation of the monotone convolution � ¼ �1 B �2 we may employ Muraki’s formula (see e.g., [5]).
For a probability distribution � on R the Stieltjes transform and the reciprocal Stieltjes transform are defined by

G�ðzÞ ¼
Z
R

�ðdxÞ
z� x

; H�ðzÞ ¼
1

G�ðzÞ
;

respectively. Then, for � ¼ �1 B �2 we have

H�ðzÞ ¼ H�1
ðH�2
ðzÞÞ; Im z > 0:

As a simple consequence, for the point masses we have �a B �b ¼ �aþb for a; b 2 R. We should remind that the
monotone convolution is not commutative, namely, �1 B �2 does not coincide with �2 B �1 in general.

Example 3.3. Let G ¼ Kn be the complete graph on n vertices and A the adjacency matrix. The spectral distribution
of A in the state  defined as in ð2:2Þ is the point mass �n�1, since we have  ðAmÞ ¼ �Wm ¼ ðn� 1Þm for m � 0. Now let
G1 ¼ Km and G2 ¼ Kn. It follows from Corollary 3.2 that the spectral distribution of A ¼ A½Km BL Kn� in the product
state  1 �  2 is given by the monotone convolution:

ðD�m�1Þ B �n�1 ¼ �nðm�1Þ B �n�1 ¼ �nðm�1Þþðn�1Þ ¼ �mn�1: ð3:1Þ

On the other hand, we see easily that Km BL Kn ¼� Kmn (hence we meet an exceptional case where
Km BL Kn ¼� Kn BL Km). Moreover, the product state  1 �  2 coincides with the state  similarly defined for Kmn.
Hence the spectral distribution of A ¼ A½Kmn� in  is the point mass �mn�1, which, of course, coincides with ð3:1Þ.

4. Strong Products

For two probability distributions �1 and �2 on R, the (classical) convolution �1 � �2 is defined byZ
R

f ðzÞ�1 � �2ðdzÞ ¼
Z
R

Z
R

f ðxþ yÞ�1ðdxÞ�2ðdyÞ; f 2 CcðRÞ;

where CcðRÞ stands for the space of continuous functions on R with compact supports. It is apparent that �a � �b ¼ �aþb
for a; b 2 R. Similarly, the Mellin convolution �1 �M �2 is defined by
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Z
R

f ðzÞ�1 �M �2ðdzÞ ¼
Z
R

Z
R

f ðxyÞ�1ðdxÞ�2ðdyÞ; f 2 CcðRÞ:

The above definition is a natural extension of the standard one for the Mellin convolution of probability distributions
supported by the half line ½0;1Þ. We see immediately that �a �M �b ¼ �ab for a; b 2 R.

Theorem 4.1. Let G ¼ G1 �S G2 be the strong product of two graphs G1 and G2. Let �i be the spectral distribution
of the adjacency matrix Ai of Gi in ’i for i ¼ 1; 2. Then, the spectral distribution � of A ¼ A½G1 �S G2� in ’1 � ’2 is
given by � ¼ S�1ðS�1 �M S�2Þ, where S is the shift defined by S�ðdxÞ ¼ �ðdx� 1Þ.

Proof. Since Aþ I1 � I2 ¼ ðA1 þ I1Þ � ðA2 þ I2Þ, we see that S� is the Mellin convolution of S�1 and S�2. �

Example 4.2. We keep the same notations and assumptions as in Example 3.3. We apply Theorem 4.1 to obtain

S�1ðS�m�1 �M S�n�1Þ ¼ S�1ð�m �M �nÞ ¼ S�1�mn ¼ �mn�1: ð4:1Þ

On the other hand, since Km �S Kn ¼� Kmn, which is easily verified by definition, the spectral distribution of A ¼ A½Kmn�
in  is the point mass �mn�1, which coincides with ð4:1Þ.
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