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Abstract 

Accurate modeling and precise estimation of the term structure of interest rate are of crucial 

importance in many areas of finance and macroeconomics as it is the most important factor in the 

capital market and probably the economy. This study compares the in-sample fit and 

out-of-sample forecast accuracy of the CIR and Nelson-Siegel models. For the in-sample fit, 

there is a significant lack of information on the short-term CIR model. The CIR model should 

also be considered too poor to describe the term structure in a simulation based context. It 

generates a downward slope average yield curve. Contrary to CIR model, Nelson-Siegel model is 

not only compatible to fit attractively the yield curve but also accurately forecast the future yield 

for various maturities. Furthermore, the non-linear version of the Nelson-Siegel model 

outperforms the linearized one. In a simulation based context the Nelson-Siegel model is capable 

to replicate most of the stylized facts of the Japanese market yield curve. Therefore, it turns out 

that the Nelson-Siegel model (non-linear version) could be a good candidate among various 

alternatives to study the evolution of the yield curve in Japanese market.  

 

Key Words: Non-linear Least Square, Simulation, Maximum Likelihood, In-sample fit, 

Forecasting, Yield Curve. 
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1. Introduction 

Nothing in economy is watched much closer on a minute by minute basis than the yield curve. The 

central banks around the world try to manage it and everyone tries to forecast it. Its shape is a key 

to the profitability of many businesses and investment strategies. Equally important is the ability 

of the model to forecast the future term structure as it can be interpreted as a predictor of the 

future state of economy.
1
 Therefore, accurate modeling, estimation and precise forecasting of the 

term structure of interest rate are of crucial importance in many areas of finance and 

macroeconomics.  

Although the prices of zero-coupon bonds can be directly used to construct the term structure, 

however, due to the limited available maturity spectrum and lack of market liquidity of the 

zero-coupon bonds, it is essential to estimate the yields based on the observed coupon-bearing 

bond prices. Therefore, several term structure models have been developed in the course of time to 

plot the yield curve. A model that forms the basis of many other term structure models is the 

Vasicek (1977) model. The innovative feature of the Vasicek (1977) is that it models the interest 

rate as a mean reversion process. A famous extension to the Vasicek model is the 

Cox-Ingersoll-Ross (1985) model, which aims to cope with some of the drawbacks of the Vasicek 

model. The Cox et al. (1985) model describes the evolution of the short rates and distills the entire 

term structure by only one stochastic variable. Other famous extensions are the Vasicek and Fong 

(1982), Hull and White (1990) and Black et al. (1990) models. 

However, more positive results have emerged recently based on the framework of Nelson and 

Siegel (1987). Originally intended to describe the cross sectional aspects of the yield curves, the 

Nelson-Siegel model imposes a parsimonious three-factor structure on the link between yields of 

different maturities, where the factors can be interpreted as level, slope and curvature. Though 

statistical in nature, the standard Nelson-Siegel model is still widely used due to its good fit of the 

observed term structure.
2
  

This chapter discusses the Cox-Ingersoll-Ross (CIR) model and the Nelson-Siegel 

exponential components framework to distill the entire term structure of zero-coupon yields. 

Being derived from dynamic stochastic general equilibrium (DSGE) specification, the CIR model 

was characterized for theoretical purposes, whereas, the motivation for the Nelson-Siegel model 

comes from the stylized facts that can be inferred from empirical analysis. The CIR model is 

compared with the Nelson-Siegel model to find out which of the two classes is appropriate for 

forecasting purposes. The comparison between the Nelson-Siegel and the CIR models will help to 

find out which of the two can appropriately represent the true characteristics of the market. We 

also compare the in-sample fit of Nelson-Siegel model for the linear and non-linear estimation 

                                                   
1 These forecasts are used by companies in their investment decisions and discounting future cash flows, consumers 

in their saving decisions, and economists in the policy decisions. 
2 For instance, De Pooter (2007) states that nine out of thirteen central banks that report their curve estimation methods 

to the Bank of International Settlements (BIS) use either the Nelson-Siegel model or its variation. Furthermore, 

Diebold and Li (2006) find that the dynamic reformulation of this model provides forecasts that outperform the 

random walk and various alternative forecasting approaches. 



3 

 

methods. 

Furthermore, we simulate the CIR and the Nelson-Siegel models to find out whether 

simulation results match the larger trends and statistics (i.e., stylized facts) of the actual interest rate 

data. In this context, we aim to understand that: 

 Which of the two classes of models well explain the entire term structure of interest rates? 

 Does non-linear estimation of Nelson-Siegel model lead to a better in-sample fit than the 

linear estimation process? 

 Does better fit imply reasonable simulation results? 

The motivation to simulate interest rates may be to examine the out-of-sample performance of the 

two classes of term structure models. An interesting reading on this topic for the Nelson-Siegel 

model is in Diebold and Li (2006), which indicates that the model produces term structure 

forecasts at both short and long horizons with encouraging results.  

The chapter contributes to the existing literature in two ways. In calibrating the multi-factor 

Nelson-Siegel model, we estimate the dynamic version of the model by employing the non-linear 

least squares estimation procedure and allow all the four parameters to vary over time.
3
 We show 

that how the non-linearized version of the model (assuming the time-varying  ) leads to a better 

in-sample fit as compared to the linearized one. Secondly, we model the four time-varying factors 

of Nelson-Siegel model to simulate the yield curve, contrary to the previous studies in which 

parameter    is fixed to a pre-specified value and they model three factors to forecast the term 

structure. Lastly, in estimating the CIR and Nelson-Siegel models, some new empirical facts will 

emerge from the Japanese market data. Of particular importance, short-term yields such as the 

three and six-month yields were essentially stuck at zero during most of the period from 2000 to 

2006. It will also be interesting to figure out that how the short rate CIR model fits the very low 

short-term interest rate to compute the entire term structure. 

We proceed as follows: in section 2 the Cox-Ingersoll-Ross (1985) model and the dynamic 

multi-factor Nelson-Siegel (1987) model are discussed. Section 3 describes the Japanese interest 

rate data and estimates the parameters of the models. We evaluate the forecasting performance of 

the two competing term structure models in section 4, while section 5 concludes the study. 

2. Term Structure Models 

The term structure of interest rates describes the relationship between interest rates and time to 

maturity. At a certain point of time for various maturities, the term structure can have different 

shapes. The curves that encounter in reality can be upward, downward sloping, flat or humped 

                                                   
3 In the earlier studies, the parameter   is pre-specified to a fixed value without estimation. For example, Diebold 

and Li (2006) argue that   is to be taken as a constant with little degradation of fit, but it greatly simplifies the 

estimation procedure. They fix   to 30 months that maximizes the loading of the curvature factor. Similarly, 

Fabozzi et al. (2005) set the shape parameter   to 3 leaving the hump located at 5.38 years, arguing for the 

computational efficiency (no iterations through   need to be performed). However, in some studies   is 

considered as time invariant unknown parameter (does not pre-specify). Such as Diebold, et al. (2006) estimate   

to be 23.3 months          . In Ullah et al. (2013), the estimated   is 71.420 implying that the loading on the 

curvature factor is maximized at a maturity of about 6 years. 
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shape. These typical shapes can be generated by a class of functions associated with the solutions 

of differential or difference equations. Cox et al. (1985) developed a general equilibrium model 

with explicit analytical expression for the equilibrium interest rate dynamics and bond prices 

using the first order stochastic differential equation (SDE). Being a general equilibrium model, it 

contains all the elements of the traditional expectation hypothesis. On the other hand, Nelson and 

Siegel (1987) introduced a model for term structure which explains 96% of the variation of the 

yield curve across maturities with the help of second order differential equation.  

For a zero-coupon bond with unit face value maturing in   periods and current 

price      , the continuously compounded yield       is                     , where   

denotes a moment in time. The instantaneous forward rate      , which is the interest rate 

contracted now and to be paid for a future investment, can be obtained from the discount function 

as            
           , where    

              .
4

 Furthermore, the relationship 

between the yield to maturity and the implied forward rates is                  
 

 
. Given 

the yield curve or forward curve, we can price any coupon bond as the sum of the present values of 

future coupon and principal payments. This important relationship between zero-coupon and 

instantaneous forward rates is a critical component of the Nelson-Siegel model. Moreover, the 

short rate is the annualized interest rate (yield) for an infinitesimally short period of time and is 

defined as                     , whereas long rate is the annualized spot rate for long 

horizon maturity, defined as                      . Based on these definitions and 

notations, in the next two sections we present the models. 

2.1. Cox-Ingersoll-Ross (CIR) Model 

Vasicek (1977) developed a one-factor model of the term structure which depends on only one 

uncertainty factor, i.e., the short rate. Vasicek defines the short rate process as:  
 

                    (1) 
 

As with the mean reverting process, the three parameters     and   are strictly positive and 

   is a Wiener process. A major drawback of the Vasicek model is that the model can produce 

negative interest rates.
5
 Cox et al. (1985) adopt a general equilibrium approach to endogenously 

determine the risk-free rate. They reformulated the Vasicek model, in order to prevent the short 

rate from becoming negative, as:
 
 

 

                       (2) 
 

The           is a drift term which represents the mean reversion and is similar to the drift 

term in the Vasicek model. The difference between the two models is the square root in the 

                                                   
4 The function                   , which relates the zero-coupon yield to the value of bond, is referred as 

discount function. 
5 If real interest rates are to be modeled, this does not necessarily have to be a big problem as real interest rates can 

be negative in reality. Nominal rates, on the contrary, will never be negative in practice. 
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second (volatility) term, which prevents the short rate from becoming negative.
6
  

Furthermore, the short rate    as in (2) follows a non-central chi-square distribution with 

       degrees of freedom, and the parameter of non-centrality    is proportional to the 

current spot rate. The probability density of the interest rate     at time    conditional on      
 

at      is given as: 
 

 
              

                     
 

 
 

 
 
         (3) 

 

where            is the parameters vector, 
 

 
  

  

               
  

         
           

         

 
  

   

  
    

 

and          is a modified Bessel function of the first kind of order  .  

Valuing the zero-coupon bond, Cox et al. (1985) show that the pricing function in the CIR 

model can be expressed as: 
 

                           (4) 

 

where 
 

 

       
       

 
 

      

                   
 

      

 (5) 

 
      

            

                   
 (6) 

           (7) 
 

The bond price in (4) is a decreasing concave function of maturity   and decreasing convex 

function of the short-term interest rate    and mean interest rate level  . Furthermore,       is 

an increasing concave (decreasing convex) function of   (the speed of adjustment parameter), if 

the short-term interest rate    is greater (less) than  . The bond price is also an increasing 

                                                   
6 When    approaches zero, the volatility term       approaches zero. In this case, the short rate will only be 

affected by the drift term, resulting the short rate to revert to the mean again. Cox et al. (1985) show that 

whenever       , the interest rate is strictly larger than zero. Furthermore, there is empirical evidence that 
whenever interest rates are high, the volatility is likely to be high as well, which justifies the volatility term in the 

CIR model. 
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concave function of the interest rate variance   .
7
  

Rewriting the expression for       in (4) and using the relation between bond pricing and 

yield to maturity, implies a function to compute the term structure of interest rate in the CIR 

model as: 
 

 
      

 

 
                          (8) 

 

with      ,        and   are as in (5), (6) and (7) respectively. 

On a time grid               with time step           , the discretized version of 

the CIR model is defined as: 
 

                               (9) 
 

with          . Various different shapes of the term structure can be computed by the CIR 

model by changing the parameters values in (8). 

2.2. Nelson-Siegel Model 

Motivation for Nelson-Siegel model comes from the expectation hypothesis. According to the 

expectation hypothesis, forward rates will behave in such a way that there is no arbitrage 

opportunity in the market. In other words, the theory suggests that implied forward rates are the 

rationally expected spot rates of the future periods. Nelson and Siegel (1987) propose that if spot 

rates are generated by a differential equation, then implied forward rates will be the solutions to 

this equation. Assuming a second-order differential equation, to describe the movements of the 

yield curve, with the assumption of real and equal roots, the solution will be the instantaneous 

implied forward rate function as: 
 

 
                 

  

  
       

 

  
     

  

  
   (10) 

 

for           and time-varying parameters vector                    
 . 

The model may be viewed as a constant plus a Laguerre function, that is, a polynomial times 

an exponential decay term, which belongs to a mathematical class of approximating functions. 

The solution for the yield as a function of maturity is: 
 

 
              

            

    

      
            

    
     

  

  
   (11) 

 

The Nelson-Siegel specification of yield in (11) can generate several shapes of the yield curve 

including upward sloping, downward sloping and (inverse) humped shape with no more than one 

                                                   
7 It is due to that larger    value indicates more uncertainty about future real production opportunities, and thus 

more uncertainty about future consumption. In such a world, risk-averse investors would value the guaranteed 

claim in a bond more highly. 
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maxima or minima. The functional form imposed on the forward interest rates as in (10) leads to 

a flexible, smooth parametric function of the term structure that is capable of capturing many of 

the typically observed shapes that the yield curve assumes over time and captures most of the 

properties of the term structure. 

The limiting path of      , as   increases, is its asymptote    ; and, when   is small, 

the limit is          .     is the asymptotic value of the spot rate function, which can be seen 

as the long-term interest rate and is assumed (required) to be positive        . Furthermore, the 

loading of     equals one (constant and independent of  ) and, therefore, the term structure at 

different maturities is affected by     equally, which justifies the interpretation of     as a level 

factor. The instantaneous short rate is given by         , which is constrained to be greater than 

zero. Furthermore,     determines the rate of convergence with which the spot rate function 

approaches its long-term trend. The slope will be negative if       and vice versa. The 

loading of     approaches to one as     and to zero as    . Therefore, the yield curve is 

primarily affected by     in the shorter run, so a change in      implies a change in the slope of 

the term structure. Therefore, it is legitimate to interpret     as the slope factor. The loading that 

comes with     starts at 0, increases, and then decays to zero. Since,     has the greater impact 

on medium-term yields and can be termed as the curvature factor, because it affects the curvature 

of the term structure. Furthermore, the parameter     determines the size and the form of the 

hump, i.e.,       results in a hump, whereas       produces a U-shape. 

Finally, the parameter    determines the maturity time at which the loading of the      is 

optimal. It also specifies the location of the hump or the U-shape on the yield curve. Therefore, 

the range of shapes the curve can take is dependent on   , it can be interpreted as a shape factor. 

The small values of    , which have rapid decay in regressors, tend to fit low maturities interest 

rates quite well and larger values of     lead to more appropriate fit of longer maturities spot 

rates. It has an interesting rule and economic interpretation as it shows a point of maturity   that 

separates the short rate from the medium/long-term rates.  

3. Parameter Calibration and Estimation 

Taking into account three dimensions–yield, maturity and time–of the data, different estimation 

methods can be used. To estimate the CIR model, one could choose to do a cross-sectional or 

time series estimation. For the Nelson-Siegel as the factors are time-dependent, one can proceed 

with cross-sectional or multivariate time series estimation. The differences between the estimates 

should be small if the employed model of the term structure is true. In this study, we estimate the 

CIR model using the time series data and the Nelson-Siegel model via the cross-sectional data for 

each observed month in the dataset. 

3.1. Data 

The data we use are monthly spot rates for zero-coupon and coupon-bearing bonds, generated 

using the pricing data of Japanese bonds and treasury bills. The standard way of measuring the 
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term structure of interest rates is by means of the spot rates on zero-coupon bonds, however due 

to limited maturity spectrum and lack of market liquidity of zero-coupon bonds, longer maturity 

rates need to be derived from coupon-bearing treasury notes and bonds. In practice, we can 

therefore not observe the entire term structure of interest rates directly, but we need to estimate it 

using approximation methods.  

We use the end-of-month price quotes (bid-ask average) for Japanese Government bonds, 

from January 2000 to December 2011, taken from the Japan Securities Dealers Association 

(JSDA) bonds files. In total, there are 144 months in the dataset. Following Fama and Bliss 

(1987) method, in the first stage, each month we calculate one day continuously compounded 

unsmoothed forward rates for the available maturities from the price data and in second stage, we 

sum the daily forward rates to generate end of month term structure of yield for all the available 

maturities. Furthermore, we pool the data into fixed maturities. Because not every month has the 

same maturities available, we linearly interpolate nearby maturities to pool into fixed quarterly 

maturities of 3, 6, 9, 12, 15, 18, 21, 24, …,300 months (100 maturities).  

 

<<Table 1>> 

<<Figure 1>> 

 

In table 1, the descriptive statistics for the zero-coupon yields is presented. It shows that the 

average yield curve is upward sloping as the mean yield is increasing with maturity. Furthermore, 

the long rates are less volatile and persistent than short rates. It also seems that the skewness has 

downward trend with the maturity. Moreover, kurtosis of the short rates is lower than those of the 

long rates. Figure 1 provides a three-dimensional plot of the Japanese yield curve data. It is 

clearly visible that during 2000 to 2006 the short rates are nearly zero and on ward from 2006 

there is an increasing trend in the yield for all the maturities. 

3.2. Calibration of the Cox-Ingersoll-Ross Model 

The parameters vector of the Cox-Ingersoll-Ross model           , as introduced in (2), is 

estimated using the time series data. To estimate the parameters vector   by maximum likelihood 

method, we use the CIR density given in (3). For   be the number of observations, e.g., the 

number of months the interest rate is observed, the likelihood function is given by:  
 

 

                    
      

 

   

 (12) 

 

for           . Moreover, maximizing the log-likelihood function is often easier than 

maximizing the likelihood function itself, we take natural logarithm on both sides in (12), 

resulting in: 
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 (13) 

 

Maximizing (13) over its parameter space yields maximum likelihood estimates   .8
 Matlab 

built-in function fminsearch is used to minimize the negative log-likelihood function to obtain   . 

However, direct implementation of the Bessel function          into Matlab causes the 

program to crash. A failure occurs because the Bessel function diverges to plus infinity on a high 

pace. To cope with this problem, scaled Bessel function [denoted by   
            ], defined 

as                      , is used. To take the scaled Bessel function into account, the 

log-likelihood function in (13) is adjusted as:
9
 

 

 

                          
 

 
    

 

 
        

                   

 

   

 (14) 

 

We use the OLS estimators as the start values of the discrete version of the CIR model (9) 

for the optimization problem defined in (14). To estimate the parameter vector  , using (2.14), 

one can use the time series data of three months, six months, one year or two years maturity 

yields. Obviously, taking different yield data implies different parameter estimates. We choose to 

calibrate the model on the two years maturity yields, for two reasons. On the one hand, the CIR 

model is a short rate model, so the time to maturity should not be too large. On the other hand, 

taking a short maturity time, say three or six months, might yield strange estimates because of the 

extremely low interest rates and high volatilities in the initial years of the data from 2000 to the 

end of 2006.
10

 Moreover, the data is on a monthly interval, the time step is set equal to 1/12.  

The results of initial estimates of OLS along with the global optimal estimates, using the 

maximum likelihood method, are depicted in the first panel of table 2. Given the initial estimates, 

the maximum likelihood estimates (MLE) in panel 1 of table 2 shows that the fitted yield curve is 

upward sloping.  

<<Table 2>> 

 

Figure 2 (upper pane) plots the average observed and the estimated yield curve. It is clearly 

visible that the CIR model plots an upward sloping yield curve like the observed one. In the 

perfect case, the two curves would match exactly. However, we observe that estimated yield is 

closer to the actual yield curve up to two years maturity and the discrepancy between the two is 

                                                   
8 Note that, as the logarithmic function is a monotonically increasing function, maximization of the likelihood 

function also maximizes the log-likelihood function. That is, the location of the maximum does not change. 
9 In (14) the term      appears because              in the scaled Bessel function should be canceled out to 

keep the log-likelihood function the same. 
10 We also tried the 3 months, 6 months, one year and 18 months short rates and the results are almost same with the 

24 months short rates results. However, the 24 months yield data fits the estimated yield curve a slightly better 

than the 3, 6, 12, and 18 months at short maturity. Estimated results are reported in appendix A. 
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the increasing function of maturity beyond two years, as the residuals curve is upward sloping. It 

may be largely due to the low interest rates from 2000 to 2006. In order to get deeper insight of 

the behavior of the yield curve during the prolonged period of zero policy rate, we also estimated 

the CIR model for the two sub-periods, i.e., sub-period 1 (January 2000 to December 2006) and 

sub-period 2 (January 2007 to December 2011). In the second panel of table 2, we provide the 

initial and MLE estimates for the two subsets of data, i.e., the zero interest rate period (2000 to 

2006) and the non-zero interest rate period (2007 to 2011). Furthermore, the estimated yield 

curves for both sub-periods are depicted in the lower two panes of figure 2. 
 

<<Figure 2>> 

The maximum likelihood estimates for the first sub-period show that the fitted yield curve is 

negatively sloped, however for the second sub-period the estimated yield curve has an upward 

slope. Furthermore, the plots of estimated yield curve for both the sub-periods in figure 2 also 

support this view. 

3.3. Estimation of the Nelson-Siegel Model 

The Nelson-Siegel model in (11) forms the basis for our estimation procedure. For estimating the 

parameters of the model, we consider the functional form as: 
 

                    (15) 
 

where       denotes the (N×1) vector of yield rates at time   for   distinct maturities,       

is (N×3) matrix of loadings and              is the error term, which accounts for whatever is 

not captured in the function       about how bonds are priced. The                 
  is the 

vector of unknown parameters. Furthermore,    is also unknown parameter. 

Contrary to the prior studies, we do not fix    to a pre-specified value, but allow it to vary 

over time and can be optimally determined in the estimation process in order to obtain a better 

in-sample fit. As the dynamic Nelson-Siegel function of spot rates results in a non-linear model, 

we employ the non-linear least squares method to estimate the model parameters     

                
 for each month  . To minimize the sum of squared zero-yield errors, the 

objective function          is given by: 
 

                         
  (16) 

 

We derive the analytical gradient           for the objective function in (16) and solve 

numerically for the optimal    .
11

 The analytical gradient of           is reported in appendix B. 

                                                   
11 The optimization problem stated in (16) is non-convex and may have multiple local optima, which increases the 

dependence of the numeric solution on the starting values. Arbitrarily choosing the start parameters possibly may 

not reach to a global optimum. This phenomena is avoided by applying the one-dimensional grid search to the 

system to estimate    (denoted as    ) and substituted in the (11) to linearize the dynamic model. Subsequently, 

OLS is employed to estimate the parameter vector    (denoted as    ). The grid search     and the OLS estimated 

           and      are used as the initial values to find the numeric solution of optimization problem defined in 
(16). 
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Moreover, following Nelson and Siegel (1987), we set    to the median value estimated in the 

non-linearized version of Nelson-Siegel model (in previous stage) and estimate it by the ordinary 

least squares (OLS) in order to make a comparison between the linearized and the non-linearized 

versions of the model. 

Applying the non-linear least squares to the yield data for each month gives us a time series 

of estimated parameters vector     and the corresponding panel of fitted yields        and 

residuals     (pricing errors). The first panel of table 3 shows the descriptive statistics of the 

estimates of the Nelson-Siegel model of the non-linear least squares method. 

The estimated vector of parameters       is highly statistically significant.
12

From the 

autocorrelations in the table 3 (panel 1) of the four factors, we can see that the       and      are 

the most persistent, and that the second factor is a bit less persistent than the first. It suggests that 

long rates are slightly more persistent than short rates. Although the lag autocorrelation is 

reasonably high, the Augmented Dickey–Fuller (1979) test for unit root suggests that all the 

estimated factors     ,    ,     and     are I(0) process and stationary at level.
13

 However,      

solely determines the long run limiting behavior of the Nelson-Siegel model. The results also 

indicate that the residuals autocorrelation is low, justifying the use of non-linear least squares 

method. The average    and residuals indicate that the average yield curve is fitted very well. 

 

<<Table 3>> 

 

Furthermore, the time series plot of the     in figure 3 shows that the optimal point 

of     loading ranges from 1.6 to 10 years. It indicates that there is a large degree of variability in 

the     over the period selected. Testing the sample with the median value of     leads to a small 

loss of accuracy of the fitted curve but there is a large variation in the     ,      and     .
14

 The 

descriptive statistic results of estimated     ,      and      for the fixed value of   (median value 

of          ), estimated by OLS, are presented in the second panel of table 3. 

The degree of loss of fit ranges from 1.4% to 5.7%. Comparing the results in panel 1 and 2 

of table 3, there is significant difference in the estimated factors of Nelson-Siegel model for the 

two estimation processes. The linearized version of model either under-estimate or over-estimate 

the actual yield curve, whereas the non-linear estimation application leads to a reasonable fit of 

the yield curve. It suggests that standardizing the parameter    to a prespecified value, not only 

reduces the degree of fit but also leads to a significant biased in the estimated parameters     , 

     and     .  

Furthermore, to empirically test whether the factors         and     are legitimately called 

                                                   
12 The p-value of individual t-statistic (not reported) is less than 0.03 in almost every period for of all the four 

factors. 
13 Based on the SIC criteria, optimal lag 3 has been selected for all the four variables in employing the augmented 

Dickey–Fuller unit-root test. The MacKinnon critical values for rejection of hypothesis of a unit root are -4.023at 

the one percent level, -3.441 at the five percent level and -3.145 at the ten percent level. 
14 The median value of     is 38.068. 
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a level, slope and curvature factors respectively, as suggested in Diebold and Li (2006), we 

construct a level, slope and curvature from the observed zero-coupon yields data and compare 

them with     ,      and      (estimated with time-varying   ) respectively. The level of the yield 

curve      is defined as the 25-year yield. We compute the slope      as the difference 

between the 25-year and three-month yield and the curvature      is worked out as two times 

the two-year yield minus the sum of the 25-year and three month zero-coupon yields. The 

pairwise correlation of empirically defined factors and estimated (model based) factors is 

                                   and                    Pairwise correlations 

between the estimated factors and the empirically defined level, slope and curvature is almost 

smaller by 0.28 points than the results of earlier empirical studies, particularly for the US and 

Canadian markets.
15

 Furthermore, to be precise, the estimated correlation and the time series plot 

in figure 3 show that     ,      and      may truly be called level, slope and curvature factors 

respectively, as the estimated factors and their empirical proxies seem to follow the same pattern. 

 

<<Figure 3>> 

 

Using the estimates of Nelson-Siegel model for both time-varying and fixed  , in figure 4, 

we plot the implied average fitted yield curves, the actual yield curve and the residuals. It seems 

that the curve fits pretty well and the two vary quite closely for time-varying  . It does, however, 

have difficulties at some dates, especially when yields are dispersed, with multiple interior 

minima and maxima. For the fixed   the discrepancy between the actual and estimated average 

yield curve is clearly visible. It under-estimates the actual yield up to 30 months maturity and 

over-estimates beyond 30 months. Similarly, the average residuals plot in the right panel of figure 

4 also supports this argument. 

 

<<Figure 4>> 

 

Furthermore, table 4 and figure 5 present the descriptive statistics and the three dimensional 

plot of the residuals of Nelson-Siegel model estimation by non-linear least squares (for the 

time-varying   ) respectively. It turns out that the fit is more appealing in most cases. Some 

months, however, especially those with multiple maxima and/or minima are not fitted very well. 

Multiple maxima and/or minima occur in the term structure of months in the mid-2005 and 

onward, which becomes apparent by the large residuals in these months. 

<<Table 4>> 

<<Figure 5>> 

                                                   
15 Diebold and Li (2006) perform a similar exercise based on zero-coupon yields generated using end-of-month price 

quotes for U.S. treasuries, from 1985:01 through 2000:12. Their estimated correlations are                 

                 and                . Similarly, Elen van (2010) used the monthly Canadian zero-coupon 

yields from 1986:01 to 2009:012 and has reported the correlations as                                    

and                 . 
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In summary, there is a significant lack of information on the short-term CIR model to fit the 

term structure of interest rate. It is not capable to fit the yield curve as the discrepancy between 

the two curves is significantly large. Contrarily, the Nelson-Siegel model provides an evolution 

of the term structure closer to reality. It distills the term structure of interest rate quite well and 

can describe the evolution and the trends of the market. Fixing the   to the median value leads to 

fit the yield curve better than the CIR model but not than the time-varying   estimation process 

(non-linear least squares) of the Nelson-Siegel model. 

4. Term Structure Forecasting  

A good approximation to yield-curve dynamics should not only fit well in-sample, but also 

produces satisfactorily out-of-sample forecasts. In this section, we simulate the interest rates to 

find out whether the simulated yields for various maturities based on the CIR and Nelson-Siegel 

models can replicate the stylized facts of the actual observed yields data. The stylized facts 

derived from the actual yields data for Japanese bonds are:  

1. The average yield curve is upward sloping and concave.  

2. Short rates are more volatile than long rates. 

3. Long rates are less persistent than short rates. 

4. Skewness has the downward trend with the maturity. 

5. Kurtosis of the short rates are lower than those of the long rates. 

4.1. Forecasting with the Cox-Ingersoll-Ross Model 

Using the parameters in panel 1 of table 2, we simulate the short rates using the discrete version 

of CIR model as in (2.9) for 10,000 times. The starting point of the short rates simulation process 

is the two-year yield at December 2011, being 0.071. Using the simulated short rates, the entire 

term structure of yield is computed by using equation (2.8), that is, we compute 10,000 matrices 

of (144×100), containing yields for all maturity times and for all months. 

Table 5 displays descriptive statistics that are of interest (e.g., mean, variance and 

autocorrelations) of the simulated yields for various maturities. This table may be compared with 

the statistical properties of actual yields in table 1 (data section). 

 

<<Table 5>> 

Summary statistics in table 5 indicate that the CIR model is not capable of replicating the 

interest rates' general trends. The CIR model generates the same skewness coefficients, the same 

kurtosis and the same autocorrelations for all maturity times. The short rates seem more volatile 

than the long rates, although the volatility is underestimated for all maturity times compared to 

the actual yields data. Moreover, the mean has a downward trend with increasing maturity. Figure 

6 shows a plot of the downward shaped average yield curve (averaged over simulation times), 

implying that the simulated yield curve is not in line with the first stylized fact. The figure also 

shows that the CIR model is capable to produce term structure's other shapes. 
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<<Figure 6>> 

One may conclude that the CIR model performs unsatisfactorily and seems not useful in the 

simulation based context. As opposed to the CIR model, the Nelson-Siegel model does not fall 

within the standard class of affine term structure models. Therefore, yields forecasts and their 

stylized facts simulated with the Nelson-Siegel model will likely be significantly different from 

the yields produced by the CIR model. 

4.2. Forecasting with the Nelson-Siegel Model 

Since the four parameters of the Nelson-Siegel model give a full description of the term structure 

of interest rate, one can model them and can use various methodologies to make out-of-sample 

forecast of the yield curve.
16

 Here, the four time-varying estimated Nelson–Siegel factors are 

modeled as univariate AR(1) processes to simulate the term structure of interest rate.
17

 The yield 

forecasts based on underlying univariate AR(1) factor specifications are: 
 

                   (17) 

                   (18) 
 

where    is (4×1) vector of constants,    is (4×4) diagonal matrix,                         
  

and           is (4×1) error vector. For comparison, we also include the VAR(1) forecasts of 

yield because the pairwise correlation between estimated factors is reasonably high. This might 

produce out-of-sample forecasts with greater accuracy. The multivariate VAR(1) model 

specification is the same as in (18), but we modify    to be (4×4) full matrix rather than a 

diagonal matrix. 

Estimation of AR(1) and VAR(1) models specified in (18) is straight forward. We estimate 

the parameters vector    and matrix    of both AR(1) and VAR(1) using the time series of  

    that we obtained from the non-linear least squares regression on (15) by employing the 

maximum likelihood method, assuming the normal density for   . We use a forecasting period of 

ten years with a time step of one month. That is, we simulate 120 months, starting with the 

January 2012 until December 2021. Using the AR(1) and VAR (1) estimated parameters, we 

simulate the time series of size 120 months for 10,000 times.  

Table 6 displays summary statistics of the four simulated factors for both AR(1) and VAR 

(1) specifications, averaged over number of simulations. This table may be compared with the 

actual estimated factors from table 3 (panel 1). 
 

<<Table 6>> 
 

Comparing the simulated Nelson-Siegel factors of AR(1) and VAR(1) models with the 

estimated factors in panel 1 of table 3, the results show that in terms of most descriptive statistical 

                                                   
16 It is concluded in the previous section that the non-linear estimation (with time-varying  ) leads to a better fit of 

the yield curve; therefore, non-linear least squares estimated parameters are modeled to carry out the simulation 

exercise. 
17 Following Diebold and Li (2006), we also computed out-of-sample forecasts for one month, 6 months and 1 year. 

The summary results are given in appendix C for reference. 
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properties, particularly the mean, skewness and kurtosis, the VAR(1) simulated factors and 

estimated factors are close alternatives. However, relatively the estimated factors are less 

persistent than the simulated factors. In terms of lag autocorrelation, the estimated factors are 

almost similar to the AR(1) results but regarding the mean and other descriptive features the 

AR(1) overestimates     and     and accurately estimates the     and   .  

Averaged over the number of simulations and the different months, both the simulated yield 

curves are upward sloping (figure 7). Comparing the simulated yield curves with the actual in 

figure 7, one notices the curves to be much alike. This may be attributed to the fact that the 

standard Nelson-Siegel is not only capable to generate a better in-sample fit but also performs 

satisfactorily in out-of-sample forecasts. At lower maturities, the VAR(1) simulated average yield 

curve is a bit nearer to the actual yield curve but at longer maturities both the VAR(1) and AR(1) 

are identical. Overall the results show that VAR(1) can replicate the properties of the estimated 

yield features better than the AR(1) specification. 
 

<<Figure 7>> 
 

To check for the other stylized facts, we compute yields for all maturities, by substituting the 

simulated vector     (at each simulation) in (17), for all 120 different months. Accordingly, we 

compute 10,000 matrices – one for each scenario (simulation) – of dimensions (120×100), 

containing the yields on every month for all maturity times. Then, we compute the statistical 

properties that are of interest (e.g., variances and autocorrelations) of the simulated yields for all 

maturities. Table 7 shows the descriptive statistics of the simulated yields for maturities of 3, 6, 

12, 18, 24, 36, 60, 120, 180, 240, and 300 months for AR(1) and VAR(1) specifications, that can 

be compared to the actual yield statistical properties in table 1 (section 3.1).  

Here, it can be seen that the simulated short rates of both AR(1) and VAR(1) indeed are 

more volatile than the long rates. It also seems that in simulation the skewness catches the 

downward trend with maturity in both cases. Moreover, kurtosis of the simulated short rates are 

lower than those of the simulated long rates, as can also be found in the observed nominal yields.  
 

<<Table 7>> 
 

The numeric values of the average yield of actual yield data for various maturities resembles 

with the VAR (1) simulated yields. The volatilities of both AR(1) and VAR(1) are much smaller 

than the actual yield. The actual volatilities vary within the range of 0.207 and 0.348, whereas the 

simulated yields unconditional volatility of VAR(1) model vary between 0.002 and 0.004 and 

between 0.002 and 0.003 for AR(1) specification. Numeric values for the skewness coefficients 

and kurtosis, however, deviate from the observed yields. The Japanese data shows skewness 

coefficients between -1.934 and 1.360, the simulation shows values somewhere between -0.201 

and -0.045 for AR(1) and between -0.500 and -0.086 for the VAR(1) model. Furthermore, the 

kurtosis ranging from approximately 2.079 and 8.291, while the simulation produces kurtosis 

ranging from roughly 1.970 up to 3.984 for both AR(1) and VAR (1) specifications. One may 
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also deduce from table 7 that the simulated yield short rates are more persistent than the long 

rates as we observe in the nominal data.  

In summary, we conclude that the CIR model cannot replicate the interest rates' general 

trends and should be considered weak to describe the term structure in the simulation based 

context. On the other hand, the out-of-sample forecast results of the Nelson-Siegel seem 

reasonably well. In a simulation based context, the Nelson-Siegel model is capable to replicate 

most of the stylized facts of the Japanese market yield curve and the VAR(1) based specification 

of factors is able to replicate the properties of the estimated factors as well as actual yield data 

better than the AR (1) model of the factors.  

5. Conclusion 

The term structure of interest rates is the most important factor in the capital markets and 

probably the economy. It is widely used for pricing contingent claims, determining the cost of 

capital and managing financial risk. In this study, we implement the CIR and the Nelson-Siegel 

models and compare the in-sample fit as well as the out-of-sample forecast performance using 

monthly Japanese government bonds zero-coupon data (yield to maturity) from January 2000 

until December 2011.  

For the in-sample fit, the results show that there is a significant lack of information on the 

short-term CIR model. The CIR model plots upward sloping yield curve, however, the 

discrepancy between the actual and the estimated is an increasing function of maturity beyond 

two years maturity. Contrary to CIR model, the Nelson-Siegel model provides an evolution of the 

term structure closer to reality. The Nelson-Siegel model is capable to distill the term structure of 

interest rate quite well and describe the evolution and the trends of the market. Furthermore, 

fixing the shape parameter   to the median value leads to a better yield curve fit than the CIR 

model but not as striking as the time-varying   estimation process (non-linear least squares) 

does. 

Regarding the term structure forecast, we conclude that the CIR model cannot accomplish to 

replicate the interest rates' general trends. The CIR model generates the same skewness, kurtosis 

and autocorrelations for all maturity times. The volatility is underestimated for all maturity times 

and more importantly, it produces a downward slope average yield curve, implying that CIR 

model should be considered too poor to describe the term structure evolution in the simulation 

based context. On the other hand, the out-of-sample forecast results of the Nelson-Siegel model 

seem reasonably well. The Nelson-Siegel model is capable to replicate most of the stylized facts 

of the Japanese market yield curve. Between the AR(1) and VAR(1) specification of factors, the 

descriptive features of the actual yield data and estimated factors are more closely in line with the 

VAR(1) simulated yields features.  

Summarizing, it turns out that the model proposed by Nelson and Siegel (1987) is 

compatible to fit attractively the yield curve (in-sample fit) and accurately forecast the future 

yields for various maturities. These successes account for the continued popularity of statistical 
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class of models and its use by central banks around the world. Furthermore, the Nelson-Siegel 

model (non-linear version) could be a good candidate to study the evolution of the yield curve in 

Japanese market.  
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Appendix A 

CIR Model Results for 3, 6, 12 and 18 Months Maturity Data  

The results of initial estimates of OLS along with the MLE optimal estimates using the dataset 

for 3 months, 6 months, 12 months, and 18 months maturity periods for the entire sample 

(2000:01–2011:12) are depicted in table A-1. The results of MLE show that the average fitted 

yield curve is upward sloping. Figure A-1 plots the average observed yields and the estimated 

yield curves for all the four maturities data. It shows that the CIR model plots an upward sloping 

yield curve like the observed positively sloped average yield curve. However, the discrepancy 

between the estimated curves for all the four data sets and average observed yield curve is very 

high.   

<<Table A-1>> 

 

Furthermore, we estimate the CIR model for the two sub-periods, sub-period 

1(2000:01–2006:12) and sub-period 2 (2007:01–2011:12) to observe the yield curve behavior 

during the prolonged period of zero policy rates. In table A-2, we provide the initial estimates and 

MLE estimated parameters for the two subsets of data, i.e., the zero interest rate period (2000– 

2006) and the non-zero interest rate period (2007–2011). Furthermore, the estimated yield curves 

for both the sub-periods are depicted in figure A-2. 

 

<<Figure A-1>> 

<<Table A-2>> 

 

The maximum likelihood estimates for the first sub-period shows that the fitted yield curve 

is negatively sloped, however for the second sub-period the estimated yield curve has an upward 

slope for all the four maturities data sets.  

Overall the results of 3 months, 6 months, 12 months, and 18 months maturities data sets 

generate the same yield curve as we have estimated using the two years maturity data for the 

overall sample as well as for the two sub-periods, however, the 24 months yield data fits the 

estimated yield curve slightly better than the 3 months, 6 months, 12 months, and 18 months at 

short maturities. 

<<Figure A-2>> 
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Appendix B 

Derivation of Analytical Gradient         for the Non-Linear 

Ordinary Least Square of the Nelson-Siegel Model 

To minimize the sum of squared zero-coupon yield errors, the objective function        is as 

given in (16): 
 

                      (A-1) 
 

Differentiate the objective function in (A-1) w.r.t   and  , 
 

   

   
                (A-2) 

   

   
                   (A-3) 

   

   
                                 (A-4) 

                 
  

  
          

          

 
 

      
          

 
 

            

  
               

(A-5) 

 

where 
 

 
  

             

 
  

                              
 

The system of equations derived analytically in (A-2), (A-3), (A-4) and (A-5) is non-linear 

and can be solved numerically. The numerical solution of the system implies to the Nelson-Siegel 

estimated factors vector                         
 . 
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Appendix C 

Out-of-Sample Forecast Performance of the Nelson-Siegel Model  

We follow the Diebold and Li (2006) method and model the estimated four time-varying factors 

of Nelson-Siegel model as first order auto-regressive and vector auto-regressive and make out of 

sample forecast for one month, 6 months and 1 year horizons.
18

 The yield forecasts based on 

underlying univariate AR(1) factor specifications are: 
 

                         (A-6) 

                     (A-7) 
 

where    is (4×1) vector of constants,    is (4×4) diagonal matrix,                         
  

and             is (4×1) error vector.    and    are obtained by regressing     on      . 

The multivariate VAR(1) model specification is same as in (A-7) but we modify    to be (4×4) 

full matrix rather than a diagonal matrix. 

We estimate and forecast recursively, using data from January 2000 to the time that the 

forecast is made, beginning in January 2008 and extending through December 2011. 

Subsequently, we substitute the forecasted factors       at time   in (A-6) to get the forecasted 

yield denoted as           . 

In tables A-3, A-4 and A-5, we compute the descriptive statistics of  -month-ahead out-of 

sample forecasting results of the dynamic Nelson–Siegel models of AR(1) and VAR(1) 

representation of                         
 , for maturities of 3, 6, 12, 18, 24, 36, 60, 120, 180, 240 

and 300 months for the forecast horizons of       and 12 months. 

We define forecast errors at     as [                   , where            is the 

forecasted yield in period   for     period and is not the Nelson–Siegel fitted yield. 

        is the actual yield in period    . We examine a number of descriptive statistics for 

the forecast errors, including mean, standard deviation, mean absolute error (MAE), root mean 

squared error (RMSE) and autocorrelations at various displacements. 

The results of one month ahead forecast of AR(1) and VAR(1) representation are reported in 

table A-3. The one month ahead forecasting results appear suboptimal as the forecast errors 

appear serially correlated. The average forecast errors and RMSE are much smaller than that of 

the related work such as Bliss (1997), de Jong (2000) and Diebold and Li (2006). In relative 

terms, RMSE comparison at various maturities reveals that AR(1) forecasts are slightly better 

than the VAR(1), however in term of serial correlation of errors the VAR(1) outperform the 

AR(1) specification. 

<<Table A-3>> 

                                                   
18 Diebold and Li (2006) model the three estimated factors of Nelson-Siegel model                     

  as they 

assume the shape parameter   is constant. Contrarily, we model the four estimated factors of Nelson-Siegel model  

                        
   assuming a time-varying   . 
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The results in table A-4 and A-5 of 6 months and one year ahead forecast respectively, 

reveal that matters worsen radically with longer horizons forecast. For 6 months ahead forecast, 

the AR(1) forecasts are slightly better than the VAR(1), while for the 12 months ahead, the 

VAR(1) performs better than the AR(1) in terms of lower RMSE. However, in regard of 

auto-correlation of the forecast errors, VAR(1) outperforms AR(1) for all maturities in both 6 and 

12 months ahead forecasts. 

<<Table A-4>> 

<<Table A-5>> 

 

Furthermore, we also compute the Trace Root Mean Squared Prediction Error (TRMSPE) 

which combines the forecast errors of all maturities and summarizes the performance of each 

model, thereby allowing for a direct comparison between the models.
19

 In table A-6, we report 

the TRMSPE for both the specifications of yield curve factors, i.e., AR(1) and VAR(1) for all the 

three forecasts horizons. 

<<Table A-6>> 

 

The performances of AR(1) is to some extent superior to that of the VAR(1) model of 

factors in terms of TRMSPE for the one month and six months ahead forecasts horizons, while 

the VAR(1) outperform the AR(1) for twelve months ahead forecasts. It suggests that for longer 

horizons forecasts the multivariate VAR(1) specification of factors can forecast the future yields 

with greater accuracy than the univariate AR(1) model of factors. 

In summary, the out-of-sample forecast results of the Nelson-Siegel seem reasonably well in 

terms of lower forecast errors, however the errors are serially correlated. These results are slightly 

different from Dieobld and Li (2006). In term of lower RMSE, our results for all the three 

horizons forecast are preferred than that of related studies. Diebold and Li (2006) have a great 

success in forecasts, particularly in terms of the errors persistency, using a different dataset with 

maturities up to 10-year, whereas we have maturities up to 25-year. The original Nelson-Siegel 

framework might forecast the long maturities sub-optimally. The serial correlation of forecast 

errors may likely come from a variety of sources, some of which could be eliminated, such as, 

pricing errors due to illiquidity may be highly persistent and could be reduced by including 

variables that may explain mispricing as suggested by Dieobld and Li (2006).  

                                                   
19 Given a sample of   out-of-sample forecasts of   distinct maturities with  −months ahead forecast horizon, 

we compute the TRMSPE as follows: 

 

        
 

  
                      

 
 

   

 

   

  

where            is the forecasted yield in period   for     period, [                    is the forecast 

errors at     for yield. 
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Tables 

 

 

 

 

Table 1: Descriptive Statistics of Yield Curve Data 

Maturity    Mean S. Dev.    Max.     Min. Skewness  Kurtosis                           

3 

6 

9 

12 

15 

18 

21 

24 

30 

36 

48 

60 

72 

84 

96 

108 

120 

180 

240 

300 

Level 

Slope 

Curvature 

0.167 

0.164 

0.176 

0.224 

0.250 

0.276 

0.303 

0.327 

0.387 

0.446 

0.594 

0.730 

0.864 

1.011 

1.165 

1.302 

1.424 

1.801 

2.061 

2.267 

2.267 

2.099 

-1.781 

0.348 

0.345 

0.339 

0.327 

0.327 

0.304 

0.303 

0.292 

0.284 

0.281 

0.280 

0.273 

0.265 

0.262 

0.260 

0.246 

0.231 

0.217 

0.209 

0.207 

0.207 

0.311 

0.382 

0.692 

0.733 

0.770 

0.812 

0.855 

0.990 

0.990 

1.027 

1.117 

1.186 

1.368 

1.517 

1.627 

1.759 

1.878 

1.951 

1.998 

2.24 

2.525 

2.860 

2.860 

2.842 

-0.993 

0.002 

0.004 

0.003 

0.004 

0.003 

0.013 

0.027 

0.019 

0.027 

0.078 

0.121 

0.161 

0.216 

0.285 

0.382 

0.474 

0.549 

0.758 

0.934 

1.070 

1.070 

1.031 

-2.489 

1.346 

1.367 

1.348 

1.003 

0.956 

0.974 

0.932 

0.896 

0.871 

0.815 

0.653 

0.509 

0.365 

0.214 

-0.009 

-0.224 

-0.535 

-1.388 

-1.934 

-1.774 

-1.774 

-0.571 

0.293 

3.259 

3.469 

3.412 

2.600 

2.487 

2.589 

2.475 

2.382 

2.368 

2.315 

2.133 

2.079 

2.137 

2.234 

2.418 

2.784 

3.457 

6.203 

8.291 

7.983 

7.983 

4.081 

1.972 

0.892 

0.877 

0.874 

0.878 

0.870 

0.873 

0.877 

0.875 

0.865 

0.862 

0.855 

0.856 

0.849 

0.842 

0.830 

0.832 

0.830 

0.841 

0.850 

0.874 

0.874 

0.874 

0.867 

0.530 

0.548 

0.555 

0.450 

0.459 

0.455 

0.451 

0.434 

0.403 

0.383 

0.326 

0.269 

0.210 

0.129 

0.066 

0.056 

0.042 

-0.009 

-0.018 

-0.114 

-0.114 

-0.043 

-0.017 

0.077 

0.081 

0.092 

-0.001 

0.021 

0.018 

0.022 

0.025 

0.026 

0.035 

0.027 

0.027 

0.025 

0.035 

0.051 

0.091 

0.102 

0.183 

0.152 

-0.045 

-0.045 

-0.292 

-0.037 

Note: The table shows descriptive statistics for monthly yields at different maturities and for the yield curve level, 

slope and curvature, where we define the level as the 25-year yield, the slope as the difference between the 25-year 

and 3-month yields, and the curvature as the twice the 2-year yield minus the sum of the 3-month and 25-year 

yields. The last three columns contain sample autocorrelations at displacements of 1, 12 and 24 months. The sample 

period is 2000:01–2011:12. The number of observations is 144. 
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Table 2: Results of the MLE Estimation of the CIR Model 

 
                                           log L 

Panel 1. Full Period Sample Results (2000:01–2011:12) 

Initial (OLS) 

MLE 

0.9287 

1.6149 

0.0030 

0.0031 

0.0809 

0.0775 

 

6702.800 

Panel 2. Results for Two Sub-Periods Samples 

Sub-Period I (2000:01–2006:12) 

Initial (OLS) 

MLE 

0.6185 

1.4591 

0.0035 

0.0030 

0.0760 

0.0738 

 

3881.000  

Sub-Period II (2007:01–2011:12) 

Initial (OLS) 

MLE 

1.6540 

2.1960 

0.0033 

0.0035 

0.0879 

0.0838 

 

2935.000  

Note: The table presents the initial OLS and MLE estimated results of    vector 

using the time series data of two years maturity. log L denotes the log likelihood 

value of the MLE estimation. Panel 1 consists the results of the full sample period, 

2000:01–2011:12 (144 observations), while panel 2 presents the results for two 

sub-periods, i.e., sub-period 1 (2000:01–2006:12) and sub-period 2 

(2007:01–2011:12). The number of observations for the first sub-period and second 
sub-period is 84 and 60 respectively. 
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Table 3: Descriptive Statistics of the Nelson-Siegel Estimated Factors 

                                                                                  R2 

Panel 1. Non-Linearized Version of the Model (Time-varying   ) 

Mean 

Std. Dev. 

Maximum 

Minimum 

Skewness 

Kurtosis 

       

        

        

ADF Stat. 

2.940 

0.417 

3.805 

1.219 

-1.566 

6.690 

0.802 

0.055 

-0.118 

-4.255 

-2.759 

0.391 

-1.374 

-3.671 

0.891 

4.943 

0.784 

-0.027 

-0.355 

-4.147 

-2.426 

1.925 

5.201 

-4.676 

1.420 

5.156 

0.840 

0.112 

-0.208 

-3.163 

46.876 

6.156 

119.999 

19.348 

1.530 

4.996 

0.688 

0.127 

-0.128 

-5.129 

0.000 

0.000 

0.000 

0.000 

0.068 

2.796 

0.015 

-0.067 

-0.066 

-11.789 

0.996 

0.002 

0.999 

0.987 

-1.355 

6.116 

0.497 

-0.070 

-0.040 

- 

Panel 2. Linearized Version of the Model (        ) 

Mean 

Std. Dev. 

Maximum 

Minimum 

Skewness 

Kurtosis 

       

        

        

ADF Stat. 

2.055 

0.118 

3.094 

1.124 

0.614 

2.133 

0.866 

0.275 

-0.168 

-3.355 

-2.989 

0.177 

-1.266 

-3.275 

0.388 

1.789 

0.857 

0.399 

-0.091 

-3.324 

-2.831 

0.775 

3.036 

-3.395 

-0.722 

2.544 

0.860 

0.439 

0.053 

-3.297 

   - 

   - 

   - 

   - 

   - 

   - 

   - 

   - 

   - 

   - 

0.000 

0.015 

0.071 

-0.083 

0.205 

2.371 

0.215 

-0.178 

--0.125 

-7.756 

0.956 

0.012 

0.988 

0.931 

-0.893 

3.940 

0.436 

0.014 

-0.134 

- 

Note: The table presents descriptive statistics for Nelson-Siegel estimated factors, R
2
 and    averaged 

over the different maturity times using monthly yield data 2000:01–2011:12. Panel 1 presents the features 

of the results obtained from non-linearized version of the Nelson-Siegel model by applying non-linear 

least squares method, while panel 2 shows the features of the results estimated by ordinary least squares 

(OLS) methods for pre-specified value (median value obtained from non-linear estimation) of the shape 

parameter            .        denotes the sample autocorrelations at displacements of 1, 12, and 24 

months. The last row contains augmented Dickey–Fuller (ADF) unit root test statistics. The number of 

observations is 144. 
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Table 4: Descriptive Statistic of the Nelson-Siegel Yield Curve Residuals for Time-varying   

Maturity    Mean  S. Dev.    MAE  RMSE Skewness Kurtosis                                

3 

6 

9 

12 

15 

18 

21 

24 

30 

36 

48 

60 

72 

84 

96 

108 

120 

180 

240 

300 

-0.004 

-0.011 

-0.009 

0.002 

0.008 

0.010 

0.011 

0.008 

0.007 

0.001 

0.008 

-0.008 

-0.014 

-0.006 

0.004 

0.008 

0.016 

-0.003 

-0.005 

0.005 

0.023 

0.019 

0.017 

0.018 

0.018 

0.018 

0.018 

0.018 

0.019 

0.022 

0.020 

0.020 

0.018 

0.021 

0.024 

0.019 

0.016 

0.021 

0.017 

0.025 

0.022 

0.020 

0.017 

0.015 

0.017 

0.019 

0.019 

0.017 

0.018 

0.020 

0.018 

0.019 

0.020 

0.020 

0.023 

0.018 

0.021 

0.019 

0.016 

0.024 

0.023 

0.022 

0.020 

0.018 

0.019 

0.021 

0.021 

0.020 

0.020 

0.022 

0.020 

0.021 

0.022 

0.022 

0.024 

0.020 

0.023 

0.021 

0.018 

0.025 

0.278 

0.874 

0.769 

-0.174 

-0.569 

-0.753 

-0.799 

-0.551 

-0.395 

-0.034 

-0.096 

0.568 

1.088 

0.462 

-0.255 

-0.492 

-1.437 

0.272 

0.353 

-0.385 

1.370 

2.381 

2.508 

1.833 

1.983 

2.243 

2.298 

2.044 

1.786 

1.379 

1.463 

1.826 

2.841 

1.643 

1.283 

1.814 

3.975 

1.543 

1.844 

1.265 

0.740 

0.579 

0.671 

0.587 

0.610 

0.572 

0.650 

0.623 

0.694 

0.806 

0.775 

0.743 

0.756 

0.855 

0.891 

0.758 

0.425 

0.869 

0.795 

0.856 

0.229 

0.038 

-0.036 

0.300 

0.332 

0.211 

0.079 

0.119 

0.227 

0.373 

0.300 

0.308 

0.156 

0.152 

0.420 

0.519 

0.188 

0.435 

0.334 

0.403 

0.034 

0.061 

-0.119 

0.111 

0.155 

0.122 

0.200 

0.167 

-0.090 

-0.096 

0.017 

0.111 

-0.072 

0.077 

0.072 

0.161 

0.022 

0.174 

-0.004 

0.029 

Note: The table presents summary statistics of the residuals    for different maturity times of the Nelson–Siegel model 

using monthly yield data 2000:01–2011:12 for time-varying  . MAE is mean absolute errors, RMSE is the root mean 

squared errors and        denotes the sample autocorrelations at displacements of 1,12, and 24 months. The number of 

observations is 144. 

 

 

Table 5: Descriptive Statistics of the Simulated Yields Using the CIR Model 

Maturity    Mean  S. Dev.    Max   Min Skewness Kurtosis                                          

3 

6 

12 

18 

24 

36 

60 

120 

180 

240 

300 

0.314 

0.314 

0.313 

0.312 

0.312 

0.311 

0.311 

0.310 

0.310 

0.310 

0.310 

0.204 

0.170 

0.123 

0.093 

0.074 

0.051 

0.031 

0.015 

0.010 

0.008 

0.006 

1.835 

1.582 

1.229 

1.007 

0.861 

0.689 

0.539 

0.425 

0.386 

0.367 

0.356 

0.016 

0.037 

0.059 

0.120 

0.160 

0.206 

0.247 

0.279 

0.289 

0.294 

0.297 

1.455 

1.455 

1.455 

1.455 

1.455 

1.455 

1.455 

1.455 

1.455 

1.455 

1.455 

6.221 

6.221 

6.221 

6.221 

6.221 

6.221 

6.221 

6.221 

6.221 

6.221 

6.221 

-0.008 

-0.008 

-0.008 

-0.008 

-0.008 

-0.008 

-0.008 

-0.008 

-0.008 

-0.008 

-0.008 

-0.005 

-0.005 

-0.005 

-0.005 

-0.005 

-0.005 

-0.005 

-0.005 

-0.005 

-0.005 

-0.005 

0.017 

0.017 

0.017 

0.017 

0.017 

0.017 

0.017 

0.017 

0.017 

0.017 

0.017 

Note: The table shows descriptive statistics for simulated yields at different maturities for the CIR model. The entire 

term structure of yield is computed by the CIR yield curve model using the simulated short rates. The simulation 

exercise is done 10,000 times for 144 months. The last three columns contain the first, 12th and 24th order sample 

autocorrelation coefficients. The number of observations is 10,000. 
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Table 6: Descriptive Statistics of the Simulated Nelson-Siegel Factors 

 

AR(1)  VAR(1) 

                                                                                    

Mean 

Std. Dev. 

Maximum 

Minimum 

Skewness 

Kurtosis 

       

        

        

2.959 

0.004 

2.966 

2.948 

-0.494 

3.227 

0.786 

0.881 

0.796 

-2.799 

0.004 

-2.787 

-2.807 

0.592 

3.024 

0.359 

0.453 

0.481 

-2.932 

0.016 

-2.892 

-2.967 

-0.101 

2.290 

0.115 

0.123 

0.140 

3.552 

0.018 

3.596 

3.504 

-0.159 

2.929 

-0.129 

-0.125 

-0.070 

 2.939 

0.005 

2.953 

2.928 

0.343 

2.941 

0.830 

0.866 

0.622 

-2.753 

0.005 

-2.742 

-2.764 

-0.178 

2.368 

0.395 

0.582 

0.333 

-2.621 

0.019 

-2.583 

-2.662 

-0.025 

2.254 

0.118 

0.212 

0.016 

3.792 

0.015 

3.824 

3.760 

-0.015 

2.432 

0.013 

-0.292 

-0.147 

Note: The table presents descriptive statistics of the simulated Nelson-Siegel factors averaged over number of 

simulations for both AR(1) and VAR(1) specifications. The four factors of the Nelson-Siegel specification are 

modeled as first order AR and VAR to forecast the yield curve for 120 months, 2012:01–2021:12, for 10,000 times. 

The last three rows contain their first, 12th and 24th order sample autocorrelation coefficients. The computation of 

descriptive statistics is based on 120 observations. 
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Table 7: Descriptive Statistics of Simulated Yields Using the Nelson-Siegel Model 

Maturity     Mean    S. Dev.     Max     Min Skewness Kurtosis                                   

Simulated Yields Descriptive Statistics for AR (1) Specification 

3 

6 

12 

18 

24 

36 

60 

120 

180 

240 

300 

0.192 

0.202 

0.229 

0.265 

0.310 

0.414 

0.655 

1.235 

1.657 

1.939 

2.129 

0.003 

0.003 

0.003 

0.003 

0.003 

0.003 

0.003 

0.003 

0.002 

0.002 

0.002 

0.196 

0.205 

0.233 

0.269 

0.314 

0.418 

0.660 

1.241 

1.665 

1.949 

2.140 

0.189 

0.199 

0.225 

0.260 

0.304 

0.408 

0.649 

1.228 

1.648 

1.930 

2.119 

-0.045 

0.012 

-0.105 

-0.232 

-0.290 

-0.307 

-0.198 

-0.183 

-0.339 

-0.291 

-0.204 

1.979 

2.042 

2.338 

2.441 

2.427 

2.361 

2.353 

2.843 

3.059 

3.029 

3.986 

0.866 

0.851 

0.837 

0.837 

0.840 

0.833 

0.745 

0.448 

0.558 

0.652 

0.708 

-0.195 

-0.254 

-0.235 

-0.159 

-0.100 

-0.037 

-0.020 

-0.033 

0.048 

0.089 

0.107 

-0.175 

-0.130 

-0.116 

-0.147 

-0.178 

-0.211 

-0.187 

0.037 

0.017 

-0.006 

-0.013 

Simulated Yields Descriptive Statistics for VAR(1) Specification 

3 

6 

12 

18 

24 

36 

60 

120 

180 

240 

300 

0.158 

0.160 

0.176 

0.206 

0.246 

0.349 

0.601 

1.221 

1.664 

1.955 

2.148 

0.004 

0.004 

0.003 

0.002 

0.002 

0.002 

0.002 

0.002 

0.002 

0.002 

0.002 

0.161 

0.164 

0.181 

0.211 

0.252 

0.354 

0.606 

1.227 

1.671 

1.962 

2.155 

0.154 

0.156 

0.171 

0.199 

0.239 

0.342 

0.595 

1.215 

1.658 

1.947 

2.140 

-0.086 

-0.407 

-0.557 

-0.502 

-0.425 

-0.292 

-0.115 

0.017 

0.025 

-0.095 

-0.252 

2.214 

2.475 

2.659 

2.567 

2.429 

2.182 

2.027 

2.349 

2.312 

2.430 

2.628 

0.865 

0.875 

0.891 

0.900 

0.905 

0.903 

0.849 

0.632 

0.629 

0.657 

0.684 

-0.041 

0.008 

0.075 

0.108 

0.125 

0.137 

0.121 

0.019 

0.001 

0.001 

0.010 

-0.175 

-0.199 

-0.188 

-0.160 

-0.134 

-0.091 

-0.017 

-0.038 

-0.131 

-0.180 

-0.202 

Note: The table shows descriptive statistics for monthly simulated yields at different maturities for both AR(1) and 

VAR(1) specifications of the four factors vector    of the Nelson-Siegel Model. The four simulated factors are 
substituted in (2.17) to compute the simulated yields for various maturities for 120 months, 2012:01–2021:12, for 

10,000 times. The last three columns contain the first, 12th and 24th order sample autocorrelation coefficients. The 

computation of descriptive statistics is based on 120 observations. 
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Table A-1: Results of the MLE Estimation of the CIR Model 

Maturity 
 

                                           log L 

3 Months 

 

Initial (OLS) 

MLE 

0.8729 

1.4762 

0.0017 

0.0017 

0.0983 

0.0743 

 

5969.100 

6 Months 

 

Initial (OLS) 

MLE 

1.1527 

1.9030 

0.0017 

0.0017 

0.1350 

0.0821 

 

5794.000 

12 Months 

 

Initial (OLS) 

MLE 

0.7615 

1.5163 

0.0021 

0.0022 

0.0982 

0.0788 

 

6190.400 

18 Months 

 

Initial (OLS) 

MLE 

0.8642 

1.6859 

0.0026 

0.0027 

0.0876 

0.0807 

 

6542.700 

Note: The table presents the initial OLS and MLE estimated results of    vector using the time series 
data of 3 months, 6 months, 12 months, and 18 months maturities from 2000:01–2011:12. log L 

denotes the log likelihood value of the MLE estimation. The number of observations is 144. 
 

 

 
 

Table A-2: Results of the MLE Estimation of the CIR Model for Sub-Periods 

Maturity                                                   log L 

Sub-Period I (2000:01– 2006:12) 

3 Months 
Initial (OLS) 

MLE 

1.3230 

3.7744 

0.0011 

0.0008 

0.1119 

0.0825 

 

3344.000 

6 Months 
Initial (OLS) 

MLE 

1.3230 

3.7744 

0.0011 

0.0008 

0.1119 

0.0825 

 

4121.000 

12 Months 
Initial (OLS) 
MLE 

0.6122 
2.2455 

0.0024 
0.0017 

0.1116 
0.0885 

 
3371.000 

18 Months 
Initial (OLS) 

MLE 

0.6577 

1.9660 

0.0028 

0.0023 

0.0899 

0.0829 

 

3708.600 

Sub-Period II (2007:01– 2011:12) 

3 Months 
Initial (OLS) 

MLE 

0.8952 

1.0691 

0.0020 

0.0022 

0.0771 

0.0696 

 

2676.200 

6 Months 
Initial (OLS) 

MLE 

1.1414 

1.3698 

0.0023 

0.0024 

0.0779 

0.0700 

 

2709.500 

12 Months 
Initial (OLS) 

MLE 

1.4333 

1.8056 

0.0027 

0.0028 

0.0770 

0.0701 

 

2856.600 

18 Months 
Initial (OLS) 

MLE 

1.5149 

2.0789 

0.0031 

0.0032 

0.0852 

0.0807 

 

2910.600 

Note: The table presents the initial OLS and MLE estimated results of    vector using the time series data of 

3 months, 6 months, 12 months, and 18 months maturities for two sub-periods, i.e., sub-period 1 (2000:01 

–2006:12) and sub-period 2 (2007:01 – 2011:12). log L denotes the log likelihood value of the MLE 

estimation. The number of observations for the first sub–period and second sub–period is 84 and 60 

respectively. 
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Table A-3: Out-of-Sample 1 Month Ahead Forecasting Results 

Maturity     Mean Std. Dev.    MAE    RMSE                                           

Forecast Summary for AR(1) Specification 

3 

6 

12 

18 

24 

36 

60 

120 

180 

240 

300 

0.049 

0.022 

-0.022 

-0.046 

-0.079 

-0.120 

-0.152 

-0.003 

0.098 

0.128 

0.087 

0.152 

0.143 

0.148 

0.181 

0.197 

0.227 

0.251 

0.188 

0.169 

0.162 

0.145 

0.102 

0.102 

0.126 

0.163 

0.187 

0.227 

0.255 

0.145 

0.157 

0.172 

0.139 

0.047 

0.039 

0.028 

0.037 

0.039 

0.050 

0.077 

0.065 

0.052 

0.045 

0.028 

0.865 

0.850 

0.892 

0.870 

0.856 

0.821 

0.768 

0.547 

0.495 

0.550 

0.643 

-0.067 

-0.076 

-0.073 

-0.059 

-0.029 

0.000 

0.059 

0.093 

0.045 

-0.018 

-0.067 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

Forecast Summary for VAR(1) Specification 

3 

6 

12 

18 

24 

36 

60 

120 

180 

240 

300 

0.048 

-0.053 

-0.222 

-0.348 

-0.460 

-0.612 

-0.735 

-0.515 

-0.277 

-0.141 

-0.107 

0.208 

0.321 

0.552 

0.764 

0.928 

1.166 

1.375 

1.213 

0.944 

0.744 

0.598 

0.140 

0.245 

0.147 

0.235 

0.383 

0.396 

1.080 

0.596 

0.761 

0.593 

0.477 

0.079 

0.143 

0.515 

0.426 

0.073 

0.527 

1.012 

0.557 

0.376 

0.806 

0.478 

0.829 

0.825 

0.841 

0.846 

0.847 

0.848 

0.847 

0.83 

0.826 

0.816 

0.826 

-0.048 

0.063 

0.112 

0.119 

0.123 

0.124 

0.126 

0.128 

0.120 

0.117 

0.111 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

The table presents the results of out-of-sample 1-month-ahead forecasting using AR (1) and VAR (1) specification of 

the estimated factors. We estimate all models recursively from 2000:1 to the time that the forecast is made, beginning 

in 2008:1 and extending through 2011:12. We define forecast errors at     as                    , where 

           is the     month ahead forecasted yield at period  , and we report the mean, standard deviation, mean 

absolute errors and root mean squared errors of the forecast errors, as well as their first, 12th and 24th order sample 

autocorrelation coefficients. 
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Table A-4: Out-of-Sample 6 Months Ahead Forecasting Results 

Maturity     Mean Std. Dev.    MAE    RMSE                                             

Forecast Summary for AR(1) Specification 

3 

6 

12 

18 

24 

36 

60 

120 

180 

240 

300 

0.096 

0.078 

0.050 

0.037 

0.013 

-0.018 

-0.049 

0.070 

0.145 

0.159 

0.110 

0.184 

0.172 

0.177 

0.208 

0.224 

0.254 

0.278 

0.210 

0.185 

0.176 

0.166 

0.122 

0.116 

0.126 

0.154 

0.173 

0.205 

0.234 

0.169 

0.191 

0.200 

0.163 

0.077 

0.066 

0.061 

0.082 

0.088 

0.102 

0.107 

0.080 

0.070 

0.059 

0.044 

0.883 

0.867 

0.889 

0.872 

0.852 

0.809 

0.755 

0.571 

0.527 

0.587 

0.689 

-0.067 

-0.071 

-0.065 

-0.046 

-0.017 

0.012 

0.070 

0.104 

0.060 

-0.026 

-0.081 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

Forecast Summary for VAR(1) Specification 

3 

6 

12 

18 

24 

36 

60 

120 

180 

240 

300 

-0.660 

-0.647 

-0.622 

-0.589 

-0.573 

-0.539 

-0.474 

-0.194 

-0.008 

0.083 

0.086 

0.451 

0.435 

0.434 

0.454 

0.463 

0.484 

0.502 

0.413 

0.363 

0.312 

0.270 

0.698 

0.680 

0.661 

0.647 

0.642 

0.633 

0.597 

0.366 

0.265 

0.228 

0.201 

0.095 

0.063 

0.057 

0.144 

0.132 

0.142 

0.140 

0.247 

0.271 

0.239 

0.183 

0.820 

0.808 

0.813 

0.828 

0.830 

0.828 

0.820 

0.724 

0.666 

0.636 

0.643 

0.040 

0.065 

0.075 

0.083 

0.090 

0.092 

0.101 

0.127 

0.116 

0.100 

0.070 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

The table presents the results of out-of-sample 6-month-ahead forecasting using AR (1) and VAR (1) specification of 

the estimated factors. We estimate all models recursively from 2000:1 to the time that the forecast is made, beginning 

in 2008:1 and extending through 2011:12. We define forecast errors at     as                    , where 

           is the     months ahead forecasted yield at period  , and we report the mean, standard deviation, mean 

absolute errors and root mean squared errors of the forecast errors, as well as their first, 12th and 24th order sample 

autocorrelation coefficients. 
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Table A-5: Out-of-Sample 12 Months Ahead Forecasting Results 

Maturity      Mean Std. Dev.    MAE    RMSE                                               

Forecast Summary for AR(1) Specification 

3 

6 

12 

18 

24 

36 

60 

120 

180 

240 

300 

0.093 

0.075 

0.046 

0.032 

0.006 

-0.028 

-0.065 

0.050 

0.129 

0.150 

0.108 

0.197 

0.183 

0.188 

0.216 

0.230 

0.258 

0.281 

0.211 

0.186 

0.179 

0.170 

0.130 

0.125 

0.138 

0.167 

0.187 

0.221 

0.246 

0.169 

0.183 

0.196 

0.163 

0.083 

0.070 

0.061 

0.075 

0.077 

0.084 

0.091 

0.074 

0.066 

0.057 

0.045 

0.848 

0.874 

0.897 

0.896 

0.882 

0.881 

0.798 

0.612 

0.557 

0.612 

0.716 

-0.003 

-0.074 

-0.070 

-0.054 

-0.029 

-0.068 

0.048 

0.078 

0.034 

-0.049 

-0.098 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

Forecast Summary for VAR(1) Specification 

3 

6 

12 

18 

24 

36 

60 

120 

180 

240 

300 

-0.081 

-0.091 

-0.106 

-0.109 

-0.127 

-0.149 

-0.172 

-0.035 

0.064 

0.100 

0.067 

0.150 

0.135 

0.135 

0.162 

0.185 

0.236 

0.309 

0.299 

0.271 

0.236 

0.208 

0.135 

0.129 

0.144 

0.171 

0.198 

0.251 

0.305 

0.229 

0.199 

0.191 

0.164 

0.041 

0.034 

0.031 

0.033 

0.038 

0.059 

0.111 

0.175 

0.177 

0.139 

0.099 

0.590 

0.510 

0.599 

0.699 

0.722 

0.746 

0.758 

0.676 

0.639 

0.609 

0.621 

-0.070 

-0.080 

-0.059 

-0.024 

0.026 

0.066 

0.087 

0.015 

-0.049 

-0.073 

-0.073 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

The table presents the results of out-of-sample 12-month-ahead forecasting using AR (1) and VAR (1) specification 

of the estimated factors. We estimate all models recursively from 2000:1 to the time that the forecast is made, 

beginning in 2008:1 and extending through 2011:12. We define forecast errors at      as           
           , where             is the      months ahead forecasted yield at period  , and we report the mean, 

standard deviation, mean absolute errors and root mean squared errors of the forecast errors, as well as their first, 12th 

and 24th order sample autocorrelation coefficients. 
 

 
 

Table A-6: TRMSPE Results for Out-of-Sample Forecasts Accuracy Comparisons 

TRMSPE 1 Month Forecasts 6 Months Forecasts 12 Months Forecasts 

AR(1) Model of Factors 0.046 0.076 0.079 

VAR(1) Model of Factors 0.054 0.085 0.055 

Note: The table reports the Trace Root Mean Squared Prediction Error (TRMSPE) results of 

out-of-sample forecasts accuracy comparison for horizons of one, 6, and 12 months for both 

AR(1) and VAR(1) specification of factors. 
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Figures 

 

 

 

 

 

 

 

 

 

 

Figure 1. Yield Curves, 2000:01–2011:12. 

The sample consists of monthly yield data 2000:01–2011:12 (144 months) at fixed quarterly maturities of 3, 6, 9, 12, 

15, 18, 21, 24 …300 months (100 maturities). 
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Figure 2: Fitted Yield Curve with the CIR Model 

Actual average (data-based) and fitted (model-based) yield curve along the residuals for the entire sample 

(2000:01–2011:12) and two sub-periods, i.e., sub-period 1 (2000:01–2006:12) and sub-period 2 (2007:01–2011:12) 

are plotted. The fitted yield curves are obtained by evaluating the CIR function at the MLE estimated       and    

from the table 2. 
 

 

 
Figure 3: Time Series Plot of Nelson-Siegel Estimated Factors and Empirical Level, Slope and Curvature  

Model-based level, slope and curvature (i.e., estimated factors vector    ) for time-varying    vs. data-based level, 

slope and curvature are plotted, where level is defined as the 25-year yield, slope as the difference between the 

25-year and 3-month yields and curvature as two times the 2-year yield minus the sum of the 25-years and 3- month 

zero-coupon yields. Rescaling of estimated factors is based on Diebold and Li (2006). 
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Figure 4: Average Fitted Yield Curve and Residuals of the Nelson–Siegel Model 

Actual (data-based) and estimated (model-based) average yield curves and average residuals for both time-varying 

    and fixed           are plotted. The fitted yield curves are obtained by taking average of the estimated yield 

of the Nelson-Siegel model over 144 months. Similarly, the residuals are also averaged over 144 months for the 

various maturities.  

 

 

 

Figure 5: Nelson–Siegel Model based Yield Curves Residuals, 2000:01–2011:12 for Time-varying   . 

The sample consists of monthly residuals, obtained from the non-linear least squares estimation of the Nelson-Siegel 
model using the data 2000:01–2011:12 (144 months), at fixed quarterly maturities of 3, 6, 9, 12, 15, 18,…300 months. 
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Figure 6:Average and All Simulated Yield Curves with the CIR Model 

The entire term structure of yield is computed by the CIR yield curve model using the simulated short rates. The 

simulation exercise is done 10,000 times for 144 months. The 10000 simulated yield curves along with average 

simulated yield curve are plotted at fixed quarterly maturities of 3, 6, 9, 12, 15, 18, 21, 24 …300 months (100 

maturities). 

 

 
 

 

Figure 7: Simulated Average Yield Curves with the Nelson-Siegel Model 

The four factors of the Nelson-Siegel specification are modeled as first order AR and VAR to forecast the yield 

curve for 120 months, 2012:01–2021:12, for 10,000 times. The average simulated yield curves for both AR(1) 

and VAR(1) specifications are obtained by averaging the simulated yields over different months as well as 
number of simulations. Actual (data-based) average yield curve is also plotted for comparison. All three yield 

curve are plotted at fixed quarterly maturities of 3, 6, 9, 12, 15, 18, 21, 24 …300 months (100 maturities). 
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Figure A-1: Fitted Yield Curves with the CIR Model 

Actual average (data-based) and fitted (model-based) yield curves for various maturities are plotted. The fitted yield 

curves are obtained by evaluating the CIR function at the MLE estimated       and    from table A-1. 
 

 

 

 

 
Figure A-2: Fitted Yield Curve with the CIR Model for Two Sub-Periods 

Actual average (data-based) and fitted (model-based) yield curves for two sub-periods, i.e., sub-period 1 (2000:01 

–2006:12) and sub-period 2 (2007:01 – 2011:12) using the time series data of 3 months, 6 months, 12 months, and 18 

months maturities are plotted. The fitted yield curves are obtained by evaluating the CIR function at the MLE 

estimated       and    from table A-2. 

 

 

 

 


