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Topic Modeling of Market Responses for

Large-Scale Transaction Data

Abstract

Large-scale databases in marketing track multiple consumers across multiple product

categories. A challenge in modeling these data is the resulting size of the data cube,

which often has thousands of consumers and thousands of choice alternatives with prices

and merchandising variables changing over time. We develop a heterogeneous topic model

for these data, and employ variational Bayes techniques for estimation that are shown to

be accurate in a simulation study. We find the model to be highly scalable and useful for

identifying effective marketing variables for consumers, including infrequent purchasers.

Keywords: Cross-category Analysis, Data Cube, Hierarchical Bayes Moldel, Market

Response, Panel Data, Personalization, Topic Model, Variational Bayes Inference

† This paper is a revised version of a discussion paper by T. Ishigaki, N. Terui, T.

Sato and G. Allenby, A Large-Scale Marketing Model using Variational Bayes Inference

for Sparse Transaction Data, Data Science and Service Research Discussion Paper, No.

18, 2014
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1 Introduction

Modern analytic techniques in marketing are continuously confronted with the necessity

of extracting relevant information from large volumes of data by identifying important

drivers of consumer behavior. It is common for datasets to record household purchases

of products that are orders of magnitude larger than what current models of behavior

are currently capable. Existing models of choice and demand, for example, are typically

limited to less than twenty or so product alternatives that are tracked across possibly

hundreds of consumers (see Rossi et al. 2005, Chintagunta and Nair 2011).

Increasing the number of products analyzed is problematic because of potential com-

plexities in the structure of demand and the accompanying increase in the required num-

ber of model parameters. Increasing the number of respondents is also problematic be-

cause of computational constraints arising from respondent heterogeneity that is found

to be important in describing demand and deriving policy implications. While a va-

riety of dimension-reducing techniques have been studied in the fields of statistics and

data-mining, the presence of heterogeneous consumers and heterogeneous purchase en-

vironments with prices and other variables changing over occasions requires the use of

model-based inference as opposed to methods applied directly to the marginal data (An-

derson 2003).

Naik et al. (2008) discusses three solutions to the challenges in massive data analysis:

increasing computer power, employing alternative approaches for data analysis, and using

scalable estimation methods. In this paper, we combine the second and third options to

obtain improved inferences about consumer behavior in large datasets. Thus, instead of

attempting to build an economic model of choice across dozens of product categories,

explicitly modeling the presence of substitutes, complements and an inter-related set of

budget constraints, we extend the voting bloc model of Spirling and Quinn (2010) and

Grimmer (2011) that are a variation of topic models used to conduct large-scale analysis
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of text data (Blei et al. 2003). These models make the simplifying assumption that votes,

words or purchases are outcomes of latent probabilities that describe the occurrence of

events. We extend these models so that the latent probabilities are a function of a brand’s

own marketing variables.

The topic model is a generalization of a finite mixture model in which each data point

is associated with a draw from a mixing distribution (The and Jordon 2010). Models

of voting blocs (Spirling and Quinn 2010) track the votes of legislators (aye or nay)

across multiple bills, with each bill associated with a potentially different concern or issue.

Similarly, the latent Dirichlet allocation (LDA) model of Blei et al. (2003) allocates words

within documents to a small number of latent topics whose patterns are meaningful and

interpretable. Each vote and each word is associated with a potentially different issue or

topic, and hence the mixing distribution is applied to the individual vector of observations

and not to the entire set of observations (e.g., series of votes a legislator or set of words

by an author) of the panelist. In our analysis of household purchases, we allow the vector

of observed purchases across all product categories on an occasion to be related to a

different latent context (topic, or issue). This allows us to view a consumer’s purchases as

responding to different needs or occasions (e.g., family dinner, snacks, etc.), and allows us

to identify the ensemble of goods that collectively define latent purchase segments across

a large number of products.

We obtain a scalable estimation method by employing variational Bayes (VB) inference

as in Jordan et al. (1999) and Bishop (2006), instead of the standard Markov chain

Monte Carlo (MCMC) inference. MCMC methods can incur large computational cost

in large-scale problems. VB inference approximates a posterior distribution of target by

variational optimization in a computationally efficient manner. Our approach combines

variational Bayes (VB) methods, as in Jordan et al. (1999) and Bishop (2006), with a

topic-like probit model to obtain a computationally feasible model of consumer purchases

that is scalable to large databases. Individual-level inference is possible in our model,
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where we can identify the marketing variables that are effective for specific individuals

and the products for which they are effective. Our model is therefore similar to adaptive

personalization systems proposed by Ansari and Mela (2003), Rust and Chung (2006),

Chung et al. (2009) and Braun and McAuliffe (2010). However, it is different in that

our model structure facilitates analysis of a much larger array (i.e., at least an order of

magnitude) of offerings across multiple product categories.

Our model identifies the latent state, or topic assignment, for each consumer at each

point in time, providing information about the array of products a consumer will likely

purchase. We do not make a-priori assumptions about substitute and complementary

goods in the spirit of market basket analysis in data mining. Our model takes an ex-

ploratory approach to analysis and does not test assumptions of the form of the utility

function across hundreds of offerings. However, our model does include marketing vari-

ables so that their effects on choice can be measured and used in prediction.

In the next section, we propose a model for consumer purchases in multiple product

categories. Section 3 describes a variational Bayes inference scheme for the model and

simulation studies that verify the precision of VB estimate and scalability of the model.

In section 4, we first discuss the joint segmentation of consumers and items for cross-

category analysis, and propose a method of decompressing the information obtained in the

reduced-dimensional space to make marketing decisions in the original large-scale original

space. Section 5 applies the model to customer purchases in a general merchandise store.

Discussion and concluding remarks are offered in Section 6.

2 Model Development

The analysis of large-scale transactional data is challenging because of the sparsity of

observed purchases. Most consumers do not purchase in most product categories on

most shopping trips, and when a purchase is recorded in one category it is frequently
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for just one offering. The actual sample size of transactional data is much smaller than

the data space reflected by a data cube with dimensions corresponding to the number of

consumers, number of products and time. In this situation, standard random-effect model

specifications break down because of the high frequency of non-purchase for almost every

brand.

In choice models, maximum likelihood estimates of brand intercepts are driven to neg-

ative infinity if the brand is never purchased by the household, and since most households

do not ever purchase most brands, standard random-effect models result in excessive nega-

tive shrinkage of the intercepts. Similarly, the prevalence of non-purchase makes it appear

that consumers are not price sensitive because they do not react to competitive price dis-

counts, when in fact they may be making a quick trip to the store and may not even

be exposed to prices in many categories. The analysis of large-scale transactional data

must therefore employ additional assumptions about heterogeneity and price responsive-

ness not typically made in the analysis of revealed preference data. We relate consumer

purchases to latent segments as is done in models for text analysis that greatly reduces

the dimensionality of the model. Response parameters are then introduced in the reduced

dimensional space by connecting each choice to their own marketing variables with a hier-

archical probit model. We do not attempt to model cross-price and cross-merchandising

effects because of the large number of brands under study.

2.1 Dimensional Reduction by Topic Models

Dimensional reduction is an important technique in massive data analysis. Here we briefly

introduce the idea of introducing a latent variable that is common in topic models in the

context of consumer purchases. We seek the probability p(i|c) that consumer c pur-

chases item i. We assume the dataset includes C consumers and I product items through

T periods. However, the probabilities cannot be accurately calculated because of data

sparseness. The topic model calculates p(i|c) by introducing a latent class z ∈ {1 . . . Z}
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whose dimension is significantly smaller than the number of consumers and items.

The latent variable is used to represent the sparse data matrix as a finite mixture of

vectors commonly found in topic models:
p (i = 1|c = 1) · · · p (i = 1|c = C)

...
. . .

...

p (i = I|c = 1) · · · p (i = I|c = C)

 =
Z∑

z=1


p (1|z)

...

p (I|z)


[
p (z|1) · · · p (z|C)

]
(1)

More specifically, we decompose a large probability matrix of size I × C to two small

probability matrices of sizes I × Z and Z × C based on the property of conditional

independence. The main difference between voting blocs model and LDA is assumed

distributions for probabilities p(i|c) in the I × Z matrix. The voting blocs model sup-

poses a Bernoulli distribution for the probability p(i|c). LDA assumes a categorical (i.e.,

multinomial) distribution for the probability matrix.

The latent classes z serve to define types of purchase baskets across the I products.

The first term on the right side of (1) defines a vector of choice probabilities for each item

under study, assuming that the purchase occasion is of type z. Items with high probability

are likely to be jointly present in the basket, so our model identifies likely bundles of goods

purchased for different types of shopping trips. The second term is the probability that

a consumer’s purchases are of type z. Our model does not model heterogeneity in a

traditional manner, where there is a common set of response parameters for all purchases

of an individual. We instead assume that each purchase belongs to one of Z types, and

that respondents can also be characterized in terms of the probability their purchases are

of these types.

In the analysis of purchase behavior using topic models for large consumer transaction

data, Iwata et al. (2009) extracted dynamic patterns between purchased product items

and consumer interests. Ishigaki et al. (2010) fused heterogeneous transaction data and

consumer lifestyle questionnaire data, while Iwata et al. (2012) identified consumer pur-
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chase patterns by using a topic model with price information on the purchased products.

These approaches identify patterns among consumers and product items. The labeled

LDA proposed by Ramage et al. (2009), and the supervised LDA of Blei and McAuliffe

(2007) extend the topic models by incorporating additional data in the analysis. However,

none of these approaches are suitable for relating marketing variables to individual con-

sumer choices as explanation variables. In the following sections, we construct a model

that links marketing variables with consumers and products.

2.2 A Reduced Dimensional Market Response Model

Let ycit denote consumer c’s purchase record of product i at time t, assigning ycit = 1

if consumer c purchased the item, and ycit = 0 otherwise. Denote ucit as the utility of

consumer c’s purchase record of product i at time t. We assume a binary probit model

with ucit > 0 if ycit = 1, and ucit ≤ 0 if ycit = 0. We couple the topic model in (1) with

the binary choice probability as in a voting bloc model to obtain the choice probability:

p (ucit > 0) =
Z∑

z=1

p (uit > 0|z) p (z|c) (2)

We denote the utility associated with the latent class z as u
(z)
it , and then the choice

probability can be represented as p(uit > 0|z) = p(u
(z)
it > 0). Assuming a linear Gaussian

structure on the utility u
(z)
it for marketing variables, the right hand side of (1) can be

represented as:

Z∑
z=1


F
(
xT
itβz1

)
...

F
(
xT
ItβzI

)
 [p (z|1) · · · p (z|C)] (3)

where βT
zi = (βzi1, . . . , βziM) is a response coefficient vector of latent class z with respect to

item i, xT
it = (xit1, . . . , xitM) is a vector of M marketing variable for item i at time t, and
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F (�) is the cumulative distribution function (CDF) of the standard normal distribution.

In our empirical study, xit includes price and promotional variables.

We next set a categorical distribution θcz for the probability p(z|c) that consumer c

belongs to the latent class z. The categorical distribution is multinomial with parameters

θc. The θc is specified so that the selection probability of consumer c with respect to item

i is conditionally independent if the latent class z is given. That is, all of the information

about respondent heterogeneity of purchases is conveyed through the latent classes. Then,

the right hand side of (1) is represented by:

Z∑
z=1


F
(
xT
itβz1

)
...

F
(
xT
ItβzI

)
 [θ1z · · · θCz] (4)

Finally, segment-level heterogeneity is introduced through a hierarchical model with

a random effect for response coefficient βzi:

βzi ∼ NM(µi, Vi) (5)

where the prior distributions for µi and Vi follow an M-dimensional multivariable normal

distribution NM(µ̃, σ̃2Vi) and an inverse-Wishart distribution IW (W̃ ,w̃), where µ̃, σ̃2,

W̃ and w̃ are parameters specified by the analyst. We assume that the M -dimensional

coefficient vector βzi for each segment, z, is a draw from a distribution with mean and

covariance that is item-specific.

We specify a prior distribution for θc, assuming the Dirichlet distribution as the natural

conjugate prior distribution of categorical distribution:

θc ∼ Dirichlet (γ̃) (6)

The likelihood is given as:
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ℓ ({ycit} | {θc} , {βzi} , {xit}) =
C∏
c=1

∏
i∈Ic

∏
t∈Tc

Z∑
z=1

[θczp (ycit|xit,βzi, z)] (7)

where p(ycit|xit, βzi, z) denotes the kernel of the binary probit model conditional on z, Tc

denotes a subset of t in which consumer c purchased any item in a store, and Ic is a subset

of items i purchased by consumer c at least once during the period t = 1, . . . , T , that is,

Tc ∈
{
t|

I∑
i=1

ycit > 0

}
and Ic ∈

{
i|

T∑
t=1

ycit > 0

}
.

Equation (7) is difficult to use directly because the likelihood includes summations over

latent class z. Instead, we employ a data augmentation approach by Tanner (1987) with

respect to latent variable z. We introduce variables zcit ∈ {1, . . . , z . . . , Z} denoting the

label of the latent class for each consumer c, each purchased item i, and each purchasing

event t. Conditioning on the zcit for each purchasing transaction, as in the LDA of Blei

et al. (2003), the likelihood in (7) simplifies to:

ℓ ({ycit} | {θc} , {zcit} , {βzi} , {xit}) =
C∏
c=1

∏
i∈Ic

∏
t∈Tc

p (zcit = z|θc) p (ycit|xit,βzi, zcit = z)

(8)

where p(zcit = z|θc) denotes a categorical distribution when θc is given. Hereinafter,

(zcit = z) is denoted as zcit to simplify notation.

Our model for large-scale transaction data is different from related standard models

in two respects. First, the likelihood is defined over brands and time periods in which

purchases are observed to take place at least once as indicated by the variables Tc and

Ic. It is composed of not only purchase but also non-purchase occations for identifying

market response parameter. In this sense, our model differs from topic models used in

text analysis where the likelihood is formed using the words present in a corpus, not the

words that are not present. Second, heterogeneity is introduced at the observation-level,

allowing the different transactions of a household to reflect different latent states, z at
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every (c, i, t), which is denoted by zcit. It provides us with useful information for char-

acterizing respondents and brands, and predicting their purchases. This differs from the

traditional latent class model where the likelihood of all household purchases contributes

to inferences about a respondent’s latent class membership (z) and parameters (β).

The posterior distribution of parameters including latent variables of states {zcit} and

augmented utilities {u(z)
cit} of probit model is then given by:

p
(
{θc}, {zcit},

{
u
(z)
cit

}
, {βzi}, {µi}, {Vi} | {xit}, {ycit}

)
= p ({θc} | {zcit})

× p ({zcit} | {θc,βzi,xit, ycit})

× p
({

u
(z)
cit

}
| {βzi, zcit,xit, ycit}

)
× p ({µi, Vi} | {βzi})

× p
(
{βzi} |

{
u
(z)
cit ,µi, Vi,xit

})
∝ p

(
{θc}, {zcit},

{
u
(z)
cit

}
, {βzi}, {µi}, {Vi}, {xit}, {ycit}

)
=

[
C∏
c=1

p (θc)

][
I∏

i=1

p (µi, Vi)
Z∏

z=1

p (βzi | µi, Vi)

]
[

C∏
c=1

∏
i∈Ic

∏
t∈Tc

p (zcit | θc) p
(
u
(z)
cit | βzi, zcit,xit, ycit

)
p (ycit | βzi, zcit,xit)

]
(9)

3 Variational Bayes Inference

We introduce VB inference in order to achieve computational feasibility for large-scale

transaction data. VB inference approximates the posterior, or target distribution in a

Bayesian model. The advantage of this method over MCMC is low computational cost.

VB also takes advantage of parameters that can be decomposed into several mutually

independent groups. This is necessary for our analysis using a large database.

The target and approximate distributions are denoted as p and q, respectively. The
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latter is called the variational distribution. Distributions p and q share a parameter set

Θ. In general, when the data D is given, the log marginal likelihood log p(D) of the

target distribution is decomposed into two components as:

log p (D) = L (q) +KL (q ∥p) (10)

L (q) =

∫
q (Θ) log

{
p (D,Θ) q(Θ)−1} dZ (11)

KL (q ∥p) = −
∫

q (Θ) log
{
p (Θ|D) q(Θ)−1}dZ (12)

L(q) is called variational lower bound in VB inference, and KL (q ∥p) is the Kullback-

Leibler divergence of the target and variational distributions. As is well known, KL (q ∥p)

is zero if p and q are the same distribution. Therefore, a reasonable solution to estimating

the posterior distribution p is the variational distribution q for which KL (q ∥p) is mini-

mized. However, it is difficult to evaluate the value of KL (q ∥p) because the expression

involves a posterior distribution of p(Θ|D).

In contrast, L(q) involves a joint distribution p(D,Θ) that is easily evaluated in many

cases because it is obtained as the product of the prior and the likelihood in Bayesian

models. We note that maximizing L(q) is equivalent to minimizing KL (q ∥p) because

the log marginal likelihood of the target distribution is constant for a given dataset. In

this situation, assuming that the distribution q and parameter set Θ are decomposable

for some groups, the parameters are called variational parameters q (Θ) =
J∏

j=1

qj

(
Θ(j)∗

)
and can be maximized by the following updating algorithm (Jordan et al., 1999):

Θ(j)∗{new} ← argmax
Θ(j)∗

L
(∏J

j
qj

(
Θ(j)∗

))
∝ exp (Ek ̸=j [log p (D,Θ)]) . (13)

The Ek ̸=j [ ] are the expectation value associated with qj distributions over all pa-

rameters Θ(j)∗ , where k ̸= j. The variational parameters are updated for each variational
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parameter set Θ(j)∗ until convergence of the algorithm. The initial variational parameters

are proper random values. The VB is guaranteed to converge after several iterations be-

cause L(q) is convex with respect to each qj(Θ
(j)∗) (Bishop, 2006). The variational lower

bound monotonically increases as the iteration proceeds; therefore, convergence can be

confirmed by checking the value of L(q) at each iteration.

3.1 VB for the Proposed Model

We introduce the variational distributions and parameters for the proposed model. The

parameters and variational parameters are denoted as

Θ =
{
{θc}, {zcit},

{
u
(z)
cit

}
, {βzi}, {µi}, {Vi}

}
and

Θ∗ =
{
{θ∗

c} , {z∗
cit} ,

{
u
(z)∗
cit

}
, {β∗

zi} ,
{
V β∗
iz

}
, {µ∗

i } , {σ
µ∗
i } , {w∗

i } , {W ∗
i }
}
respectively, while

the variational distributions are configured as

q (Θ | Θ∗, {xit}, {ycit})

=

[
C∏
c=1

qc (θc | θ∗
c)

][
C∏
c=1

∏
i∈Ic

∏
t∈Tc

qz (zcit | z∗
cit)

][
C∏
c=1

∏
i∈Ic

∏
t∈Tc

qu

(
u
(z)
cit | u

(z)∗
cit , z∗

cit,β
∗
zi.xit

)]
[

I∏
i=1

Z∏
z=1

qβ

(
βzi | β∗

zi, V
β∗
zi

)][ I∏
i=1

qµ,V (µi, Vi | µ∗
i , σ

µ∗
i , w∗

i ,W
∗
i )

]
(14)

where qc is a Dirichlet distribution with variational parameter θ∗
c , qz is a categorical

distribution with variational parameter z∗
cit, qu is a truncated normal distribution with

parameter zcit and variational parameter u
(z)∗
cit , qβ is an M -dimensional multivariable nor-

mal distribution with two variational parameters (mean vector β∗
zi and covariance matrix

V β∗
zi ), and qµ,V is a multivariable normal–inverse Wishart distribution with variational

parameters µ∗
i , σ

µ∗
i , w∗

i , W
∗
i . Here, to realize effective variational inference, we assume

that all variational parameters are independent. The update equation and the derivations

of the variational parameters are detailed in Appendix A.
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3.2 Simulation Study

In this subsection we examine the performance of the proposed VB estimator. In addition

to computational time, VB has another advantage over MCMC in that it is not prone to

the label switching problem encountered in MCMC estimation (see Puolamaki and Kaski,

2009).

We examine the precision of the estimates and computational time separately. The

first simulation evaluates the recovery of true parameter values by VB, and the second

simulation examines scalability. We compare the computational times of VB to MCMC,

ignoring label switching problem encountered with MCMC estimation. We show that

MCMC becomes too computationally demanding as the size of the dataset increases, and

that VB provides a computationally efficient and accurate approximation to the posterior.

3.2.1 Simulation Dataset

In this simulation study, purchase records are generated by simulation using marketing

variables. The marketing variables are extracted from a real customer database of a

general merchandise store. The marketing variables vector is composed of price (P̄it),

display (Dit), and feature (Fit); that is, x
T
it = [1 P̄it Dit Fit] . P̄it is the discount rate to

the maximum price of item i in the observational period. Display and feature are binary

entries, equal to one if the item i is displayed or featured at time t, and zero otherwise.

Here, the value of P̄it is normalized into interval [0, 1] in order to conform the scale of

discount rate to the scale of dummy variables.

We assume that any customers belong to one of three segments characterized by

response coefficients for marketing variables. First segment (Segment 1) has a response

coefficient β̄1 = [−0.5, 1, 0, 0]T , that is, customers in the segment sensitively respond to

discount of product items and are not affected from display or feature. Similarly, we

employ β̄2 = [−0.5, 0, 1, 0]T and β̄3 = [−0.5, 0, 0, 1]T as response coefficient vectors for

second (Segment 2) and third segments (Segment 3) that are influenced from display and
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feature promotion only, respectively. The three vectors are set as true values of response

parameter. This setting means that any product items have the same properties on the

response to marketing promotions for a simplification of analysis. The verification or

check of parameter estimation will be too complicated if we employ different coefficient

vector for each product items.

Next, we make coefficient vectors of individual customers. Here, we suppose that each

segment consists of 100 customers and 50 product items are in a store. The individual

coefficients vectors ᾱci are generated by followings; ᾱci ∼ N(β̄1, σI) (c = 1, · · · , 100),

ᾱci ∼ N(β̄2, σI) (c = 101, · · · , 200) and ᾱci ∼ N(β̄3, σI) (c = 201, · · · , 300), and σ is set

as 0.1. Then, the utilities for 30 days are simulated by ūcit = xT
itᾱci + ϵ̄cit (ϵ̄cit ∼ N(0, 1))

and the purchased records {ȳcit} are generated as ȳcit = 1 if ūcit > 0 and ȳcit = 0 otherwise.

3.2.2 Precision of Estimates

In this subsection, we examine how well the parameters of β̄1, β̄2 and β̄3 are recovered in

the proposed model with VB. Here, we generate ten simulation datasets by the procedures

above, and we set hyper-parameters as γ̃ = [0.1, · · · , 0.1]T , µ̃ = [0, · · · , 0]T , σ̃2 = 1,

W̃ = IM and w̃ = 10 and appropriate initial values. IM is the identity matrix of size M .

In VB estimation, the iterations are terminated when the variational lower bound improves

by less than 10−5% of the current value in two consecutive iterations (the variational

lower bound is described in Appendix B). These settings for the hyper-parameters and

the stopping rule of the VB iterations are adopted in all empirical studies hereafter.

Table 1 displays the means and standard deviations of estimates using the ten simu-

lation dataset. The numbers in Table 1 are calculated as 50−1
∑I

i=1 β̂zi (β̂zi represents a

estimated posterior mean of βzi.). The results indicate that the VB estimates are close

to true values for all parameters in every segment.

Table 1: Estimates of Simulation Data
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3.2.3 Scalability

Scalability is investigated for: C = {1000, 5000, 10000}, I = {100, 500, 1000}, T = 30

and Z = {5, 10, 20}. Thus, 27 different scenarios were explored in the scalability study.

The MCMC estimator is described in Appendix C, and we forecast the simulation times

for 6,000 MCMC samples from ten samples for computational feasibility. We note that

the selection of 6,000 MCMC samples is consistent with the simulation study of Braun

and Mcauliffe (2010). The simulated data is the same as used in above, and the results

reported below were calculated in identical computational environment (64-bit version of

Python 2.7.5 with Numpy, implemented on a 3.5 GHz processor (Quad-Core Xeon; Intel

Corp.) with 64 GB memory).

Table 2 reports computation time in hours for the VB and MCMC estimators. For both

algorithms, the computational cost increases linearly with the size of the dataset specified

in terms of the number of consumers, items, and latent classes. In all scenarios, the times

of MCMC computations exceed those of VB. The VB algorithm is approximately 20 to 50

times more efficient than MCMC, depending on the scenario. The time of computation

using large-scale data (C = 10000, I = 1000) by MCMC is estimated to be over 450

hours, and thus we recognize that MCMC is not applicable for our problem. The results

of the simulation show that VB estimates are reliable in precision and computationally

feasible for analysis. In contrast, MCMC becomes increasingly prohibitive as the number

of customers and choice alternatives increases.

Table 2: Simulation Time by VB and MCMC

4 Joint Segmentation and Personalization

The variational estimates β̂
∗
zi, û

(z)∗
cit , θ̂c, and ẑ

(z)∗
cit can be transformed into statistics that

are relevant for segmentation and targeting using the M dimensional vector of probability
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ẑ
(z)∗
cit , z =, 1, ..., Z at each point of data cube:

qz (zcit | ẑ∗
cit) (15)

Given the variational Bayes estimates Λ̂ = {β̂
∗
zi, û

(z)∗
cit , θ̂c}, we obtain the probability of

customer segment membership by aggregating over products (i) and time (t):

p
(
c ∈ z|Λ̂

)
=

∑
i∈I
∑

t∈Tc
ẑ
(z)∗
cit × I(ycit = 1)∑Z

zk=1

∑
i∈I
∑

t∈Tc
ẑ
(z)∗
cit × I(ycit = 1)

(16)

and aggregating over customers (c) and time (t) yields the probability of product segment

membership:

p
(
i ∈ z|Λ̂

)
=

∑C
c=1

∑
t∈Tc

ẑ
(z)∗
cit × I(ycit = 1)∑Z

zk=1

∑C
c

∑
t∈Tc

ẑ
(z)∗
cit × I(ycit = 1)

(17)

where I(·) is the indicator function equal to one if the augment holds and zero otherwise.

We take the sums over the instances of purchase because we believe that non-purchase

can occur for many reasons other than non-membership (e.g., having large household

inventory of the product). Our estimates of customer and product latent membership are

driven by customer actions and not their inactions.

We can also construct market response estimates for each respondent and each prod-

uct from Λ̂ = {β̂
∗
zi, û

(z)∗
cit , θ̂c} by projecting the estimates of latent utility on marketing

variables. That is, the estimates are obtained from an auxiliary regression of latent util-

ity Û
(k)∗
ci stacked by û

(k)∗
cit with the state k = argmax ẑ

(z)∗
cit changing over time on the

corresponding marketing variables Xci constituted by xit (t ∈ Tc).

α̂ci =
(
Xci

TXci

)−1
Xci

T Û
(k)∗
ci . (18)

The estimates above provide a bridge between the granularity of the model, where het-

erogeneity is introduced at each point in the data cube, and managerial inferences and
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decisions that are made across products (e.g., which customers to reward), across cus-

tomers (e.g., which products to promote) and over time. In addition, the standard t test

in the standard linear regression models can be used for testing significance of estimates.

5 Empirical Analysis

A customer database from a general merchandise store, recorded from April 1 to June 30

in 2002, is used in our analysis. A customer identifier, price, display, and feature vari-

ables were recorded for each purchase occasion. The dataset contains 94,297 transactions

involving 1,650 consumers and 500 items. The items were chosen by being displayed and

featured at least once in the data period. The marketing variables are price (Pit), display

(Dit), and feature (Fit); that is, xT
it = [1 Pit Dit Fit] . Pit is the price relative to the

maximum price of item i in the observational period. The display and feature are binary

entries, equal to one if the item i is displayed or featured at time t, and zero otherwise.

5.1 Cross-category analysis

Our model of purchase behavior allows for observation-level heterogeneity that acknowl-

edges that each purchase occasion can be viewed as the building-block for analysis. Some

occasions are associated with large trips to the store while other occasions may have be

more focused on a specific set of offerings. Moreover, consumers may exhibit behavior

consistent with multiple occasions, or topics, over time. While it may be desirable for

firms to classify goods and respondents to segments for the purpose of understanding

different types of customers and goods, our model is capable of conducting analysis at a

more disaggregate level. Alternatively, our model can be used to associated both offer-

ings and customers to latent topics, or segments, for understanding and managing market

basket purchases.

We illustrate such cross-category analysis using a z = 10 topic solution. Conditioning
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on the number of segments is common practice in the machine learning literature. We

tried, but were not successful in estimating z as part of our model (see appendix B) and

leave this as an area for future research..

Table 3: Joint Segmentation for Cross-category Analysis

Table 3 displays the result of the joint segmentation of products and consumers using

equations (16) and (17). The five products with highest probability and their average

levels of marketing activity are shown for each segment. The first column reports the brand

name, the second column reports the product category associated with the offering, and

the remaining columns display the average level of marketing activity, i.e., the average

price rate, average display rate, and average feature rate. The title of each segment

contains the numbers of items and customers jointly classified into the same segment.

The segments are interpreted as follows.

The first segment has 31 consumers and 9 items are assigned to it. This segment

contains beverages across different categories with small discount rates and low rates

of feature advertising. The second segment is characterized as being composed of the

identical brands in the desert category. The items are infrequently discounted and have

a higher rate of display than the first segment. Segments 3 through 7 have relatively

fewer consumers and items, and they exhibit greater variation in the level of marketing

activity. In particular, Segment 5 contains two offerings in both the ice cream and dressing

categories with the same brand names, both with relatively high rates of display and

feature activity. Segment 6 contains contains mainly items from the drink category and

is similar in marketing activity with segment 5. Segment 7 is also comprised of drink

items with higher marketing level as well as other items with lower level of activities. The

items in segment 8 are comprised of variety of product categories with relatively higher

level of display. Segment 9 is the largest cluster with 946 consumers and 332 items. It is
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characterized as having the highest level of display activity. Segments 8 and 10 contain

the less discounting and more displayed items, and the former is double and triple sized

in consumers and items.

The potential use of this information is in managing cross-category behavior. Knowing

the products typically purchased for different types of shopping trips can be used to de-

termine the range of impact of price promotions and merchandising activity. If consumers

have a budget for a particular shopping occasion, rather than for a particular product

category, then the influence of a price reduction will have a broader effect in traditional

models of demand. Our model allows for the identification of the boundary of effects as

part of the topic, or latent segment, characterization.

5.2 Individual-level parameter estimates

The management of pricing, displays and feature activity within a store involves decisions

that cut across time and consumers, and requires knowledge of which product categories

are most sensitive to these actions. More recently, targeted coupon delivery systems have

allowed for the individual-level customization of prices. Managing these decisions requires

a view of the sensitivity of consumers and product categories to these actions.

Individual-level estimates of market response is obtained by using the equation (18)

and two sided significance test on each estimate with the level of 5% is conducted by

t test for deciding effectiveness of marketing variables in empirical analysis. We note

that customers will display variation in their sensitivity to variables such a price across

product categories because of varying aspects of the product categories (e.g., necessary

versus luxury goods, amount of product differentiation, price expectations) and different

purposes of the shopping visit over time (e.g., shopping for one’s self or others, large

versus small shopping trip, etc.).

We can marginalize α̂ci by either of its arguments, c and i, to obtain characteriza-

tions of customers and items useful for analysis. The empirical marginal distribution of
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consumer parameter estimates is obtained by averaging across the 500 products in our

analysis, i.e.,

{
C∑
c=1

α̂ci/C

}
. A histogram of 500 items for each marketing variable are

displayed on the left side of Figure 1, and provides information about the general dis-

tribution of heterogeneity faced by the firm for actions such as price customization. We

find that the individual-level estimates to be plausible in that the price coefficients are

negative and the display and feature coefficients are estimated to be positive.

We can also summarize heterogeneity across consumers and examine the distribution

of marketing variables for the 500 products in our analysis. The empirical marginal distri-

butions of individual products, averaging over the 1650 consumers, i.e., of

{
I∑

i=1

α̂ci/I

}
,

are depicted on the right of Figure 1. The products that never displayed and featured

in the data period have been omitted from the histograms. These estimates are useful

for deciding which product categories should receive merchandising support in the form

of in-store displays and feature advertising. We find that the estimates are plausible in

most product categories with negative price coefficients, and positive display and feature

coefficients, but there exists fairly wide variation in the effectiveness of these variables

across products. Many product categories appear to be unresponsive to merchandising

efforts.

Figure 1: Marginal Distribution of Individual Parameter Estimates:

Figure 2 provides a two dimensional summary of the data and coefficient estimates.

Figure 2(a) is a scatter plots of two dimensional data cube with respect to customers

(i) and products (c), aggregated along the time (t) dimension. If a customer has never

purchased a specific product in the dataset, the coordinate (i, c) is colored “white,” and

it is “black” if they have purchased the product at least once. We observe that customer-

item space is still very sparse.

Figures 2(b)-2(d) show the results of testing with a 5% level of significance level for non-

zero individual response coefficients. In figure 2(b), the coordinates with a significant price
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coefficient is indicated as “black” and “white” shows that the estimate is insignificant.

The effectiveness of display and feature promotions are similarly defined. We find that

our model produces many significant price, display and feature coefficients.

Figure 2: Personalized Effective Marketing Variables for All Customers and Items

Figure 3 provides a close up of Figure 2 for 100 products and customers. An interesting

aspect of our analysis is that significant coefficients can arise even when a customer has

never purchase a product because of the imputation present in the topic model for non-

purchases. The topic model greatly reduces the dimensionality of the data cube, as shown

in Equation (1), and results in individual-level estimates in a sparse data environment.

Our analysis yields coefficient estimates at the individual- and product-level by way of

the latent topics that transcend the product categories. Our model enables marketers to

develop effective pricing and promotional strategies by recognizing the presence of latent

topics, or shopping baskets, present at each point in time in the data cube.

Figure 3: Personalized Effective Marketing Variables for 100 Customers and Items

6 Discussion

The unit of analysis in marketing is not a person or a product, but a person embedded

within a context of action for which a product might be useful. Consumers find value

in the goods and services that help them deal with issues in their lives, which is time

specific. It is not surprising that shopping behavior is therefore time specific, with some

shopping trips encompassing a large number of purchases and expenditures, while other

shopping trips having a much smaller number of items being purchased. We propose a

model for dealing with a large number of offerings by recognizing the presence of shopping

heterogeneity at each point in time, and employ a topic model for dealing with the many

choice alternatives available at retailers.
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This paper addresses three challenges in estimating models of demand in large databases:

i) the large number of available products, ii) the large number of consumers who purchase

these products, and iii) the sparseness of transaction data. Existing models in marketing

and methods of estimation tend to focus on a narrow set of products and a subset of

consumers to understand the richness of the competitive environment within a product

category among a random sample of consumers. This goal, however, is often at odds with

the goals of practitioners who want to score existing datasets to identify a wide set of

customers and products to allocate promotional budgets and increase sales.

We propose a descriptive model of demand based on the idea of topic models where

products purchased by consumers take the place of words used by authors in creating

documents. We allow for a product’s purchase probability to be affected by price, display

and feature advertising variables, but do not treat purchases to arise from a process of

constrained utility maximization. The advantage of this approach is that it allows us to

side-step complications associated with competitive effects and model a much larger set of

products than that possible with existing economic models. By retaining prices and other

marketing variables in our model we can still predict the effect of these variables on own-

sales. This tradeoff is inevitable in the analysis of large-scale databases where purchases

are tracked across thousands of products. The proposed model links the characteristics

of consumer segments to marketing variables, and it is applicable to both segment-level

and individual-level marketing across a large set of products.

The scalability and predictive performance of the proposed models were confirmed

through a simulation study involving variational Bayes inference. In our analysis, we

imposed a fairly conservative convergence criteria for VB of 10−5%, but also found that

coarser thresholds produced similar results. We therefore believe that estimation times

can be further reduced in practice from those reported in this paper.

Our model allows us to engage in the joint segmentation of consumers and items by

using the posterior probability of latent state which is allocated to every point of data

22



cube. The information on response to marketing efforts in a reduced dimensional space

compressed by topic model is decompressed into original space by using variational Bayes

inference to obtain the individual response parameters in data cube. We show how the

model can be used to produce information useful for personalized marketing for both

specific customers and specific products, and effectively deals with data spareness due to

infrequent consumer purchases.

Our model assumes the stability of the topic structure over time. However, it is possible

that consumer’s market response and purchase patterns change over time because of

factors such as new trends, state dependence and the arrival of new purchase and delivery

technologies. We believe the development of a dynamic topic model for purchase is an

interesting extension of our work, and leave this for future research.

23



Appendix A: Derivation of VB Algorithm for Pro-

posed Model

This appendix details the variational inference of proposed model. The update procedure

derives from the analytical calculation of Equation (13). The update equation for each

variational parameter is obtained from the following expectation values

E ̸=qj [log p (D,Θ)] ≡ Ek ̸=j [log p (D,Θ)]

=

∫
log p (D,Θ)

∏
k ̸=j

qi

(
Θ(i)∗

)
dΘ(i)∗, (A1)

where D = {{xit} , {ycit}}.

The update procedures of variational parameters θ∗
c , z

∗
cit, u

(z)∗
cit , β∗

iz, V
β∗
iz , µ∗

i , σ
µ∗
i , w∗

i ,

and W ∗
i are presented below.

A.1 Optimization of θ∗c

The Dirichlet and categorical distributions are of the following forms:

Dirichlet (θc | γ̃) =
∏Z

z=1 Γ (γ̃z)

Γ
(∑Z

z=1 γ̃z

) Z∏
z=1

θγ̃z−1
cz

Categorical (zcit | θc) =
Z∏

z=1

θδ(zcit=z)
cz

(A2)

where Γ (·) is the gamma function and δ(zcit = z) is the Dirac delta function defined as

δ(zcit = z) = 1 if zcit = z and δ(zcit = z) = 0. The expectation value E ̸=qθ [log p (D,Θ)]
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is then calculated for each c as

E ̸=qθ [log p (D,Θ)] = log p (θc) +Eqz [log p ({zcit} | θc)] + const.

= log Γ
(∑Z

z−1
γ̃z

)
−

Z∑
z=1

logΓ (γ̃z) +
Z∑

z=1

[(
γ̃z +

∑
i∈Ic

∑
t∈Tc

z∗citz − 1

)]
log θcz + const,

(A3)

where, z∗citz is a element of z∗
cit. Here and hereafter, const. denotes any terms not included

in the relevant parameters. The second line of the above equations describes a log-Dirichlet

function with parameter γ̃z +
∑
i∈Ic

∑
t∈Tc

z∗citz. Therefore,

θ∗
c ← γ̃ +

∑
i∈Ic

∑
t∈Tc

z∗
cit (A4)

A.2 Optimization of z∗cit

Here we denote a digamma function as Ψ (·), which will be useful for later discussion,

and summarize the property of truncated normal distribution in the probit model. u
(z)
cit

follows a normal distribution with mean xT
itβzi and variance 1. Moreover, u

(z)
cit must satisfy

ycit = 1 if ucit > 0 and ycit = 0 if ucit ≤ 0. Therefore, u
(z)
cit is generated from a truncated

normal distribution as

u
(z)
cit ∼

 TN(0,∞)

(
xT
itβzi, 1

)
if ycit = 1

TN(−∞,0)

(
xT
itβzi, 1

)
if ycit = 0

. (A5)

where TN(n1,n2) (·, ·) denotes a normal distribution truncated from n1 to n2. The distri-

bution of u
(z)
cit is therefore expressed as

p
(
u
(z)
cit | βzi, zcit,xit, ycit

)
=

1

Ω
(z)
cit

1√
2π

exp

{
−1

2

(
u
(z)
cit − xT

itβzi

)2}
(A6)
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with Ω
(z)
cit ≡

{
F
(
xT
itβzi

)}ycit {1− F
(
xT
itβzi

)}(1−ycit). In addition, the expectation value

and variance are expressed as

E
[
u
(z)
cit

]
= xT

itβ
∗
zi + φ

(z)
cit

V
[
u
(z)
cit

]
= 1− xT

itβ
∗
ziφ

(z)
cit −

(
φ
(z)
cit

)2 (A7)

where φ
(z)
cit ≡ (−1)(1−ycit)f

(
xT
itβ

∗
zi

)
/Ω

(z)∗
cit and Ω

(z)∗
cit ≡

{
F
(
xT
itβ

∗
zi

)}ycit {1− F
(
xT
itβ

∗
zi

)}(1−ycit).

Thus, the expected value E ̸=qz [log p (D,Θ)] is given as

E ̸=qz [log p (D,Θ)] = Eqc [log p (zcit | θc)]

+Equ,qβ

[
log p

(
u
(z)
cit | βzi, zcit,xit, ycit

)]
+ const. (A8)

The first term in the right hand side of Equation (A8) is obtained as Ψ (θ∗cz) −

Ψ
(∑Z

z−1 θ
∗
cz

)
(Blei et al. 2003), while the second term is evaluated as

Equ,qβ

[
log p

(
u
(z)
cit | βzi, zcit,xit, ycit

)]
= Equ,qβ

[
− log

√
2πΩ

(z)
cit −

1

2

(
u
(z)
cit − xT

itβzi

)2]
= −Eqβ

[
log Ω

(z)
cit

]
− 1

2
Equ

[(
u
(z)
cit

)2]
+Equ,qβ

[
u
(z)
citx

T
itβzi

]
− 1

2
Eqβ

[(
xT
itβzi

)2]
+ const.

(A9)

To solve Equation (A8) for z∗citz, we must evaluate the four terms of Equation (A9).

The first term includes a CDF from which the expectation value is difficult to obtain

analytically. Thus, we expand the term as a zeroth-order Taylor expansion in terms of

the CDF of normal distribution and the logarithm function. Such bold approximation

is standard strategies for adapting topic models with VB to practical computation (for

examples, zeroth-order Taylor approximation by Asuncion et al. (2009) and Sato and

Nakagawa (2012), and zeroth and first order delta approximation by Braun and McAuliffe
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(2010)). The four expectation values in Equation (A9) are then written as

Eqβ

[
log Ω

(z)
cit

]
≈ const,

Equ

[(
u
(z)
cit

)2]
= V

[
u
(z)
cit

]
+
(
xT
itβ

∗
zi + φ

(z)
cit

)2
,

Equ,qβ

[
u
(z)
citx

T
itβzi

]
=
(
xT
itβ

∗
zi + φ

(z)
cit

) (
xT
itβ

∗
zi

)
+ xT

itV
β∗
zi xit,

Eqβ

[(
xT
itβzi

)2]
= xT

itV
β∗
zi xit +

(
xT
itβ

∗
zi

)2
. (A10)

Finally, z∗citz is updated as

z∗citz ←
exp (ρcitz)
Z∑

j=1

exp (ρcitj)

, (A11)

where

ρcitz = Ψ(θ∗cz)−Ψ
(∑Z

z−1
θ∗cz

)
+

1

2
xT
itβ

∗
ziφ

(z)
cit +

1

2
xT
itV

β∗
zi xit. (A12)

A.3 Optimization of u
(z)∗
cit

Similar to Equations (A3) and (A9), the expected value that optimizes u
(z)∗
cit is

E ̸=qu [log p (D,Θ)] = Eqz ,qβ

[
log p

(
u
(z)
cit | βzi, zcit,xit, ycit

)]
+ const. (A13)

Here we seek the mean vector of the truncated normal distribution of u
(z)
cit . Therefore, the

update equation becomes

u
(z)∗
cit ← xT

itβ
∗
zi + φ

(z)
cit . (A14)

A.4 Optimization of β∗zi and V β∗
zi

First, we derive an inverse Wishart distribution function and adopt some well-known

properties of multivariable normal and inverse Wishart distributions (Anderson 2003,
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Bishop 2006).

IW
(
W̃ , w̃

)
=

∣∣∣W̃ ∣∣∣w̃/2

2w̃MΓ(w̃/2)
|Vi|−

w̃+M+1
2 exp

{
−1

2
tr
(
W̃V −1

i

)}
,

EqV [log |Vi|] =
M∑

m=1

Ψ

(
w∗

i + 1−m

2

)
+M log 2 + log

∣∣W ∗−1
i

∣∣ ,
EqV

[
V −1
i

]
= w∗

iW
∗−1
i ,

Eqµ,qV

[
(βzi − µi)

T V −1
i (βzi − µi)

]
= (βzi − µ∗

i )
T w∗

iW
∗−1
i (βzi − µ∗

i ) + σµ∗
i . (A15)

We obtain the optimization procedures of β∗
zi and V β∗

iz by the following expected value:

E ̸=qβ [log p (D,Θ)] = Eqµ,qV [log p (βzi | µi, Vi)]

+Equ,qz

[
log p

({
u
(z)
cit

}
| βzi, {zcit,xit, ycit}

)]
+ const.

= −1

2
Eqµ,qV

[
(βzi − µi)

T V −1
i (βzi − µi)

]
− 1

2

C∑
c=1

∑
t∈Tc

Equ,qz

[(
u
(z)
cit − xT

itβzi

)2]
+ const. (A16)

The first and second terms of the second line are given by the last and third lines of

Equation (A10), while the third and fourth terms are given by Equations (A2) and (A3),

respectively, derived in a manner similar to quation (A9). β∗
zi and V β∗

zi are then arith-

metically updated as

β∗
zi ←

{
w∗

iW
∗−1
i +XziX

T
i

}−1 {
w∗

iW
∗−1
i µ∗

i +Xziūzi

}
V β∗
zi ←

{
w∗

iW
∗−1
i +XziX

T
i

}−1
(A17)

where

ūzi ≡
[{

u
(z)∗
cit

}
c=1,···C,t∈Tc

]T
, Xi ≡

[
{xit}c=1,···C,t∈Tc

]
, Xzi ≡

[
{z∗citzxit}c=1,···C,t∈Tc

]
.
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The ūzi is vector and Xi and Xzi are matrices. The number of elements in ūi, Xi and

Xzi are decided by the size of the consumer base and by Tc.

A.5 Optimization of µ∗i , σ
µ∗
i , w∗i , and W ∗

i

Here we consider a joint distribution of a multivariable normal distribution of µi and

an inverse Wishart distribution of Vi, and derive the update equations for four types of

variational parameters from this joint distribution. To this end, we require the following

expectation value from the joint distribution function:

E ̸=qµ,qV [log p (D,Θ)] = log p (µi, Vi) + Eqβ [log p ({βzi} | µi, Vi)] + const.

= −1

2
log |Vi| −

1

2
σ̃−1
µ (µi − µ̃µ)T V −1

i (µi − µ̃µ)− w̃ +M + 1

2
log |Vi| −

1

2
tr
{
W̃V −1

i

}
− 1

2
Z · Eqβ [log |Vi|]−

1

2

Z∑
z=1

Eqβ

[
(µi − βzi)

T V −1
i (µi − βzi)

]
+ const. (A18)

First, we extract from this expectation value all terms linked to multivariable variational

parameters µµ∗
i and σµ∗

i ; that is

E ̸=qµ [log p (D,Θ)] = −1

2
σ̃−1
µ (µi − µ̃µ)T V −1

i (µi − µ̃µ)

− 1

2

Z∑
z=1

Eqβ

[
(µi − βzi)

T V −1
i (µi − βzi)

]
+ const. (A19)

The second term in the above equation is obtained in the same manner as Equation (A15).

The multivariable normal distribution function is then constructed in a straightforward

manner as follows:

µ∗
i ←

(
σ̃−1
µ + Z

)−1

(
σ̃−1
µ µ̃µ +

Z∑
z=1

β∗
zi

)
,

σµ∗
i ←

(
σ̃−1
µ + Z

)−1
. (A20)

Next, we optimize w∗
i and W ∗

i using Equation (A15) and the relationship log q (Vi) =
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log q (µi, Vi)− log q (µi | Vi).

E ̸=qV [log p (D,Θ)] = E ̸=qµ,qV [log p (D,Θ)]−E ̸=qµ [log p (D,Θ)] (A21)

The expectation value E ̸=qV [log p (D,Θ)] is calculated in a straightforward manner by

using Equations (A16) and (A17). Finally, we obtain the update equations for w∗
i and

W ∗
i as

W ∗
i ← W̃ +

∑Z

z=1
V β∗
zi + σ̃−1

µ µ̃µ̃+
∑Z

z=1
β∗

ziβ
∗T
zi −

(
σ̃−1
µ + Z

)
µ∗

iµ
∗T
i ,

w∗
i ← w̃ + Z. (A22)

Notice that σµ∗
i and w∗

i are constant if the hyperparameters and the number latent class

are given.

Appendix B: Variational Lower Bound of Proposed

Model

The variational lower bound L (Θ∗) is given by

L (Θ∗) =

∫ [
q (Θ|Θ∗) log

p (Θ, {xit} , {ycit})
q (Θ|Θ∗)

]
dΘ = EqΘβ

[
log

p (Θ, {xit} , {ycit})
q (Θ|Θ∗)

]
= L

(p)
θ + L(p)

z + L(p)
u + L

(p)
β + L

(p)
µ,V − L

(q)
θ − L(q)

z − L(q)
u − L

(q)
β − L

(q)
µ,V ,

where, each component of L (Θ∗) is expectation of variables of proposed model. The

expectations excepting L
(p)
u and L

(q)
u are followings;

L
(p)
θ = Eqc [log p ({θc})]

=
C∑
c=1

[
log Γ

(∑Z

z=1
γ̃z

)
−

Z∑
z=1

logΓ (γ̃z) +
Z∑

z=1

(γ̃z − 1)
{
Ψ(θ∗cz)−Ψ

(∑Z

z=1
θ∗cz

)}]
,
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L(p)
z = Eqz ,qc [log p ({zcit} | {θc})]

=
C∑
c=1

∑
i∈Ic

∑
t∈Tc

Z∑
z=1

z∗citz

{
Ψ(θ∗cz)−Ψ

(∑Z

z=1
θ∗cz

)}
,

L
(p)
β = Eqβ ,qµ,qV β

[log p ({βzi} | {µi, Vi})]

= −1

2

I∑
i=1

Z∑
z=1


M log 2π +

M∑
m=1

Ψ

(
w∗

i + 1−m

2

)
+M log 2 + log

∣∣W ∗−1
i

∣∣
+(µ∗

zi − µµ∗
i )

T
w∗

i (W
∗
i )

−1 (µ∗
zi − µµ∗

i ) + tr
{
w∗

i (W
∗
i )

−1 V β∗
zi

}
+ σµ∗

i

,

L
(p)
µ,V = Eqµ,qV β

[log p ({µi, Vi})]

= −1

2

I∑
i=1



M log 2π + σ̃−1
µ

[
(µµ∗

i − µ̃µ)
T
w∗

i (W
∗
i )

−1 (µµ∗
i − µ̃µ) + σµ∗

i

]
−w̃ log

∣∣∣W̃ ∣∣∣+ log 2 + 2 log Γ

(
w̃

2

)
+ tr

{
W̃ (W ∗

i )
−1
}

+(w̃ +M + 2)

{
M∑

m=1

Ψ

(
w∗

i + 1−m

2

)
+M log 2 + log

∣∣(W ∗
i )

−1
∣∣}


,

L
(q)
θ = Eqc [log qc ({θc} | {θ∗

c})]

=
C∑
c=1

[
log Γ

(∑Z

z−1
θ∗cz

)
−

Z∑
z=1

logΓ (θ∗cz) +
Z∑

z=1

(θ∗cz − 1)
{
Ψ(θ∗cz)−Ψ

(∑Z

z−1
θ∗cz

)}]
,

L(q)
z = Eqz [log qz ({zcit} | {z∗

cit})]

=
C∑
c=1

∑
i∈Ic

∑
t∈Tc

Z∑
z=1

z∗citz log z
∗
citz,
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L
(q)
β = Eqβ

[
log qβ

(
{βzi} |

{
µ∗

zi, V
β∗
zi

})]
= −1

2

I∑
i=1

Z∑
z=1

{M log (2πe) + log |V ∗
zi|}

and

L
(q)
µ,V = Eqµ,qV β

[
log qµ,V β ({µi, Vi} | {µµ∗

i , σµ∗
i , w∗

i ,W
∗
i })
]

= −1

2

I∑
i=1


M log 2π + log |σµ∗

i | − w∗
i log |W ∗

i |+ w∗
iM log 2 +

1

2
log Γ

(
w∗

i

2

)
+(w∗

i +M + 2)

{
M∑

m=1

Ψ

(
w∗

i + 1−m

2

)
+M log 2 + log

∣∣(W ∗
i )

−1
∣∣}

+w∗
i + 1


.

B.1 Derivation of L(p)
u − L(q)

u

The entropy of u
(z)
cit is given by

Entropy = −1

2

{
E
[
ξ2
]
− 2xT

itµ
∗
ziE [ξ] +

(
xT
itµ

∗
zi

)2
+ log(2π)

}
− log Ω

(z)∗
cit ,

where, ξ is a random variable of the distribution (Grimmer 2010 b). Therefore,

L(p)
u − L(q)

u =Equ,qβ ,qz

[
log p

({
u
(z)
cit

} ∣∣ {βzi, zcit,xit, ycit}
)]

−Equ

[
log qu

({
u
(z)
cit

} ∣∣ {u(z)∗
cit ,xit, ycit

})]
=− 1

2

I∑
i=1

[
Tr
{
XiXi

(
µ∗

ziµ
∗T
zi + V β∗

zi

)}]
+

C∑
c=1

∑
i∈Ic

∑
t∈Tc

{
1

2
θ∗citz

(
xT
itµ

∗
zi

)2
+ θ∗citz log Ω

(z)∗
cit

}
.

The value of L (Θ∗) is calculated by summation of the above ten expectations.
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Appendix C: Gibbs Sampler

The joint posterior distribution, assuming conditional independence between variables,

provides the full conditional posterior distributions:

θc | − ∼ p (θc | zcit)

zcit | − ∼ p (zcit | θc, {βzi}, {xit}, {ycit})

u
(z)
cit | − ∼ p

(
u
(z)
cit | zcit,βzi,xit, ycit

)
βzi | − ∼ p

(
βzi | {u

(z)
cit},µi, Vi, {xit}

)
µi | − ∼ p (µi | {βzi}, Vi)

Vi | − ∼ p (Vi | {βzi},µi)

(C1)

C.1 Sampling of θc

The θc is generated by a Dirichlet categorical relation. The Dirichlet distribution is a

conjugate prior of a categorical distribution. For each consumer c, nc = [nc1, · · · , ncZ ]
T

denotes the number of generated latent classes zcit by categorical distribution of parameter

θc in each MCMC step. A Dirichlet categorical relation gives the posterior distribution

with respect to θc as

p (θc | −) = p (θc) p (zcit | θc) = Diriclet (nc + γ̃) (C2)

C.2 Sampling of zcit | −

The posterior probability of (zcit = z) is given as

Pr {zcit = z | θc, {xit} , {βzi} , {ycit}} =
θczΩ

(z)
cit∑Z

j=1 θczΩ
(j)
cit

, (C3)
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C.3 Sampling of u
(z)
cit | −

The distribution of u
(z)
cit is described in Appendix A.2. u

(z)
cit is sampled from a truncated

normal distribution in Equation (A5). This well-known sampling approach is called data

augmentation (Tanner, 1987).

C.4 Sampling of βzi, µi, and Vi

The full conditional posterior distribution of βiz, µi, and Vi is derived from a hierarchical

linear regression model. In our case, βzi for each i and each z is sampled from

βiz ∼ NM

(
R−1

{(
X̄T

ziu
(z)
zi

)
+ V −1

i µi

}
, R−1

)
, (C4)

where R ≡ X̄T
ziX̄zi + V −1

i , u
(z)
zi ≡

[{
u
(z)
cit

}
c∈zc=z, t∈Tc

]T
and X̄zi ≡

[
{xit}c∈zc=z,t∈Tc

]T
.

µi is sampled from

µi ∼ NM

(
(Z + σ̃µ)

−1
Z∑

z=1

βzi, Vi + (Z + σ̃µ)
−1 IM

)
, (C5)

for each i. Here, the hyperparameters are set to µ̃ =

[
0 0 0 0

]T
.

Finally, Vi for each i is sampled from

Vi ∼ IW
(
w̃ + Z, W̃ +BTB

)
, (C6)

where B ≡
Z∑

z=1

(
βzi − Z−1

Z∑
z=1

βzi

)
.
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Table 1: Estimates of Simulation Data

Estimates (Posterior mean)
Intercept Discount Display Feature

Segment 1 -0.45 (0.03) 0.89 (0.05) -0.03 (0.05) 0.04 (0.01)
Segment 2 -0.50 (0.01) 0.07 (0.04) 0.91 (0.02) 0.02 (0.02)
Segment 3 -0.51 (0.01) 0.04 (0.03) 0.00 (0.03) 0.93 (0.03)
Simulated data (C = 300, I = 50, T = 30).

Table 2: Simulation Time by VB and MCMC

VB MCMC
Z 5 10 20 5 10 20

C = 1000
100 0.6 0.8 1.1 5.3 7.1 14.2
500 1.4 1.7 2.3 21.7 29.6 41.7
1000 2.0 2.2 2.7 49.0 54.6 62.4

C = 5000

I
100 2.1 2.3 3.0 23.4 30.3 46.8
500 2.3 3.2 5.2 65.5 81.2 104.1
1000 4.4 5.2 8.2 128.7 144.0 166.2

C= 10000
100 3.5 4.2 5.7 49.4 67.9 102.5
500 5.3 7.0 10.4 213.3 261.0 343.0
1000 8.9 12.6 17.2 430.1 482.7 580.8

The number means hour.
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Table 3: Joint Segmentation for Cross Category Analysis

Segment 1 (C=31,I=9) Segment 2 (C=114, I=28)

Brand Category Price Display Feature Brand Category Price Display Feature

No.1 Drink .99 .06 .06 No.6 Desert .94 .13 .06
No.2 Coffee .89 .10 .02 No.7 Drink .72 .92 .24
No.3 Iced noodle .77 .60 .03 No.6 Desert .94 .17 .04
No.4 Bean paste .75 .21 .05 No.6 Desert .93 .22 .05
No.5 Coke .89 .24 .02 No.6 Desert .93 .19 .06

Segment 3 (C=22, I=4) Segment 4 (C=28, I=6)
Brand Category Price Display Feature Brand Category Price Display Feature

No.8 Fish sausage .93 .08 .08 No.13 Noodle 89. .23 .05
No.9 Water .60 .47 .04 No.14 Food .90 .03 .01
No.10 Detergent .69 .20 .26 No.13 Noodle .78 .09 .11
No.11 Ice cream .91 .02 .02 No.15 Fish sausage .91 .01 .01
No.12 Water .87 .11 .04 1No.6 Drink .87 .11 .04

Segment 5 (C=24, I=5) Segment 6 (C=26, I=6)
Brand Category Price Display Feature Brand Category Price Display Feature

No.17 Soup .84 .16 .09 No.20 Drink .81 .29 .17
No.18 Dressing .76 .72 .09 No.9 Drink .76 .33 .02
No.19 Ice cream .76 .57 .22 No.11 Ice cream .99 .03 .03
No.18 Dressing .83 .42 .15 No.20 Drink .75 .31 .17
No.19 Ice cream .82 .14 .10 No.21 Drink .64 .73 .11

Segment 7 (C=67, I=14) Segment 8 (C=267, I=68)
Brand Category Price Display Feature Brand Category Price Display Feature

No.6 Desert .96 .13 .06 No.12 Cookie .98 .29 .06
No.14 Food .90 .03 .01 No.22 Coffee .81 .28 .08
No.12 Sugar .99 .26 .05 No.20 Ice cream .89 .36 .02
No.22 Drink .77 .63 .17 No.23 Dressing .74 .80 .08
No.20 Drink .75 .52 .16 No.15 Fish sausage .91 .01 .01

Segment 9 (C=946, I=332) Segment 10 (C=124, I=28)
Brand Category Price Display Feature Brand Category Price Display Feature

No.24 Cleaner .85 .48 .11 No.27 Drink .99 .25 .11
No.21 Sauce .74 .35 .07 No.12 Water .87 .26 .01
No.25 Snack .86 .16 .09 No.11 Ice cream .99 .03 .03
No.26 Noodle .68 .98 .09 No.19 Yoghurt .88 .10 .16
No.9 Energy drink .68 .88 .06 No.25 Curry .67 .98 .08
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Figure 3: Personalized Effective Marketing Variables for Individual Consumers and Items:
100 Customers;100 Items
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