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Lévy-driven CARMA Random Fields on Rn

Peter J. Brockwell∗ Yasumasa Matsuda†

Abstract

We define an isotropic Lévy-driven CARMA(p, q) random field on Rn as the integral

of an isotropic CARMA kernel with respect to a Lévy sheet. Such fields constitute

a parametric family characterized by an autoregressive polynomial a and a moving

average polynomial b having zeros in both the left and right complex half-planes.

They extend the well-balanced Ornstein-Uhlenbeck process of Schnurr and Woerner

(2011) to a well-balanced CARMA process in one dimension (with a much richer

class of autocovariance functions) and to an isotropic CARMA random field on

Rn for n > 1. We derive second-order properties of these random fields and find

that CAR(1) constitutes a subclass of the well known Matérn class. If the driving

Lévy sheet is compound Poisson it is a trivial matter to simulate the corresponding

random field on any n-dimensional hypercube. Joint estimation of CARMA kernel

parameters and knots locations is proposed in cases driven by compound Poisson

sheets and is illustrated by applications to land price data in Tokyo as well as

simulated data.

Keywords: compound Poisson, convolution, CARMA random field, Gibbs sampling, knot

selection, Lévy sheet, Lévy noise, Matérn class.

1 Introduction

This paper introduces a class of scalar random fields Sn(t), t ∈ Rn, which, when n = 1,

reduces to a class of non-causal Lévy-driven CARMA processes whose properties have

been studied by Brockwell and Lindner (2009).

Traditionally the modelling and analysis of spatial data involves the fitting of a re-

gression model with spatially correlated errors, specified in terms of a parametric family
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of covariance functions. A large number of families of such covariance functions have been

proposed in the literature, in many of which the covariance between the field at any two lo-

cations depends only on the Euclidean distance between them. The most frequentlly used

family is the Matérn class (Matérn, 1960), for which both the spectral density function

and the covariance function can be written explicitly (see e.g. Stein, 1999) . The Matérn

class was extended to a class of nonstationary and anisotropic covariances by Paciorek

and Schervish (2006).

When fitting covariance models to spatial data, the large sizes of the data sets give rise

to significant computational difficulties which mean in particular that maximum likelihood

estimation is usually not feasible.

To overcome some of the difficulties Higdon (2002) suggested specifying the field Sn

directly as a convolution of a kernel function with a continuous-parameter white noise

field. In this paper we utilize this approach, using the white-noise field associated with

a second-order Lévy sheet L and a family of kernels gn which belong to a conveniently

parameterized class of kernels reducing, when n = 1, to a class of non-causal continuous-

time ARMA kernels. The field can be expressed as

Sn(t) =

∫
Rn

gn(t− u)dL(u), for t ∈ Rn

where gn is specified in Definition 3.1. The resulting covariances between Sn(t) and Sn(t
′)

depend only on the displacement vector d = t− t′. Moreover if gn is isotropic (as it is in

this paper) then so is Sn, and the covariances will depend only on the magnitude of d. An

especially convenient special case occurs when L is a compound Poisson random measure

on the Borel subsets of Rn. In this case Sn can be expressed as

Sn(t) :=
∞∑
i=1

gn(t− xi)Yi,

where xi denotes the location of the ith unit point mass of a Poisson random measure on

Rn and the sequence {Yi} is a sequence of i.i.d. random variables independent of {xi}.
We shall refer to Sn in this case as a compound Poisson random field with kernel gn. The

random points xi will be referred to as knots. The knots contained in any bounded subset

D ⊂ Rn, given their number, are uniformly and independently distributed on D.

As pointed out by Higdon (2002), the convolution model permits dimension reduction

in the following sense. If we consider only those contributions to the field from a finite

number, M , of knots contained in a bounded subset of Rn, then the necessary computa-

tions for estimation and kriging can all be carried out in terms of M ×M matrices rather

than the typically much larger T × T matrices, where T is the number of observations.

Moreover the convolution approach can be extended readily to deal with nonstationary,

2



anisotropic, multivariate and spatio-temporal modeling (see e.g. Fuentes, 2002; Calder

and Cressie, 2007; Majumdar et al, 2010; Sampson, 2010).

In the convolution approach the choice of kernels and knot locations plays a critical role

for estimation and kriging performance. Higdon (2002) introduced a family of kernels that

gave standard classes of Gaussian, exponential and spherical covariances, and suggested

ad hoc choices for them in his ozone modeling examples. In most existing studies knot

locations are either regularly or randomly spaced points, the number being chosen so as

not to exceed computational limits. For given knot locations, the kernel parameters can be

estimated by either classical maximum likelihood or Bayesian methods, the specification

of knot locations and the estimation of kernel parameters being conducted separately.

In this paper we determine the first and second-order properties of the scalar random

fields defined above. The family of isotropic CARMA(p, q) kernels specified in Definition

3.1 generates a rich new class of spatial covariances which are not necessarily non-negative

and not necessarily monotonically decreasing. For model-fitting and kriging we use a

Bayesian Markov chain Monte-Carlo method to estimate the knot locations and CARMA

parameters simultaneously. We find in our examples that joint estimation of the kernel

parameters and knot locations improves substantially on estimation and kriging in which

the knot locations are specified prior to kernel estimation. For the CAR(1) field it is found

that the covariance function belongs to the Matérn class with smoothness parameter
n
2
+ 1. For the general CARMA(p, q) field the spectral density is found explicitly and

the covariance function is expressed as a modified Hankel transform (a one-dimensional

integral) of an explicitly defined function. It is evaluated explicitly for n = 1 and n = 3.

If the Lévy noise is derived from a compound Poisson sheet then it is a trivial matter

to simulate a corresponding CARMA random field without any matrix operations. We

make use of this in our simulated examples. We observe also that if the CARMA kernel

is replaced by a Matérn kernel with smoothness parameter ν then the resulting field has

a Matérn covariance function with smoothness parameter ν + n
2
.

The stationary and isotropic CARMA random fields introduced in this paper sug-

gest further studies, in which we plan to extend the models to represent nonstationary

and anisotropic random fields. The paper is organized as follows. Section 2 introduces

some background tools relating to Lévy sheets and the multivariate Fourier transform of

an isotropic function. In Section 3 we evaluate the first and second-order moments of a

CARMA random field driven by a second-order Lévy sheet. Section 4 discusses the joint

estimation of CARMA parameters and knot locations. Section 5 demonstrates the perfor-

mance of CARMA random fields fitted to both simulated data and to a real-life example

involving Tokyo land price data.
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2 Preliminaries

Lévy noise and Lévy sheets have recenty received much attention in connection with

stochastic partial differential equations (see e.g. Koshnevisan and Nualart (2008)). In this

paper we make use of them to define multiparameter versions of single-parameter CARMA

(continuous-time autoregressive moving-average) processes.

If L is a scalar n-parameter Lévy sheet and L
•
is the corresponding Lévy noise as defined

by Koshnevisan and Nualart (2008)), Section 2, then we can follow their construction to

define an n-parameter scalar CARMA random field via the integral

Sn(t) =

∫
Rn

gn(t− u)dL(u), t ∈ Rn, (1)

where the kernel gn : Rn → R is a suitably chosen analogue of the one-parameter CARMA

kernel. Kernels of the form gn(t) = ϕ(∥t∥) and gn(t) =
∏n

i=1 ψi(ti) are of particular interest

but in this paper we shall restrict attention to the former and refer to the corresponding

random field as isotropic.

Important cases arise (i) when L is a Brownian sheet, in which case L
•
is Gaussian

white noise and (ii) when L is a compound Poisson sheet, in which case L is the random

measure on the Borel subsets of Rn given by,

L(A) =
∞∑
i=1

Yi1xi
(A), A ∈ B(Rn), (2)

where xi denotes the location of the ith unit point mass of a Poisson random measure on

Rn and the sequence {Yi} is a sequence of i.i.d. random variables independent of {xi}.
A variety of fields are generated by (1) depending on the choice of L and of the kernel

gn. Our prime concern will be with second order fields and their first and second order

properties which we shall apply to the modelling of multiparameter data sets. If L is a

second-order Lévy sheet then there exist constants µ ∈ R and σ > 0 such that for all

real-valued functions g and h in L1(Rn) ∩ L2(Rn),

E
∫
Rn

g(t) dL(t) = µ

∫
Rn

g(t) dt (3)

and

Cov

[∫
Rn

g(t) dL(t),

∫
Rn

h(t) dL(t)

]
= σ2

∫
Rn

g(t)h(t) dt. (4)

If the kernel gn in definition (1) belongs to L1(Rn)∩L2(Rn) then the first and second-order

properties of the field Sn are given by

ESn(t) = µ

∫
Rn

gn(u)du (5)
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and

γn(t) := Cov(Sn(t), Sn(0)) = σ2gn ∗ gn(t), t ∈ Rn, (6)

i.e. σ2 times the multi-dimensional convolution of the kernel gn with itself.

In order to compute the autocovariance function (6) we shall first compute the multi-

variate Fourier transform g̃n = Fnf of the kernel gn, defined, for gn ∈ L1(Rn), by

g̃n(ω) = Fngn(ω) := (2π)−n/2

∫
Rn

e−i⟨ω,t⟩gn(t) dt, ω ∈ Rn. (7)

Then by (6), provided (g̃n)
2 ∈ L1(Rn), the autocovariance function γn is (2π)n/2 times the

inverse Fourier transform of σ2(g̃n)
2, i.e.

γn(t) = σ2

∫
Rn

ei⟨ω,t⟩g̃n(ω)
2 dω, t ∈ Rn, (8)

so that the multivariate spectral density function fn of Sn is

fn(ω) = σ2g̃n(ω)
2, ω ∈ Rn. (9)

If the function gn is radial, i.e. if there is a univariate function ϕ such that

gn(t) = ϕn(∥t∥), t ∈ Rn, (10)

then it is well-known (see e.g. Nowak and Stempak (2014)) that the Fourier transform of

gn is also radial and can be expressed as

g̃n(ω) = ϕ̃n(∥ω∥) := Hn
2
−1ϕn(∥ω∥), ω ∈ Rn, (11)

where Hm denotes the modified Hankel transform,

Hmg(x) =

∫ ∞

0

g(y)
Jm(xy)

(xy)m
y2m+1 dy, x > 0, m ≥ −1/2, (12)

and Jm is the Bessel function of the first kind of order m. Clearly the function g̃2n is also

radial so that (8) can be reexpressed as

γn(t) = σ2(2π)n/2Hn
2
−1ϕ̃

2
n(∥t∥), t ∈ Rn. (13)

If, for each n ∈ N, gn is a radial function in L1(Rn) with gn(t) = ϕ(∥t∥), t ∈ Rn, where

ϕ : R → R is a function independent of n, then we can write the Fourier transform (7) as

g̃n(ω) = Fngn(ω) = Fnϕ(∥ω∥), n ∈ N, (14)

where, by a very elegant result of Grafakos and Teschl (2013), the mapping Fn+2 is related

to the mapping Fn by

Fn+2ϕ(r) = −1

r

d

dr
Fnϕ(r), n ∈ N. (15)
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Equation (15) differs by a factor 2π from equation (2) of Grafakos and Teschl owing

to their slightly different definition of the Fourier transform. Thanks to this equation it

becomes a simple matter to compute Fnϕ, n ∈ N, from F1ϕ and F2ϕ.

We shall say that the field Sn defined by (1) is isotropic if the kernel gn satisfies (10) for

some function ϕ : R → R. (The function ϕ may depend on n but in all of our applications

it will denote a function independent of n.)

3 Isotropic Lévy-driven CARMA random fields

Definition 3.1. Let a∗(z) = zp+a1z
p−1+ · · · ap =

∏p
i=1(z−λi) be a polynomial of degree

p with real coefficients and distinct zeroes λ1, . . . , λp having strictly negative real parts and

let b∗(z) = b0+b1z+ · · · bqzq =
∏q

i=1(z−ξi) with real coefficient bj and 0 ≤ q < p. Suppose

also that λi ̸= µj for all i and j. Then defining

a(z) =

p∏
i=1

(z2 − λ2i ) and b(z) =

q∏
i=1

(z2 − ξ2i ),

the isotropic L-driven CARMA(p, q) field with autoregressive polynomial a and moving

average polynomial b is

Sn(t) =

∫
Rn

p∑
r=1

b(λr)

a′(λr)
eλr∥t−u∥dL(u), t ∈ Rn, (16)

where a′ denotes the derivative of the polynomial a and ∥t− u∥ denotes the Euclidean

norm of the vector t− u. 2

Remark 3.2. The kernel g(t) =
∑p

i=1 b(λi)e
λi∥t∥/a′(λi) appearing in (16) is the special

case, when a(z) has distinct zeroes, of the kernel,

g(t) =
∑

λ:R(λ)<0

Resz=λ

[
ez∥t∥b(z)/a(z)

]
,

where the sum is over the distinct zeroes of a(z) with negative real parts and Resz=λf(z)

denotes the residue at z = λ of the function f . When n = 1, it is the kernel of the non-

causal CARMA(2p, 2q) process with autoregressive and moving average polynomials a(z)

and b(z) respectively (see Brockwell and Lindner (2009)). For simplicity of exposition and

with no essential loss of generality we shall assume throughout this paper that the zeroes

of a(z) are distinct. In the special case when a(z) = z2 − λ2, λ < 0, and b(z) = 1, the

process S1 defined by (16) reduces to (2λ)−1 times the well-balanced Ornstein-Uhlenbeck

process of Schnurr and Woerner (2011). The definition (16) can therefore be regarded in

their terminology as a well-balanced CARMA process when n = 1 and as the generalization

of such a process to a field on Rn when n > 1. .
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For the compound Poisson L defined by (2),

Sn(t) :=
∞∑
i=1

p∑
r=1

b(λr)

a′(λr)
Yie

λr||t−xi||, t ∈ Rn, (17)

an expression which permits very simple simulation of Sn on any hypercube or on certain

more complicated bounded subsets of Rn.

Remark 3.3. It is interesting to note that the kernel

p∑
r=1

b(λr)

a′(λr)
eλr∥t∥ = γ(∥t∥),

where γ is the autocovariance function of the one-dimensional CARMA(p, q) process with

autoregressive polynomial a∗(z),moving average polynomial b∗(z) and driving Lévy pro-

cess L such that V ar(L1) = 1. This result can be derived from the representation (65) of

γ in Brockwell (2014).

Our first theorem establishes the first and second-order properties of the isotropic

CAR(1) field with autoregressive polynomial a(z) = z2 − λ2, λ < 0.

Theorem 3.4. If L is a second-order Lévy sheet satisfying (3) and (4) and if the defining

polynomials in (16) are a(z) = z2 − λ2 (where λ < 0) and b(z) = 1, we shall refer to

Sn as an isotropic CAR(1) field with kernel gn(t) = (2λ)−1eλ∥t∥ = ϕ(∥t∥), t ∈ Rn, where

ϕ(r) := eλr/(2λ), r ≥ 0. Then

E[Sn(t)] =
µπ

n
2Γ(n+ 1)

2λ|λ|nΓ(n
2
+ 1)

, (18)

the spectral density of Sn is

fn(ω) = σ2c2n(∥ω∥
2 + λ2)−n−1, ω ∈ Rn, (19)

where

cn =

−2n/2−1Γ(n+1
2
)/
√
π if n is odd,

−2−n/2Γ(n)/Γ(n
2
) if n is even,

and the autocovariance function of Sn is

γn(t) = σ2c2n

(π
2

)n
2 ∥λt∥

n
2
+1

|λ|n+2Γ(n+ 1)
Kn

2
+1(∥λt∥), t ∈ Rn (20)

where Kn
2
+1 denotes the modified Bessel function of the second kind of order n

2
+ 1.
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Proof. From (5) we find at once that E[Sn(t)] =
µ
2λ

∫
Rn e

λ∥t∥dt. Rewriting the integral in

polar coordinates then gives

E[Sn(t)] =
µ

2λ

∫ ∞

0

eλr
nrn−1πn/2

Γ(n
2
+ 1)

dr =
µπ

n
2Γ(n+ 1)

2λ|λ|nΓ(n
2
+ 1)

.

In order to compute the spectral density and autocovariance function of Sn we shall

first determine g̃n(ω) = Fngn(ω) = Fnϕ(∥ω∥) = ϕ̃n(∥ω∥), ω ∈ Rn, for n = 1 and 2, and

then use these, in conjunction with (15), to determine g̃n, n ∈ N. The spectral density of

Sn will then be found from (9) and the autocovariance function from (13).

The case n = 1:

Substituting ϕ(r) = eλr/(2λ) in (7) and evaluating the integral gives

g̃1(ω) = − 1√
2π(ω2 + λ2)

, ω ∈ R. (21)

The case n = 2: From (11) and (12) we have

g̃2(ω) =
1

2λ
H0e

λ(·)(∥ω∥) = 1

2λ

∫ ∞

0

eλyJ0(∥ω∥ y)y dy = − 1

2(∥ω∥2 + λ2)3/2
, ω ∈ R2,

(22)

where the last equality can be found from tables of the zero-order Hankel transform (see

e.g. Piessens (2010), table 9.1, equation(4)).

From (21) and (22) it follows that F1ϕ(r) = − 1√
2π
(r2 + λ2)−1 and F2ϕ(r) = −1

2
(r2 +

λ2)−3/2. Successive application of (15) with n = 1, 2, 3, . . . , then gives,

Fnϕ(r) = ϕ̃n(r) = cn(r
2 + λ2)−

n+1
2 , n ∈ N, (23)

with cn defined as in (19). These equations, with (9) and (14) immediately give equation

(19) for the spectral density of Sn.

Substituting from (23) into equation (13) and using Piessens (2010), Table 9.2, equa-

tion (12), we find immediately that the autocovariance function of Sn is given by (20) as

claimed.

Remark 3.5. The values of Kr(z), r ≥ 0, z ∈ C, are available in Matlab as besselk(r, z).

The functions Kn+ 1
2
, n ∈ N, take a particularly simple form. From Abramowitz and

Stegun (2012), equations (10.2.17), we have

K 3
2
(x) =

√
π/(2z)e−z(1 + z−1) (24)

and

K 5
2
(x) =

√
π/(2z)e−z(1 + 3z−1 + 3z−2). (25)
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Moreover, if we define

hn(z) := (−1)n+1
√
π/(2z)Kn+ 1

2
(z), n ∈ N,

we can readily calculate Kn+ 1
2
(z), for integers n > 2 from (24), (25) and the recursions

(Abramowitz and Stegun (2012), equation (10.2.18)),

hn+1(z) = hn−1(z)− (2n+ 1)z−1hn(z).

Remark 3.6. Direct application of Theorem 3.4 gives the following results for the im-

portant cases n = 1, 2, and 3.

E[S1] = − µ

λ2
, f1(ω) =

σ2

2π(ω2 + λ2)2
, γ1(t) =

σ2

4|λ|3
e−|λt|(1 + |λt|).

E[S2] =
πµ

λ3
, f2(ω) =

σ2

4(∥ω∥2 + λ2)3
, γ2(t) =

σ2π

16λ4
∥λt∥2K2(∥λt∥),

E[S3] = −4πµ

λ4
, f3(ω) =

2σ2

π(∥ω∥2 + λ2)4
, γ3(t) =

σ2π

12|λ|5
e−∥λt∥(3 + 3 ∥λt∥+ ∥λt∥2).

Remark 3.7. The general Matérn autocovariance function has the form (see e.g. Stein

(1999))

γn(t) = σ2(∥at∥)νKν(∥at∥), a > 0, ν > 0.

If we define Sn as in (1) with a Matérn kernel, i.e. with

gn(t) = (∥at∥)νKν(∥at∥), ν > 0, (26)

then we find, by arguments analogous to those used in the proof of Theorem 3.4, that the

corresponding mean, spectral density and autocovariance function of Sn are,

E[Sn] = µ 2ν−1

(
4π

a2

)n
2

Γ(
n

2
+ ν), fn(ω) =

σ2(2a2)2ν2n−2Γ
(
n
2
+ ν
)2

(∥ω∥2 + a2)n+2ν
and

γn(t) =
σ2

2

(
2π

a2

)n/2 Γ
(
n
2
+ ν
)2

Γ(n+ 2ν)
(∥at∥)

n
2
+2νKn

2
+2ν(∥at∥).

In other words the Matérn kernel with index ν generates a sheet with Matérn autocovari-

ance function having index n
2
+ ν. The results of Theorem 3.4 can be derived from these

more general results since

(2λ)−1eλ∥t∥ = (2λ)−1e−∥λt∥ =
1

λ
√
2π

∥λt∥
1
2 K 1

2
(∥λt∥).
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We next consider the isotropic CARMA(p, q) field defined by (16).

Theorem 3.8. If L is a second-order Lévy sheet satisfying (3) and (4) and if the isotropic

CARMA field Sn is specified as in Definition 3.1, i.e. with kernel gn(t) =
∑p

r=1
b(λr)
a′(λr)

eλr∥t∥,

t ∈ Rn, then

E[Sn(t)] = µ

p∑
i=1

b(λi)

a′(λi)

π
n
2Γ(n+ 1)

|λ|nΓ(n
2
+ 1)

, (27)

and the spectral density of Sn is

fn(ω) = ρn(∥ω∥) =

σ
2 2n−2

π

(
ψ

(n−1
2

)

1 (r)
)2
, if n is odd,

σ22n−3
(
ψ

(n−2
2

)

2 (r)
)2
, if n is even,

(28)

where r = −∥ω∥2, the superscripts on the functions ψ1 and ψ2 denote order of differen-

tiation with respect to r, and

ψk(r) = −
p∑

i=1

2λib(λi)

a′(λi)(−r + λ2i )
k+1
2

, k = 1, 2. (29)

The autocovariance function of Sn is

γn(t) = (2π)n/2Hn
2
−1ρn(∥t∥), (30)

where Hm denotes the modified Hankel transform of order m as defined in (12) and ρn is

defined as in (28).

Proof. For the field Sn with kernel gn(t) =
∑p

r=1
b(λr)
a′(λr)

eλr∥t∥, t ∈ Rn, equation (5) gives

ESn(t) = µ

p∑
i=1

b(λi)

a′(λi)

∫
Rn

eλi∥u∥du.

The integral on the right was evaluated in the proof of Theorem 3.4. Referring to equation

(18) we see at once that (27) holds.

The Fourier transform of eλi∥t∥, t ∈ Rn, is, from (23), 2λicn(∥ω∥2 + λ2i )
n+1
2 , ω ∈ Rn,

where the coefficients cn are as in (20). The Fourier transform of gn is therefore

g̃n(ω) = cn

p∑
i=1

2λib(λi)

a′(λi)(∥ω∥2 + λ2i )
n+1
2

.

With ψ1 and ψ2 defined as in (29) it is a straightforward calculation to show that

g̃n(ω) =


2(n−2)/2

√
π

ψ
(n−1

2
)

1 (r), if n is odd,

2(n−3)/2ψ
(n−2

2
)

2 (r), if n is even,
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where r = −∥ω∥2. The spectral density of Sn is then fn(ω) = σ2g̃n(ω)
2, i.e. (28).

The autocovariance function of Sn is (2π)n/2 times the inverse Fourier transform of

the spectral density and, because the spectral density is radial, it can be expressed as the

one-dimensional integral (30).

A fast algorithm for the numerical computation of Hankel transforms was developed

by Knockaert (2000). If the dimensionality n is odd it is possible to express the spectral

density of Sn in a simpler form and to use this to compute the autocovariance functions

explicitly in the particular cases when n = 1 and n = 3.

Corollary 3.9. The function ψ1 in (28) simplifies to

ψ1(r) =
β(r)

α(r)
, (31)

where β(z) :=
∏q

i=1(z − ξ2i ) and α(z) :=
∏p

i=1(z − λ2i ). This implies, by (28) that when

n is odd the spectral density fn(ω) of Sn is a rational function of ∥ω∥2, easily calculated

from (28).

Corollary 3.10. In the special cases n = 1 and n = 3 we have

γ1(t) = σ2

p∑
i=1

Resz=λi

[
ez|t|

b(z)2

a(z)2

]
and

γ3(t) = −σ2 2π

∥t∥

p∑
i=1

Resz=λi

[
ez∥t∥

(a′(z)b(z)− a(z)b′(z))2

za(z)4

]
.

Proof. From (28) and (31) with n = 1,

f1(ω) =
σ2

2π

(
β(−ω2)

α(−ω2)

)2

.

Hence

γ1(t) =
σ2

2π

∫ ∞

−∞
eiωt

(
β(−ω2)

α(−ω2)

)2

dω.

Changing the variable of integration to z = iω, using the relations α(z2) = a(z) and

β(z2) = b(z) and using contour integration to evaluate the integral gives the required

expression for γ1.

From (28) and (31) with n = 3,

f3(ω) =
2σ2

π
δ(−∥ω∥2),

where

δ(r) = α(r)−4(α(r)β′(r)− α′(r)β(r))2.

11



Hence

γ3(t) =
2σ2

π

∫
R3

ei⟨ω,t⟩δ(−∥ω∥2)dω.

Expressing this integral in three-dimensional polar coordinates and integrating out the

angular components gives

γ3(t) =
4σ2

∥t∥
Im

∫ ∞

−∞
ρδ(−ρ2)2eiρ∥t∥dρ.

Rewriting δ in terms of the polynomials a and b and again using contour integration to

evaluate the resulting integral gives the required expression for γ3.

Example 3.11. A two-parameter CAR(2) random field.

If L is a two-dimensional second-order Lévy sheet satisfying (3) and (4) and S2(t), t ∈ R2,

is the two-parameter random field defined by (16) with a(z) = (z2 − λ21)(z
2 − λ22), λ1 =

−1 + 2i, λ2 = −1− 2i and b(z) = 1, then the kernel g2 is readily calculated as

g2(t) = ϕ2(∥t∥) =
e−∥t∥

20

(
cos(2 ∥t∥) + 1

2
sin(2 ∥t∥)

)
.

From (28) and (29) we then find that the spectral density of S2 is

f2(ω) = ρ2(∥ω∥) =
σ2

2(λ21 − λ22)
2

[
(∥ω∥2 + λ22)

−3/2 − (∥ω∥2 + λ22)
−3/2

]2
and, from (30) and (12),

γ2(t) = 2πH0ρ2(∥t∥) = 2π

∫ ∞

0

yρ2(y)J0(ty) dy.

The latter integral is easily evaluated using the Matlab function besselj to compute J0(ty).

Numerical evaluations of correlation functions of two-parameter CAR(1) and CAR(2)

random fields will be demonstrated in Sec. 5.

4 Estimation and kriging

4.1 Parameter estimation

This section considers estimation of the parameters of the CARMA kernel when the

driving Lévy sheet is compound Poisson as in (17). The data consist of observations

of Sn(s) at the finite number of sampling points s1, . . . , sT , scattered irregularly over a

bounded region D ⊂ Rn.

12



Our model for the data will be a modified form of the model (17) which allows in

particular for measurement errors. We shall write the CARMA kernel, with parameter

vector θ = (λ1, . . . , λp)
′ as

gθ(s, x) =

p∑
r=1

b(λr)

a′(λr)
eλr||s−x||.

Our model is then,

Sn(sj) = Zjβ +
M∑
i=1

Yigθ(sj, xi) + εj, j = 1, . . . , T, (32)

Yi ∼ iidN(0, τ 2), εj ∼ iidN(0, δ2).

This model differs from (17) in several respects. First, the mean is accounted for by the

term Zjβ, corresponding to the regressor vector Z = (Z ′
1, . . . , Z

′
T )

′. Secondly, independent

normally distributed noise terms εj have been included to represent measurement errors,

known in the literature as nugget effects. Finally, the ’knot points’, xi, are the points of

the underlying spatial Poisson process falling in the region D and their number, n(D),

has the Poisson distribution. Conditionally on the value of n(D), the knot points are

independently and uniformly distributed on D. The number of knots and their locations

are crucial in the estimation procedure as discussed in section 4.2.

The model (32) resembles a standard regression model with the values of the kernel

function gθ(s, xi) as independent variables. There are however difficulties which are not

encountered in classical regression analysis. (i) The knots xi, and hence the independent

variables gθ(s, xi), are stochastic. (ii) The independent variables depend on the parameter

θ to be estimated. (iii) The regression coefficients Yi are not fixed but random. These

difficulties prohibit classical maximum likelihood estimation and so a different approach

is needed.

We start by evaluating the conditional likelihood function of the parameters (β, δ2, θ, τ 2)

given the number,M , and locations, {xi}, of the knots in the model (32). The conditional

variance of Sn = (Sn(s1), . . . , Sn(sT ))
′ is then

τ 2VθV
′
θ + δ2IT = δ2

(
IT + κ2VθV

′
θ

)
= δ2R,

say, where Vθ is the T by M matrix whose (p, q)th component is Vpq = gθ(sp, xq) and

κ2 = τ 2/δ2. The conditional likelihood is

Sn ∼ N
(
Zβ, δ2R

)
.

Calculation of the inverse and determinant of R requires an infeasible O(T 3) operations.

We apply Corollaries 18.1.2 and 18.2.10 of Harville (1997) to calculate them in O(M3)

13



operations as

(δ2R)−1 = δ−2
{
IT − Vθ(κ

−2IM + V ′
θVθ)

−1V ′
θ

}
,

and ∣∣δ2R∣∣ = δ2T
∣∣κ2V ′

θVθ + IM
∣∣ .

These expressions yield, in O(M3) operations, the conditional log likelihood of Sn (a

function (of Ω = (β, δ2, θ, κ2, {xi})) in O(M3) operations as

logL(Sn|Ω) = −T
2
log δ2 − 1

2
log |R| − 1

2δ2
(Sn − Zβ)′R−1(Sn − Zβ), (33)

It is infeasible to estimate (β, δ2, θ, κ2) by maximizing (33) unless x1, . . . , xM , are fixed

and known, which leads us to take a Bayesian approach.

For givenM , the knot locations, {xi}, are independently and uniformly distributed on

D. Taking this as the prior distribution for {xi} opens the way to Bayesian estimation of

the model. Bayesian inference requires us to specify priors for the other model parameters.

The Gibbs sampler is used to draw samples of parameters from the following posterior

p(Ω|Sn) ∝ L(Sn|Ω)p(β)p(δ2)p(θ)p(κ2)p({xi}).

We assign the conjugate priors N(β0,Σ0) and Ga(a1, a2) for β and δ−2, respectively. We

update β from N(µβ,Σβ), where

Σ−1
β = Σ−1

0 + δ−2Z ′R−1Z,

and

µβ = Σβ

(
δ−2Z ′R−1Sn + Σ−1

0 β0,
)

and update δ−2 from the gamma distribution with parameters a1+T/2 and a2+1/2(Sn−
Zβ)′R−1(Sn − Zβ). For the other parameters without conjugate prior distributions, we

draw samples using the Metropolis-Hastings (MH) algorithm. We employ the vague prior

distribution, uniform on the parameter set for (θ, κ2), and use random walk chains driven

by normal variables with mean 0 to update them in the MH algorithm. Priors for the knot

locations and the updating procedure will be discussed in detail in the following section.

4.2 Knot specification

Specification of the knot locations {xi} plays a critical role in estimation and kriging using

CARMA models. Gelfand et al. (2012) proposed a way in the predictive process approach

14



to specify them separately from parameter estimation. Zhang et al. (2015) employed

a procedure for joint estimation for knots and parameter in the context of composite

approach. We shall follow the latter approach with a modification to allow for our assumed

uniform distribution of knot locations.

Suppose we have a set U = {u1, . . . , uN} ⊂ D of knot candidates, which are indepen-

dent uniformly distributed points in D. We take the prior distribution of the knots to be

that of points selected by independent Bernoulli sampling from U with success probabil-

ity p. This distribution approximates that of an independent uniformly distributed set of

points K0 in D with the expected number of points, EM0 = Np. It approximates the

distribution of points in D generated by an n-dimensional Poisson process, conditional

on M0 points falling in D. The value of p is chosen to make operations with matrices of

dimension EM0 computationally feasible.

Given an initial knot set K0 chosen from U as described, we use a Metropolis-Hastings

algorithm to obtain successive knot sets K1, K2, . . . . For any subset K ⊂ U we shall use

the notation Kc for the set U \ K and n(K) for the cardinality of K. The recursive

construction of the knot sets can then be described as follows for t = 1, 2, . . . .

(1) Draw A and B from Kt−1 and K
c
t−1 by Bernoulli trials with success probabilities q1

and q2(t) = q1n(Kt−1)/n(K
c
t−1), respectively, and define K ′ by (Kt−1 \ A) ∪ B. (If

n(Kt−1) = 0 or q2(t) ≥ 1 then K ′ is obtained by independent Bernoulli trials with

success probability p from U).

(2) Compute the acceptance ratio

α = min

(
1,

L(Sn|K ′)p(K ′)J(K ′ → Kt−1)

L(Sn|Kt−1)p(Kt−1)J(Kt−1 → K ′)

)
,

where L(Sn|K) is the conditional likelihood in (33) given the knot set K, and p(K)

is the prior distribution assigned for the knot set K, i.e.,

p(K) = pn(K)(1− p)n(K
c),

and J(K → K ′) is the probability of a transition from K to K ′, i.e.,

J(K → K ′) = (1− q1)
n(K∩K′)q

n(K′\K)
1 (1− q2(t))

n(Kc∩K′c)q2(t)
n(K′c\Kc),

slightly modified if q2(t) ≥ 1. The other quatities p(K ′), J(K ′ → K) are defined in

the same way.

(3) Set Kt equal to K
′ with probability α and to Kt−1 with probability 1− α.
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We note that p is chosen so that the expected number of initial knot points is within

computational feasibility (i.e. so that Np is of the order of one hundred). The probability

q1 is chosen to be small (typically between .01 and .03) so as to give reasonable acceptance

ratios and the probability q2(t) is designed to make En(Kt) equal to En(K0) = Np for

all t.

4.3 Kriging

Kriging, i.e. prediction of the field at points for which no observations are available, is con-

ducted in the course of the Gibbs sampling jointly with the estimation of the parameters.

Here we demonstrate kriging at a point s0 based on the model in (32). For a given Ω at a

step in the Gibbs sampling, we draw Y = (Y1, . . . , YM)′ from the posteriors N(µY , δ
2ΣY ),

where

Σ−1
Y = κ−2IM + V ′

θVθ,

and

µY = ΣY V
′
θ (Sn − Zβ).

Using the sampled Y , we construct the kriged value at s0 by

Ŝn(s0) = Z0β + Vθ(s0)Y,

for the regressor Z0 at s0. Conducting the kriging in the course of the Gibbs sampling,

we obtain posterior samples of the kriged value at s0. Notice that all the procedures for

the kriging as well as in the Gibbs sampling are conducted using operations with M ×M

matrices.

5 Empirical studies

5.1 Data generation

Simulation of the restriction of a compound Poisson CARMA random field to any bounded

measurable subset D ⊂ Rn can be carried out by truncation of the infinite series in (17)

as described in the following paragraph. Provided the compound Poisson sheet has finite

second moments, the covariance function of the CARMA field can be computed from

Theorem 3.8.

If the intensity parameter of the compound Poisson sheet is c then the number n(D′)

of knots contained in any measurable set D′ with volume |D′| is simulated as a Poisson
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random variable with mean c|D′| and the knot locations are then simulated as n(D′)

independent and uniformly distributed points in D′. If D′ is taken to be a sufficiently

large set containing D, e.g. a large hypercube containing D, then the influence of the

knots outside D′ will have little influence on the CARMA field restricted to D and can

be neglected in the sum (17). (The required size of D′ relative to that of D depends

on the zero of a(z) with smallest absolute value). The CARMA field restricted to D is

then obtained using the sum (17) truncated to include only the simulated knots in D′. It

remains only to simulate the n(D′) i.i.d. random variables Yi to complete the evaluation

of the simulated field at any point in D. If we take Yi to have the normal distribution

with mean zero and variance τ 2 then, in the notation of (3) and (4), µ = 0 and σ2 = cτ 2.

Using Remark 2.6 it is also a simple matter to simulate spatial data with the Matérn

covariance function,

γn(t) = ψ2(||at||)n/2+2νKn/2+2ν(||at||), ν > 0,

using the procedure in the last paragraph with the CARMA kernel in (17) replaced by

the Matérn kernel in (26), and with c and τ 2 chosen so that

cτ 2 = 2ψ2

(
a2

2π

)n/2
Γ(n+ 2ν)

Γ(n/2 + ν)2
.

5.2 Simulation studies

This section examines the empirical performance of our proposed estimation and kriging

procedure using simulated compound Poisson CARMA fields on R2 in the model (32). In

particular, we shall compare its performance with the corresponding procedure when the

knots are fixed, rather than sampled.

We generated 100 sets of 1100 irregularly spaced points on the disc D = {(x, y) ∈
R2|(x− 50)2 + (y − 50)2 < 402}. At each set of 1100 points, values of a CARMA random

field were generated to represent observations of the field at those points. The 1100 data

points so obtained were divided randomly into two sets of sizes 1000 and 100. The first 1000

points were used for estimation, while the remaining 100 were used for evaluating kriging

mean squared errors. The values of the field at the 1100 locations were generated from

(32) with zero mean function. The values of the field were simulated using the procedure

described in Section 5.1 with D′ = [0, 100]2 ⊃ D. The intensity of the compound Poisson

process was taken to be .02 so that the number n(D′) of knots uniformly and independently

distributed on D′ has the Poisson distribution with mean 200.

The following three CARMA kernel functions were employed in the the simulations.

All the kernels were normalized to be 1 at the origin to guarantee the identifiability of τ 2,

the variance of Yj.
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Figure 1: The kernel and resulted autocorrelation functions of the three CAR models used

in the simulation studies.

Model 1. CAR(1) kernel with defining polynomial a∗(z) = z + α1:

g(s, x) = e−α1||s−x||, α1 > 0.

Model 2. CAR(2) kernel with defining polynomial a∗(z) = (z + α1)(z + α2):

g(s, x) = (α1 − α2)
−1
(
α1e

−α2||s−x|| − α2e
−α1||s−x||) , α1 > α2 > 0.

Model 3. CAR(2) kernel with defining polynomial a∗(z) = (z+α1+ iα2)(z+α1− iα2):

g(s, x) = e−α1||s−x||
{
cos(α2||s− x||) + α1

α2

sin(α2||s− x||)
}
, α1 > 0, α2 > 0.

The true values for the parameters were α1 = 0.3 in Model 1, α1 = 0.5, α2 = 0.3 in

Model 2 and α1 = 0.2, α2 = 0.4 in Model 3. We used the values δ2 = 1 and κ2 = τ 2/δ2 =

16 to simulate samples from (32). The kernel functions and corresponding correlation

functions in Models 1-3 are shown in Figure 1. These show that the CAR(2) kernels are

smoother at the origin than the CAR(1) kernel at the origin, and that the CAR(2) kernel

with complex roots can yield negative values for both the kernel and correlation functions.

We fitted the model (32) with unknown constant mean function µ to the first 1000

simulated values and evaluated the mean squared error of kriging for the remaining 100

simulated values. The prior distribution for our knot locations in D corresponded to

Bernoulli trials with success probability p = 0.1 applied to the first 1000 data points, so

that the expected initial number of knots was 100. We chose q1 = 0.01 for the updating of

knots in the MH algorithm with the initial knot set drawn as already described. We ran

1000 iterations of Gibbs sampling after a burn-in period of 1500 iterations. 100 posterior

samples for the parameters and kriging were collected by thinning, using every 10th
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selected knots benchmarks by fixed knots

α1 α2 κ2 δ2 α1 α2 κ2 δ2

Model 1 0.3 - 16 1 0.3 - 16 1

median 0.23 10.41 1.06 0.08 15.47 1.91

quart. dev. 0.01 1.34 0.05 0.02 7.75 0.15

Model 2 0.5 0.3 16 1 0.5 0.3 16 1

median 0.44 0.28 17.87 1.06 0.18 0.14 88.58 1.90

quart. dev. 0.04 0.03 2.67 0.04 0.02 0.01 34.80 0.14

Model 3 0.2 0.4 16 1 0.2 0.4 16 1

median 0.19 0.39 14.33 1.11 0.13 0.37 4.86 3.24

quart. dev. 0.01 0.01 1.79 0.04 0.01 0.01 1.63 0.38

Table 1: The median and quartile deviations of the posterior medians of our proposed

estimators conducted for 100 sets of 100 samples in Models 1-3. The corresponding values

with the knots fixed at a randomly chosen 100 locations are shown for comparison.

iteration. The median and quartile deviations of the posterior medians for 100 sets of

1000 simulated samples are shown in Table 1, and the mean squared errors of kriging

over 100 sets of 100 samples are listed in Table 2. Estimation and kriging with the knots

fixed at a randomly chosen 100 locations were conducted as benchmarks, and the medians

and quartiles are listed in Tables 1-2 for comparison with our algorithm. In Table 2, as

a further benchmark, we included those of simple weighted averages, whose specific form

at u is (
T∑

j=1

wj

)−1 T∑
j=1

wjS(sj), (34)

for the weight function

wj = e−||u−sj ||2/(bdw)2 ,

where bdw denotes the bandwidth controlling the rate of decay of the weights.

We see at once that our knot specification procedure improves dramatically on the use

of fixed knots for both estimation and kriging. The biases of the estimators are greatly

reduced although in Model 1 there is a noticeable negative bias in the estimator of α1. This

may be due to the lack of smoothness of the CAR(1) kernel at zero. It can be reduced

by increasing the value of p to increase the number of knots. In general it seems that

kernels which are less smooth at the origin require more knots for accurate estimation.

The improvement in kriging performance achieved by the CAR models over the weighted

averages was more noticeable in Models 2 and 3 than in Model 1, which suggests that the
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CAR weighted average

selected fixed bdw=1 2 3 4

Model 1

median 1.38 2.05 1.85 1.45 1.50 1.69

quart. dev. 0.15 0.29 0.19 0.16 0.18 0.19

Model 2

median 1.33 2.08 1.94 1.51 1.60 1.94

quart. dev. 0.14 0.25 0.21 0.16 0.18 0.20

Model 3

median 1.50 3.37 2.45 2.07 2.78 3.97

quart. dev. 0.18 0.53 0.33 0.26 0.33 0.46

Table 2: The medians and quartile deviations of the mean squared errors of kriging. The

medians were the medians of posterior samples and are based on 100 sets of 100 samples

using each of the models 1, 2 and 3.. For comparison we also show the corresponding

results for weighted averages as defined in (34) with bandwdths 1, 2, 3 and 4, and for

CAR kriging with fixed knots..

weighted average procedure with suitably chosen bandwidth does a better job of capturing

the covariance structure of CAR(1) data than of the data generated by higher-order CAR

models.

5.3 Land price data analysis

This section demonstrates the application of the families of isotropic CAR models specified

in Models 1, 2 and 3 to the analysis of Tokyo land-price data. Public land prices in Tokyo,

sampled at points irregularly scattered over Tokyo’s 23 wards, are used. Since 1970 the

government of Japan has annually published land prices per square metre as of January

1st at hundreds of thousands of sampling points scattered irregularly all over Japan. They

are evaluated using a combination of transaction records, incomes and cost accounting

methods and do not therefore coincide with real market prices. They are published in

March every year on the government web page in order to help in the planning of public

works, inheritance tax and related economic issues.

This paper focuses on land prices in Tokyo’s 23 wards collected in 2015 from

http://nlftp.mlit.go.jp/ksj/old/old datalist.html (in Japanese).

The set of 1247 sampling points is shown in Figure 2. The price Pt(s) at location s in the
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Figure 2: 1247 sampling points for public land price data in Tokyo 23 wards collected in

2015.

year t = 2015 was transformed to a log return rt(s), given by

rt(s) = logPt(s)− logPt−1(s), t = 2015.

The transformed great circle distance (Gneiting, 1999) was used to measure the distance

d(s, s′) between the locations s and s′. Thus

d(s, s′) = 2r sin(∆ϕ/2),

where r is radius of the earth in kilometers and ∆ϕ ∈ [0, π] is the central angle between s

and s′. We divided the 1247 locations randomly into two groups. The first group of 1147

was used for model fitting and the second group of 100 was used for evaluating kriging

mean squared errors.

We fitted the model (32) with constant mean function µ and CAR models 1, 2 and 3

to the returns at the first 1147 locations and evaluated the mean squared errors of kriging

at the remaining 100. We chose p = 100/1147 to give an expected number of knots equal

to 100 and q = 0.01 in the knots updating step. We ran 10000 iterations of the Gibbs

sampling after a burn-in period of 10000 iterations. 1000 posterior samples were collected

and these were thinned by using every 10th iteration.
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selected knots benchmarks by fixed-knots

α1 α2 κ2 δ2 M logL α1 α2 κ2 δ2 logL

Model 1

median 1.03 - 22.14 0.49 113 209.7 0.22 - 2.25 1.07 -117.2

quart. dev. 0.04 - 3.64 0.01 4.5 7.7 0.02 - 0.54 0.01 0.6

Model 2

median 15.10 1.02 18.41 0.54 101 168.3 1.51 0.29 2.05 1.04 -112.2

quart. dev. 1.41 0.05 3.89 0.02 5.5 12.5 0.23 0.04 0.45 0.01 0.7

Model 3

median 2.11 0.10 9.86 0.63 105 97.8 0.55 0.08 1.83 1.04 -113.4

quart. dev. 0.06 0.07 1.24 0.01 3.5 7.1 0.04 0.05 0.38 0.01 0.8

Table 3: CAR fitting by Models 1-3 for 1147 samples of log returns of land prices in

Tokyo. The median and the quartile deviation for the posterior samples were evaluated

in comparison with those of the cases of fixed knots with 100 randomly chosen locations.

In Table 3, we show the medians and quartile deviations of posterior samples with

their log likelihoods as given in (33). We conducted the fitting also with knots fixed at

100 randomly chosen locations and listed the results in Table 3 as benchmarks. In Table

4, we show the mean squared errors of kriging using the posterior medians of the kriging

samples as kriged values. The performance of these kriged values is compared with that

of the weighted average (34) and the corresponding kriged values obtained using fixed

knots.

We find that in terms of log likelihood our knot selection procedure improves sig-

nificantly on the fixed knot procedure and the CAR(1) model outperforms the CAR(2)

models. The CAR(1) model with our knot selection procedure has the best kriging mean

squared error of all considered. It is interesting that the improvement in kriging perfor-

mance of the knot selection procedure over the fixed knot procedure is not nearly as

pronounced as in the simulation study.

The kernel and autocorrelation functions of the best fitting CAR(1) are shown in

Figure 3 and the corresponding smoothed values, obtained by kriging over the entire

sampling region of Tokyo’s 23 wards are shown in Figure 4. According to Figure 3 the

log returns of land prices have autocorrelations smaller than .05 for lags greater than

6 kilometres. Figure 4 clearly demonstrates the interesting shape of the returns surface,

with the highest returns in the centre of Tokyo, gradually decreasing as we move towards

the remote suburbs.

22



selected knots fixed knots weighted average

Model1 Model2 Model3 Model1 Model2 Model3 bdw=1 2 3 4

MSE 0.93 0.96 1.10 1.02 1.03 1.05 1.05 1.03 1.08 1.17

Table 4: Kriging mean squared errors for randomly chosen 100 samples in log returns of

land price data in Tokyo, where kriging was conducted as the median of posterior samples.

The weighted averages with bandwidth of 1, 2, 3 and 4 and kriging with fixed knots were

conducted as benchmarks.
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Figure 3: The identified kernel and autocorrelation functions by Model 1 for log returns

of land prices in Tokyo 23 wards.

6 Discussion

This paper proposes the use of isotropic CARMA random fields driven by Lévy sheets

and specified by a kernel function defined in terms of autoregressive and moving average

polynomials of orders p and q respectively where 0 ≤ q < p. When the Lévy sheet has

finite second moments this class generates a rich source of isotropic covariance functions

on Rn with spectral densities which can be written explicitly. The covariance functions are

not necessarily non-negative or monotone. The covariance function of a CAR(1) field has

a simple explicit expression which belongs to the Matérn class with smoothness parameter

2. The covariances of more general CARMA fields can be expressed as modified Hankel

transforms which can be explicitly evaluated when n = 1 or n = 3.

Compound Poisson CARMA random fields are particularly useful as their restriction

to any bounded measurable subset of Rn can be approximated by a finite sum of terms

involving no matrix operations. Moreover estimation and kriging can be jointly conducted

by Gibbs sampling requiring O(M3) operations where M is the number of terms used in

the approximation to the random field. The Metropolis-Hastings algorithm can be used
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Figure 4: The smoothed figure of log returns of land price in Tokyo 23 wards by Model 1.

to specify the knot locations in the Gibbs sampling and the procedure works well in the

simulated examples and in terms of kriging mean squared error in the Tokyo land-price

example.
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driven by a symmetric Lévy noise,Bernoulli 14, 899–925.

[13] Knockaert, L. (2000). Fast Hankel transform by fast sine and cosine transforms: the

Mellin connection,IEEE Transactions on Signal processing 48, 1695–1701.

[14] Majumdar, A., Paul, D. and Bautista, D. (2010). A generalized convolution model

for multivariate nonstationary spatial processes. Statistica Sinica, 20, 675-695.

[15] Matérn, B. (1960). Spatial Variation. Meddelanden frán Statens Skogsforskningsin-

stitut, 49, Almaenna Foerlaget, Stockholm. Springer-Verlag, Berlin.

[16] Nowak, A. and Stempak, K. (2014). A note on recent papers by Grafakos and Teschl,

and Estrada, J. Fourier Anal. Appl. 20, 1141–1144.

[17] Paciorek, C.J. and Schervish, M. J. (2006). Spatial modeling using a new class of

nonstationary covariance functions. Environmetrics, 17, 483-506.

[18] Piessens, R. (2010). The Hankel transform. Chapter 9 of The Transforms and Ap-

plications Handbook: Third Edition, ed. Alexander D. Poularikas, CRC Press, Boca

Raton.

25



[19] Sampson, P.D. (2010). Cnstructions for nonstationary spatial processes. Handbook of

Spatial Statistics. Edited by Gelfand, A.E. Diffle, P., Fuentes, M. and Guttorp, P.,

119-130. CRC Press, Boca Raton.

[20] Schnurr, A. and Woerner, J. H. C. (2011). Well-balanced Lévy-driven Ornstein-
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