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SUMMARY 

 

KAWATA, V. K. S. Analysis of haematopoietic transcription factor networks using 

TALEs. 2014. 84 p. Dissertation (Doctor of Philosophy) - Graduate School of Dentistry, 

Tohoku University, Sendai, 2014. 

Transcription factors (TFs) are key determinants of cell identity and fate, which are 

thought to act within a highly interconnected TF regulatory network. Numerous TFs 

including PU.1 are known to play critical roles in developmental and adult 

haematopoiesis, but how they act within the wider TF network is still poorly understood. 

Transcription Activator-Like Effectors (TALEs) are a novel class of genetic tool based 

on the modular DNA binding domains of bacterial plant pathogen Xanthomonas TAL 

proteins, which enable DNA sequence-specific targeting and the manipulation of 

endogenous gene expression. The work presented in this thesis use engineered TALEs 

to target the PU.1-14kb and Scl+40kb transcriptional enhancers, thus providing efficient 

new tools to perturb expression of these key haematopoietic TFs. It was confirmed the 

efficiency of these TALEs at the single cell level using high-throughput RT-qPCR 

which also allowed to assess the consequences of both PU.1 activation and repression 

on wider TF networks during developmental haematopoiesis. Finally, combined with 

comprehensive cellular assays, these experiments uncovered novel for PU.1 during 

early haematopoietic specification. Therefore, TALEs were established as powerful new 

tools to study the functionality of transcriptional networks that control developmental 

processes such as early haematopoiesis. 

Key-words: haematopoieisis; transcription activator-like effectors; transcription factor 

regulatory networks; PU.1 
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1 INTRODUCTION 
 

Transcriptions factors (TFs) are key regulators of cell identity and fate. Cell 

type-specific transcriptional regulation is thought to largely occur by TF binding to 

distal cis-regulatory elements (Heinz et al., 2010). The haematopoietic system provides 

a well-studied model of mammalian tissue development, in which numerous key TFs 

have been described [reviewed by Wilkinson and Gottgens (2013)], including Scl (Tal1) 

and PU.1 (Spi1). The identification of cis-regulatory elements that regulate the 

expression of such TFs has begun to reveal TF circuits that suggest the existence of 

highly interconnected TF regulatory networks active in the haematopoietic system 

(Pimanda and Gottgens, 2010; Schutte et al., 2012). 

One well-studied example of such haematopoietic cis-regulatory element is the 

PU.1-14kb (Rosenbauer et al., 2004; Okuno et al., 2005; Huang et al., 2008; Staber et 

al., 2013). The PU.1-14kb plays a key role in PU.1 expression in haematopoietic 

stem/progenitor cells (HSPCs) and mature haematopoietic cell types; its deletion results 

in an 80% loss of PU.1 gene expression and acute myeloid leukaemia (AML) in mice 

(Rosenbauer et al., 2004), while mutation of an (autoregulatory) Ets site within the 

PU.1-14kb causes a 66% reduction in PU.1 gene expression, which leads to 

haematopoietic stem cell exhaustion (Staber et al., 2013).  

Recent technological advances in microfluidic technology have led to the development 

of robust protocols for high-throughput quantification of gene expression in single cells 

(Guo et al., 2010). One of the earliest studies reporting microfluidics-based single-cell 
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gene expression highlighted the potential for heterogeneity of knockdown efficiency 

within single cells following siRNA-mediated gene silencing (Toriello et al., 2008). 

However, the ability to accurately assess gene expression in single cells following 

conventional perturbations, such as retroviral overexpression or shRNA-mediated 

knockdown, has been limited because the former commonly yields unphysiologically 

high expression levels with no means to distinguish between the endogenous and 

ectopically expressed gene, whereas the latter acts post-transcriptionally and can 

therefore inhibit protein production without affecting transcript abundance. To realise 

the full potential of analysing perturbation phenotypes by single-cell gene expression 

profiling, more physiological means to tune gene expression levels are therefore 

required. 

Transcription activator-like effectors (TALEs) are a novel class of TFs identified in the 

bacterial plant pathogen Xanthomonas, where they are secreted as virulence factors to 

modulate gene expression of the host plant (Boch and Bonas, 2010). TALEs have a 

unique modular DNA-binding domain consisting of 33-35 amino acid repeats, each of 

which binds a single nucleotide with base recognition specificity (Boch et al., 2009). 

TALEs fused to transcriptional effector domains have been shown to modulate 

endogenous gene expression (Zhang et al., 2011; Cong et al., 2012; Gao et al., 2013). 

The present study use TALEs (fused to transcriptional effector domains) designed to 

target conserved regions within haematopoietic TF cis-regulatory elements as an 

efficient tool to regulate target gene expression. It was validated TALEs targeting the 

PU.1-14kb element and further assessed the phenotypic effect of modulating the activity 
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of these enhancers on embryoid body (EB) haematopoiesis. The combination of 

TALE-mediated endogenous gene expression perturbations with single-cell gene 

expression studies will be highlighted as a powerful approach to investigate TF 

regulatory networks. 

 

Osteoimmunology and PU.1 

Loss or mutation of lineage regulating transcription factors has yielded 

insight into the lineage derivation and stages of osteoclast differentiation. As briefly 

described above, PU.1 is a member of the ETS domain transcription factors that has a 

key role in regulating the production of B cells, pDC, and all the 

myelomonocyte-macrophage lineages, including mDC. Mice with targeted deletion of 

the PU.1 gene fail to generate monocyte progenitors that express the receptors for 

GM-CSF, G-CSF, and M-CSF and have severe osteopetrosis due to the complete lack 

of osteoclasts (Lorenzo et al., 2011). This defect is intrinsic to the osteoclast progenitor 

as bone marrow transplantation reverses the osteopetrosis in PU.1-deficient mice. PU.1 

expression as the cells differentiated from monocyte to osteoclast, similar to what has 

been reported for DCs. PU.1 has been demonstrated to interact with the microphthalmia 

transcription factor (MITF) to regulate TRAP (tartrate resistant acid phosphatase) gene 

expression. Since mice deficient in either M-CSF or its receptor Csf1r are born 

osteopetrotic but have an age-related recovery of osteoclast production, due largely to 

the actions of other growth factors, there must be a cell-autonomous function of PU.1 in 
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the generation of the monocyte-macrophage lineage independent of its role in regulating 

expression of Csf1r. In support of this, Csf1r expression (by transduction) cannot rescue 

macrophage differentiation in PU.1-deficient cells, indicating that, in the absence of 

Spi1/PU.1, Csf1r signalling is not sufficient to drive macrophage differentiation 

(Lorenzo et al., 2011).  

1.7 Aims of this study 

Gene expression is controlled by numerous TFs that bind to cis-regulatory 

regions of their target genes. In order to understand how TFs PU.1 interact to form 

wider transcriptional networks underlying blood cell development, the following four 

aims were pursued during the course of the PhD project: 

I. Determining the targets and specificity of haematopoietic regulatory 

element PU.1-14kb using TALE; 

II. Blocking specific TF binding motifs at this region, to dissect its role 

enhancer activity; 

III. Assess gene function in adult haematopoiesis to test the ability of 

TALEs to modulate gene expression; 

IV. and, perturb TF networks in forward programming experiments. 
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2. MATERIALS AND METHODS 

2.1 Cell culture, sample preparation and classification 

2.1.1 Mammalian Cell Line 

All cells were grown in controlled conditions using aseptic techniques and 

good laboratory practice. Cells were maintained at 37 ˚C in a humidified atmosphere 

containing 5% CO2 and handled in a class II tissue culture hood. Cells were grown in 

media as per the advice of the Deutsche Sammlung von Mikroorganismen und 

Zellkulturen (DSMZ) or European Collection of Cell Cultures (ECACC) and 

maintained at the suggested density. All medium and other reagents were obtained from 

Sigma Aldrich (Sigma Aldrich Inc, Gillingham, Dorset) unless otherwise stated. 

Cell line Description Medium 
Ainv18 ES Embryonic Stem Cell KO-DMEM (Invitrogen), 15% FCS (Gibco), 

L-Glutamine (Sigma), 100 IU/ml Pen/Strep 
(Sigma), 2-mecaptoethanol (Invitrogen), 
recombinated mouse LIF (ORF Genetics), 2.0 x 
104 inactivated MEFs per cm2 

416b Mouse Primitive Myeloid 
Leukaemia cell line 

RMPI, 10% FCS, 50 IU/ml Pen/Strep 
(Moignard et al., 2013) 

K562 Human Myeloblastic 
Leukaemia 
Cell line 

DMEM, 10% FCS, 50 IU/ml Pen/Strep 
(Knezevic et al., 2011) 

OP9 Murine Stromal cell line α-MEM, 20% FCS, 50 IU/ml Pen/Strep 

Table 2.1| Cell line culture conditions. 

2.1.2 Estimation of Cell Number 

Cell number was determined using CASY impedance counter (Hoffmann-La 

Roche Ltd, Basel, Switzerland) or the haemocytometer method of counting cells in 
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solution. This second method was also used to assay live cells by dye exclusion using 

Trypan Blue (Sigma-Aldrich). 

2.1.5 ES cell differentiation 

ES cells were differentiated essentially as described in (Sroczynska et al., 

2009). At day 4 of differentiation, TALE expression was induced by addition of 0.5 

ηg/µl doxycycline and media was refreshed at day 5. EB cultures for single cell gene 

expression analysis were formed from a mix of WT Ainv18 ES (mCherry-) and targeted 

Ainv18 ES (mCherry+) cell lines that were passaged once before differentiation as a 

50/50 mixture. 

2.1.6 Flow Cytometry 

Five-color flow cytometric immunophenotyping was performed on cell line 

using a 5 laser LSR Fortessa (BD Biosciences). Dissociated EB cells were FcR blocked 

by incubation with anti-CD16/32 (BD) for 10 minutes at 4 ˚C, then stained with 

cocktails of monoclonal antibodies conjugated to allophycocyanin (APC), 

phycoerythrin-cyanine dye (PEcy7), phycoerythrin (PE) or mCherry and directed 

against the following: CD41-PE-cy7 (Biolegend), CD41-APC (eBioscience), 

CD45-APC (Biolegend), Flk1-APC (BD), Flk1-PE (BD), VEcad-PE-Cy7 (Biolegend), 

cKit-APC (BD). DAPI was used as a cell viability stain. Annexin V-APC (BD) 

antibody and DAPI was used to assess cell apoptosis according to manufacturers’ 

instructions. Results were acquired for 10,000 cells per tube and analyzed using FlowJo 

software (version 9, Tomy Digital Biology, Japan). 
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2.2. Cell Biology 

2.2.1 Stable transfection 

Aliquots of 1.0 x 107 K562 or 416b cells were co-transfected with 6 µg of 

PB-TRP-TALE, 2µg PB-CAT-rtTA and 2 µg of transposase (pl623) by electroporation 

(BioRad, Gene Pulser X-Cell™ system) The cells were harvested and resuspended in 

the PBS at 2.5 x 107/ml. The plasmids were mixed with 180 µl cell suspension and 

transfected in 4 mm electroporation cuvettes using a pulse of 220 V at a capacitance of 

900 µF and, cells were divided between four 10cm dishes. Cells were subjected to 

antibiotic selection at 24 hours post electroporation at a dose determined by kill-curve 

and were assayed once they had re-expanded in number (approximately 10 – 14 days 

after the addition of antibiotic selection). 

For Ainv18 ES cells, cells in log phase growth were co-transfected with 6 µg 

of PB-TRP-TALE and 2 µg of transposase (pl623) by AMAXA Nucleofector System 

(Lonza, Slough, UK). 10 µl of plasmids in supplemented Mouse ES cell nucleofector 

solution were mixed with 90 µl cell suspension and transfected in 4 mm electroporation 

cuvettes using programme A-024 according to manufacturers instructions.  

Transfected cells were seeded at single cell density (2.0 x 103, 5.0 x 103 and 1.0 x 104) 

on gelatin-coated 10cm dishes with 2.0 x 104 MEFs per cm2 and positive clones, based 

on mCherry expression by fluorescence microscopy and by flow cytometry, were 

expanded. 
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2.2.2 OP9 co-culture assays 

Flk1+ cells from day 4 EBs (over 95% pure as assessed by flow cytometry) 

were sorted by MACS (Miltenyi Biotec, Germany) using Flk1-PE and anti-PE 

microbeads according to manufactures instructions and cultured in 12 well plates 

containing confluent OP9 stromal cells (Nakano et al., 1994) in MEMα supplemented 

with 20% FCS at 37 ˚C with 5% CO2. Mesodermal colonies were allowed to form for 

36 hours before doxycycline was added. Haematopoietic cells were not seen before this 

time point. After 48 hours, cells were fixed in 2% PFA overnight, blocked, stained with 

purified CD41 antibody (BD), visualize by DAB staining, and mesodermal colonies 

containing (at least 2) small rounded budding CD41+ haematopoietic cells scored. 

Specific staining was confirmed using an isotype control antibody. VE-cad+ cells from 

day 6 EBs were sorted by FACS using a BD Influx and plated into a 12 well plate well 

containing confluent OP9s, and cultured for 4 days in MEMα supplemented with 10% 

FCS at 37 ˚C with 5% CO2. After 4 days, cells were fixed and stained as above using 

purified CD31 antibody (BD), and endothelial sheet colonies scored. 

2.2.3 Endothelial assays 

VE-cadherin positive were FACS sorted using a BD Influx and 1000 cells 

plated into a 12 well plate well containing confluent OP9 cells, and cultured for 4 days 

in MEM media supplemented with 10% FCS, 2-mecaptoethanol and P/S at 37 ˚C with 

5% CO2. After 4 days, cells were fixed with 2% PFA overnight, stained with purified 

CD31 antibody, visualized by DAB, and endothelial sheet colonies scored. 
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2.2.4 Haematopoietic colony forming assays 

At day 6, after EBs dissociation using TryLE (Life Technologies), 100,000 

cells were plated in triplicate in 1.1ml M3434 Methocult (Stem Cell Technologies) and 

incubated at 37 ˚C with 5% CO2. For OP9 co-culture colony forming assays, 100,000 

day 6 EB cells were plated in 6 well plate wells on confluent OP9 in MEMα 

supplemented with 10% FCS at 37 ˚C with 5% CO2 for 24 hours before media was 

replaced for M3434 Methocult. Definitive haematopoietic colonies were counted after 

10-12 days using the following criteria. Burst forming unit erythroid (BFUe): red 

coloured erythroid colonies of at least ~30 small cells dispersed within small clusters 

with tight cell-cell junctions. Colony forming unit-granulocyte (CFU-G): colonies of at 

least ~50 small round bright cells (often tightly packed with grey centre). Colony 

forming unit-granulocytes macrophage (CFU-GM): Large colonies of over ~200 cells 

containing both granulocytes (as described above) and macrophages (large round cell, 

less bright than granulocytes and often more dispersed). Colony forming unit-mix 

(CFU-Mix): Large colonies of over ~200 cells, densely packed, including red erythroid 

cells (similar to those described above) as well as at least two other lineages (usually 

granulocytes and macrophages described above) or megakaryocytes. 
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2.3 Molecular Biology 

2.3.1 Gene expression analysis 

2.3.1.1 RNA Preparation 

RNA was prepared from cell lines with 1.0 ml of TriReagent (Sigma, Poole, 

UK) and frozen at -80 ˚C until needed. For RNA extraction, samples were left to thaw 

at room temperature and 0.2 ml of chloroform was added per each ml of TriReagent, 

followed by vigorous shaking. The cells were then incubated at room temperature for 10 

minutes, centrifuged at 13,000 rpm for 15 minutes at 4 ˚C and the upper aqueous phase 

transferred to a new tube. Subsequently, 0.5 ml of propan-2-ol was added to the samples, 

which were then incubated at room temperature for 10 minutes followed by 

centrifugation at 13,000 rpm for 10 minutes at 4 ˚C. The supernatant was removed and 

washed in 1.0 ml of 75% ethanol. The samples were mixed and then centrifuged at 

7,500 rpm for 5 minutes at 4 ˚C. Finally, the ethanol was removed, the samples air-dried 

and the pellet resuspended in 10 − 30 µl of ultra pure sterile water followed by 

incubation in a heat block set at 55 ˚C for 10 − 15 minutes prior to homogenization the 

pellet by pipetting up and down several times. 1.5µl RNA was quantified using a 

Nanodrop and assessment of the absorbance of the samples at 260 ηm and 280 ηm. The 

purity of the RNA was determined using the ratio of absorbance at 260 ηm to 280 ηm 

(A260:A280). A ration of close to 1.8 was considered ideal, lower ratios indicated the 

sample was not fully dissolved and higher ratios indicated protein contamination. RNA 
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was then DNase treated to eliminate residual genomic DNA using TURBO DNase 

(Applied Biosystems, Carlsbad, CA, USA) as per the manufacture`s guidance. 

2.3.1.2 cDNA Preparation 

cDNA was prepared using random hexamers and M-MLV reverse 

transcriptase reagents kit (Invitrogen) as per manufacturer’s guidance. 

Briefly, 500 ηg RNA samples were made up to 34.75 µl with RNAse free 

water in a clean microcentrifuge tube and 10 µl of 10x RT buffer added. Subsequently, 

22 µl of 25 mM MgCl2 (final concentration: 5.5 mM), 20 µl dNTPs mix (final 

concentration: 500 µM per dNTP), 5 µl random hexamers (final concentration: 2.5 µM), 

2 µl RNase Inhibitor (final concentration: 0.4 U/µl) and 6.25 µl of MultiScribe Reverse 

Transcriptase (final concentration 3.125 U/µl) were added and the mixture subjected to 

thermal cycling with the following conditions. Samples were the stored at -20 ˚C. 

Segment Cycles Temperature Time 
1 1 25 ˚C 10 minutes 
2 1 37 ˚C 60 minutes 
3 1 95 ˚C 5 minutes 
4 1 4 ˚C Hold 

Table 2.2| Reverse Transcription Thermal Cycling Conditions. 

2.3.1.3 qPCR 

Quantitative PCRs (qPCR) were undertaken using Brilhant II SYBR Green 

QPCR Master Mix (Stratagene) following the manufacturer’s instructions. Sample were 

run in Stratagene Mx3000P QPCR System in triplicate using 1 µl of cDNA, 1 µl of 

forward primer (10 mM), 1 µl of reverse primer (10 mM), 12,5 µl of Brillant SYBR 



 27 

QPCR master mix and 9.5 µl of ultra pure sterile water. Cycle conditions may be seen 

on the table below: 

Segment Cycles Temperature Time 
1 1 95 ˚C 10 minutes 
2 40 95 ˚C 15 seconds 

60 ˚C 1 minutes 
3 Dissociation 

curve 
95 ˚C 1 minutes 
55 ˚C 30 seconds 
95 ˚C 30 minutes 

Table 2.3| Real Time PCR Conditions. 

Primers were designed using Primer 3 and Beacon primer-design software 

and synthesized by Eurofins MWG (Ebersberg, Germany).  

Primer name Sequence 
Human ACTB forward AGAGCTACGAGCTGCCTGAC 
Human ACTB reverse AGCACTGTGTTGGCGTACAG 
Human SCL/TAL1 forward TTCCCTATGTTCACCACCAA 
Human SCL/TAL1 reverse AAGATACGCCGCACAACTTT 
Human MAP17 forward TGCCTATGAGAATGTGCCG 
Human MAP17 reverse TGGACATCCATCCCATGTGC 
Human PU.1/SPI-1 forward CGGCTGGATGTTACAGGCGTG 
Human PU.1/SPI-1 reverse TCGTGCGTTTGGCGTTGG 
Human SLC39A13 forward TTCCCCTAGAGATGGGGACC 
Human SLC39A13 reverse GGCAGCAGATGCAGAAACAC 
Human PSMC3 forward ACAGACGTACTTCCTTCC 
Human PSMC3 reverse CCAATGAACATCTGCACCAG 
Human RAPSN forward GTACGACTCCGCCATGAGCA 
Human RAPSN reverse ATGGCATCCAGAGCCTTGTCC 
Human MYBPC3 forward GCTCTTCCAGACCCATCTCG 
Human MYBPC3 reverse CAGCGGGATGACAGGAAACA 
Human MADD forward TAGTGATCGTAGGGGCCAGG 
Human MADD reverse GCAGGGGAAACTCAGTGTGA 
Human STIL forward ATGCACATAACGTGGATCACG 
Human STIL reverse TCCATGCTCAAATCCACACC 
Human CMPK1 forward TCTCATGAAGCCGCTGGT 
Human CMPK1 reverse TCCTGCAGAAAGGTGTGTGT 
Human CYP4X1 forward TCAGGACACAAGCGTGGAGGTCTA 
Human CYP4X1 reverse TGCATAAGGATCATGGGTGCTGTT 
Human CYP4A29-PS forward CTGCTTTTCAAGGCAGCACA 
Human CYP4A29-PS forward CTGCAAGCAATGCCCAAAGA 
Mouse Actb forward TCCTGGCCTCACTGTCCAC 
Mouse Actb reverse GTCCGCCTAGAAGCACTTGC 
Mouse Scl/Tal1 forward CATGTTCACCAACAACAACCG 
Mouse Scl/Tal1 reverse GGTGTGAGGACCATCAGAAATCTC 
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Mouse Map17 forward GTCCTTGTTGCAATCGTCTTC 
Mouse Map17 reverse GAGGAGTATCTGCCATCCATTC 
Mouse PU.1/Sfpi-1 forward AGAGCATACCAACGTCCAATGC 
Mouse PU.1/Sfpi-1 reverse GTGCGGAGAAATCCCAGTAGTG 
Mouse Slc39a13 forward TTGCTGGTCATTCCCCTGGA 
Mouse Slc39a13 reverse GTCCACCTAAGGCAAAGCTGA 
Mouse Psmc3 forward GACCGTGTGGGATGAAGCTG 
Mouse Psmc3 reverse CGCTGGACAATCTCTTCCGTG 
Mouse Rapsn forward ATATCGGGCCATGAGCCAGT 
Mouse Rapsn reverse TCACAACACTCCATGGCACTGC 
Mouse Mybpc3 forward TGAAGGGTCAGTCTCGGTAACC 
Mouse Mybpc3 reverse TCCTGTGGTCGCATCAGAAA 
Mouse Madd forward AAGAAACTGGGCATCCCTCG 
Mouse Madd reverse GAAGGGCACTGGACTTCTCC 
Mouse Stil forward GGTGATGATCAAGAGCCCGA 
Mouse Stil reverse ACCAGGTTCTTTGCTCTGCT 
Mouse Cmpk1 forward TCAGAAGCGCGTTGTATGCT 
Mouse Cmpk1 reverse AAAACGAACACGACCAACGG 
Mouse Cyp4x1 forward CCTGGACATAATAATGAAATGTGCTT 
Mouse Cyp4x1 reverse CTTCACGTAAGACTCATAGGTGCC 
Mouse Cyp4a29-ps forward CAGTGCACCATCTGGACCTC 
Mouse Cyp4a29-ps reverse GATTACGTAATAGTGGTCCCTCAGG 

Table 2.4| Human and Mouse Primers. 

2.3.2 Single Cell Gene Expression Analysis 

Single cell gene expression analysis was undertaken in collaboration with 

Adam C. Wilkinson. 

2.3.2.1 Purification of Progenitor Cells 

Cells were pre-incubated with FcR-block for endothelium and haemogenic 

endothelium stains. Cells were stained with VE-cadherin antibody against mouse 

antigen to allow separation of the individual population (Figure 2.1). A Influx™ Cell 

Sorter (BD Biosciences) was used for all cell sorting. Chimeric mixture of wild type 

(WT) Ainv18 control and TALE inducible ES cells, and unstained populations were 

used as gate-setting controls. Single cells were seeded by an automated cell deposition 
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unit directly into to 96 well PCR plates containing lysis buffer, RT/Taq and primers for 

pre-amplification using a BD Influx (see below). 

2.3.2.2 Specific Target Amplification 

Single-cell gene expression analysis was undertaken as previously described (Moignard 

et al., 2013). Single-cell gene expression analysis was performed using 48.48 Dymanic 

Array integrated fluidics chips (M48, Fluidigm Corporation) on the BioMark HD 

platform (Fluidigm Corporation), which facilitates the simultaneous analysis of 48 

genes in each of 48 samples. Complementary DNA synthesis and specific target 

amplification (preamplification) of genes of interest were preformed using the 

CellsDirect One-Step qRT-PCR kit (Invitrogen). Single cells were sorted by FACS 

directly into individual wells of 96-well plates containing 5 µl CellsDirect 2x reaction 

mix (Invitrogen), 0.1 µl SUPERase RNAse Inhibitor (Ambion), 2.5 µl 0.2x assay mix, 

1.2 µl TE buffer (Invitrogen) and 1.2 µl SuperscriptIII/Platinum Taq (Invitrogen). The 

0.2x assay mix contained a pool of 24 TaqMan assays (Applied Biosystems; see 

2.3.2.3) at a 1:100 dilution of each assay in TE buffer. Reverse transcription and 

specific target amplification were performed in the sample plates immediately after 

sorting as follows: 

Table 2.5| Specific Target Amplification PCR Cycling Conditions. 

Segment Cycles Temperature Time 
1 1 50 ˚C 15 minutes 
2 1 95 ˚C 2 minutes 
3 22 95 ˚C 15 minutes 

60 ˚C 4 minutes 
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Figure 2.1| Purification of Endothelium and Haematopoietic Endothelium Precursor Cells. 

FACS profiles for the sorting of single (P4) endothelium and haematopoietic endothelium 
precursor cells. Flow cytometry cell events are first gated using FSC-H versus SSC, then 
singlet events are gated using FSC-H versus trigger probe width. Low Dapi staining is used 
to gate live cells. mCherry positive and mCherry bright cells are then gated on used Ainv18 
cell line in mCherry versus PE-Cy7-VEcadherin staining single stained controls. 

cDNA was diluted 1:5 with TE before quantitative PCR (qPCR) on the 

BioMark HD. cDNA was stored at -20 ˚C before processing on the BioMark HD. 

Gene Assay ID 

Gated on live singlets 

Endothelium and 

haemogenic endothelial precursors  

A B 

C D 
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Csf1r/c-fms – colony stimulating factor 1 receptor Mm01266652_m1 
CD34 – haematopoietic progenitor cell antigen CD34 Mm00519283_m1 
CD41 – Integrin, Alpha 2b (Platelet Glycoprotein IIb of IIb/IIIa 
Complex, Antigen CD41) Mm00439768_m1 

Cdkn2a – cyclin-dependent kinase inhibitor 2A Mm00494449_m1 
Csf2ra – colony stimulating factor 2 receptor, alpha, low-affinity 
(Granulocyte-Macrophage) Mm00438331_g1 

Eif2b1 – eukaryotic translation initiation factor 2B, subunit 1 alpha Mm01199614_m1 
Epb4.2 – erythrocyte membrane protein band 4.2 Mm00469107_m1 
Epcr – protein C receptor, endothelial Mm00440993_mH 
EpoR – erythropoietin receptor Mm00438760_m1 
Erg – V-Ets Avian Erythroblastosis Virus E26 Oncogene Homolog Mm01214246_m1 
Eto2 (Cbfa2t3h) – core-binding factor, runt domain, alpha subunit 2; 
translocated to, 3 Mm00486780_m1 

Ets1 – V-Ets Avian Erythroblastosis Virus E26 Oncogene Homolog 1 Mm01175819_m1 
Ets2 – V-Ets Avian Erythroblastosis Virus E26 Oncogene Homolog 2 Mm00468977_m1 
Etv2 – Ets variant 2 Mm00468389_m1 
Fli1 – Friend leukemia virus integration 1 Mn00484409_m1 
Flk1 – Kinase Insert Domain Receptor (A Type III Receptor Tyrosine 
Kinase) Mm01222421_m1 

GATA1 – GATA binding protein 1 Mn00484678_m1 
GATA2 – GATA binding protein 2 Mn00492300_m1 
GATA3 – GATA binding protein 3 Mm00484683_m1 
Gfi1 – growth factor independent 1 transcription repressor Mn00515855_m1 
Gfi1b – growth factor independent 1B transcription repressor Mn00492318_m1 
Hbb-bH1 – haemoglobin, beta Mm00756487_mH 
Hbb-y – growth factor independent 1B transcription repressor Mm00433936_g1 
hHex – haematopoietically expressed homebox Mn00433954_m1 
Hmbs – Hydroxymethylbilane Synthase Mm01143545_m1 
Hoxb4 – Homeobox B4 Mm00657964_m1 
Ikaros – Zinc Finger Protein, Subfamily 1A, 1 Mm01187882_m1 
Kit – v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog Mn00445212_m1 
Lmo2 – LIM domain only 2 Mn01281680_m1 
Lyl1 – Lymphoblastic leukemia derived sequence 1 Mn00493219_m1 
Lyz2 – lysozyme 2 Mm01612741_m1 
Meis1 – Meis homebox 1 Mn00487659_m1 
Mpl – myeloproliferative leukemia virus oncogene Mm00440310_m1 
Mpo – myeloperoxidase Mm00447886_m1 
Mrpl19 – Mitochondrial ribosomal protein L19 Mn03048937_m1 
Myb – V-myb avian myeloblastosis viral oncogene homolog Mm00501741_m1 
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Nfe2 – nuclear factor (erythroid-derived 2) Mn00801891_m1 
Notch1 – translocation-associated notch protein TAN-1 Mm00435249_m1 
Pecam1 – platelet/endothelial cell adhesion molecule 1 Mm01242584_m1 
Pol2ra – polymerase (RNA) II (DNA directed) polypeptide A Mn00839493_m1 
PU.1 (Sfpi1) – spleen focus forming virus (SFFV) proviral integration 
oncogene spi1 Mn00488142_m1 

Runx1 – Runt-related transcription factor 1 Mn01213405_m1 
Scl/Tal1 – T-cell acute lymphocytic leukemia 1 Mn00488142_m1 
Sox17 – SRY (Sex Determining Region Y)-Box 17 Mm04208182_m1 
Sox7 – SRY (Sex Determining Region Y)-Box 7 Mm00776876_m1 
Tel – Ets Variant 6 Mm01261325_m1 
Ubc – Ubiquitin C Mn01201237_m1 
VE cadherin – Ubiquitin C Mm00486938_m1 
Table 2.6| TaqMan Assays used for Single Cell Gene Expression Analysis. 

Housekeeping or marker genes are shaded in grey. 

2.3.2.3 qPCR using Fluidigm BioMark HD Platform 

For each population, 8 positive controls of 20 cells per well, 24 negative 

controls (no cell sorted) and 160 single cells were sorted. This corresponds to 4 M48 

Dymanic Arrays per population, each containing 2 positive controls, 6 negative controls 

and 40 single cells. For the qPCR, 3 µl for each TaqMan assay was mixed with 3 µl 

Gene Expression Assay Loading Reagent (Fluidigm). Then, 2.7 µl of diluted cDNA was 

mixed with 3 µl 2x TaqMan Universal Mastermix (Applied Biosystems) and 0.3 µl 

Gene Expression Sample Loading Reagent (Fluidigm). Next, 5 µl of each sample and 

assay was loaded into individual sample and assay inlets on the M48 Dynamic Array. 

Samples and assays were then loaded into the reaction chambers of the Dynamic Array 

using the IFC Controller MX (Fluidigm), and then transferred to the BioMark HD for 

qPCR. 

Segment Cycles Temperature Time 
1 1 95 ˚C 10 minutes 
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2 40 95 ˚C 15 seconds 
3 1 60 ˚C 60 seconds 

Table 2.7| Quantitative PCR conditions.  

2.3.2.6 Hierarchical Clustering and Principal Component 

Hierarchical clustering and principal component analysis using the software 

programming language R (www.r-project.org) package library ‘ggplots’ and its function 

‘heatmap.2’ and ‘PC-loading’ has been performed by Adam C. Wilkinson. 

Hierarchical clustering and principal component analysis were performed 

only on the data for the 44 transcription factors. Hierarchical clustering was performed 

using Spearman Rank correlation. Positive and negative correlations between pairs of 

genes were tested with Spearman Rank correlation, with P-values calculated based on 

10,000 permutations. Positive correlations with a Z-score above 12 (P < 3E-33) and 

negative correlations with a Z-score below -4 (P < 6.09E-05) were considered 

significant, with known antagonistic relationships recovered beyond these values. PCA 

was performed using the pcromp function. 

2.3.3 DNA Template for Stable Transfection 

2.3.3.1 Design and assembly of Tal Effector Target Sequences 

TALE sequences were designed to 20 bp regions within the Scl+40kb and 

PU.1-14kb elements that were conserved between human and mouse, and were unique 

within both genomes by BlastN and Blat (Altschul et al., 1990; Kent, 2002). TALEs 

were assembled and cloned into piggyBac (PB) as described previously by Xuefei Gao 
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(Prof. Dr. Pentao Liu`s laboratory, The Sanger Institute; Gao et al., 2013), adapted from 

(Zhang et al., 2011).  

3 RESULTS 

3.1 Design and validation of TALEs targeting conserved regions within 

haematopoietic enhancers 

The Scl+40kb and PU.1-14kb element were aligned, and perfectly conserved 

regions between human and mouse were identified computationally. TALEs were 

designed to match these regions but nowhere else in the mouse and human genomes so 

that they could be used in either organism (Figure 3.1a, 3.2a). TALE was initially 

assembled so that they were fused to the VP64 (transcriptional activator) domain (Beerli 

et al., 1998) and a mCherry fluorescent reporter via a 2A peptide (Figure 3.1a). The 2A 

peptide is proteolytically cleaved upon translation, releasing mCherry as a marker of 

TALE expression. The TALE constructs were cloned into piggyback transposon-based 

plasmids (Wang et al., 2008), for efficient stable genomic integration, and under the 

control of a Tetracycline Responsive Promoter (TRP), to provide inducible expression 

regulated by rtTA and tetracycline/doxycycline (dox; Figure 3.1a-c). Initially, the 

ability of these TALE-VP64 proteins to modulate target gene expression in both human 

and mouse systems by expression in K652 (a human erytholeukemia cell line; (Lozzio 

et al., 1981), and 416B (a mouse myeloid progenitor cell line; Dexter et al., 1979) were 

validated. In human K562 cells, the TALE-VP64 targeting Scl+40kb upregulated SCL 

expression approximately 4-fold but had little effect on MAP17 expression (Figure 
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3.2e). By contrast, in 416B cells this TALE-VP64 highly unregulated Map17 expression 

~22-fold but had little effect on Scl expression (Figure 3.2e). In both the human K562 

and mouse 416B cells, expression of the TALE-VP64 targeting the PU.1-14kb 

upregulated PU.1 expression 3 – 4-fold and SLC39A13/Slc39a13 expression ~2-fold 

(Figure 3.2c). 

Modest (1.5 – 8.5-fold) increases in histone 3 lysine 27 acetylation 

(H3K27Ac), an epigenetic modification associated active regions of chromatin 

(Creyghton et al., 2010), were also seen in 416B cells at the promoters of TALE-VP64 

target genes, consistent with increased active transcription (Figure 3.3a, b). H3K27Ac 

was also enriched 3.8-fold at the Scl+40kb when the TALE-VP64 targeting this 

enhancer was expressed (Figure 3.3a). However, a 50% reduction in H3K27Ac was 

seen at the PU.1-14kb when the TALE-VP64 targeting this enhancer was expressed 

(Figure 3.3b), perhaps due to nucleosome displacement caused by TALE-VP64 and 

co-factor DNA binding. In mouse embryonic stem (mES) cell, where these enhancers 

were not active (as determined by H3K27Ac ChIP-seq enrichment; Wilkinson A. C. et 

al., 2014 unpublished results), and target genes are weakly expressed, TALE-VP64 

expression did not induce gene expression upregulation (Figure 3.3c, d). 

To determine the specificity of these TALEs were further determined 

expression changes to genes within ~100kb of the target regions (Figure 3c-f). Less 

than 1.7- fold increases in expression were seen in 416B, mES and K562 cells. Reduced 

expression in some genes (such as Stil in 416B cells expressing T-VP64-Scl+40) were 
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identified, perhaps due to transcription factory reallocation (Papantonis and Cook, 

2013). TALEs were binding to their regions were additionally confirmed by chromatin 

immunoprecipitation (ChIP). By ChIP-qPCR, enrichments of 15-17 fold, relative to IgG 

controls, were seen at target locations (Figure 3a,b). To further assess TALE binding 

specificify genome-wide, the HA-T-VP64-PU.1-14 sample was sequenced (ChIP-seq) 

and the 416B control. The number of regions across the entire genome that showed 

enrichment was comparable between the control IgG and HA-T-VP64-PU.1-14 samples, 

underlining the high specificity afforded by TAL-mediated targeting that has also been 

reported by others (Mali et al., 2013). Importantly, a clear peak at the PU.1-14kb 

element could be identified in the HA-T-VP64-PU.1-14 sample, but not the control 

(Figure 3.4d). Manual assessment of enrichment at regions containing similar DNA 

sequences to the TALE-VP64-PU.1-14 target sequence did not identify strong off-target 

binding, and no either binding events occurred within a 15 Mb window around 

PU.1-14kb (Figure 3.4d). 
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Figure 3.1 | Schematic of TALE Transcriptional Factor Design. 

(a), Structure of TALE-expressing piggyBack construct. TALE cDNA consists of TALE sequence 

followed by a nuclear localisation signal (NLS), the transcriptional effector domain (VP64 or 

KRAB) and mCherry fluorescent protein, via a 2A (peptide sequence cleaved after translation). 

TALE cDNA was cloned downstream of a tetracycline-responsive promoter (TRP), and within 

piggyBack LTRs for stable transposase-mediated genomic integration. The DNA binding 

domain (DBD) within the TALE sequence consists of twenty monomers; each monomer binds a 
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single nucleotide with base specificity, either NN, NI, NG or HD. Sequence of monomer repeats 

assembled for TALEs targeting PU.1-14kb elements shown below. 

(b), Doxycycline activates rtTA to bind and promote expression at the TRP. After protein 

translation, the 2A peptide is cleaved in vivo to release mCherry, allowing expression to be 

followed. c, the VP64 domain recruits core transcriptional machinery to promote transcription 

while the KRAB domain recruit transcriptional repressors including NuRD and SETDB1 via 

KAP1/TRIM28. 

 

 

 

 

Figure 3.2 | Experimental Validation. 

d a 

c 

b
 

e 



 39 

(a) Schematic of the Scl (encoded by Tal1) genomic locus. Scl+40kb element is highlighted in 

green, downstream of the neighbouring gene Map17. TALE target site within a conserved 

(between human and mouse) sequence of the Scl+40kb element highlighted in red. 

(b) Schematic of the PU.1 (encoded by Spi-1) genomic locus. PU.1-14kb element is highlighted 

in green. TALE target site within a conserved (between human and mouse) sequence of the 

PU.1-14kb element highlighted in red. 

(c) Experimental approach to express TALEs in cell lines. Cells were co-transfected with the 

TALE expression piggyBack (TALE-PB) from (Figure 3.1), a constitutively expression rtTA 

piggyBack vector (pCAG-rtTA-PB) and a piggyBack transposase, to create inducible TALE 

expressing cells. 

(d) Effect of expressing TALE-VP64 targeting the Scl+40kb (T-VP64-Scl+40) in human K562 

(left) and mouse 416B (right) on SCL/Scl and MAP17/Map17 gene expression, normalised to 

ACTB/ActB. T-VP64-Scl+40 expressed for 48 hr by addition of doxycycline (dox) and gene 

expression in mCherry+ cells determined relative to mCherry control cells. Error bars are 

standard deviation of technical triplicates. 

(e) Effect of expressing TALE-VP64 targeting the PU.1-14kb (T-VP64-PU.1-14) in human K562 

(left) and mouse 426B (right) on PU.1 and SLC39A13/Scl39a13 gene expression, normalised to 

ACTB/ActB. T-VP64-PU.1-14 expressed for 48 hr by addition of dox and gene expression in 

mCherry+ cells determined relative to mCherry- control cells. Error bars are standard deviation 

of technical triplicates. 
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Figure 3.3 | Experimental validation, related to Figure 3.2. 

(a) Schematic of approach taken to ChIP for TALE-VP64 proteins in (H). HA affinity tag was 

inserted at the N-terminus of the TALE-VP64 protein (HA-TALE-VP64), 416B cells 

co-transfected as in (D), sorted and ChIP performed 48 hours after dox addition. 

(b) Chromatin immunoprecipitation (ChIP)-qPCR enrichment of HA-tagged TALE-VP64 

(HA-T-VP64) relative to IgG controls in HA-T-VP64-Scl+40 expressing (pink), 

HA-T-VP64-PU.1-14 expression (red) or untransfected control (green) 416B cells at the 

Scl+40kb, PU.1-14kb and a control region on chromosome 1 (chr1). Error bars are standard 

deviation of technical triplicates. 

(c) Effect of expressing HA-TALE-VP64 targeting the Scl+40kb (HA-T-VP64-Scl+40) for 48 hr 

in mouse 416B on histone 3 lysine 27 acetylation (H3K27Ac; relative to IgG enrichment) at the 
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Scl+40kb, Scl promoter (prom), Map17 prom and a control region on chromosome 1 (chr1 

control). HA-T-VP64-Scl+40 expressed for 48 hr by addition of doxycycline (+dox; pink bars). 

Untransfected 416B used as control (green bars). Error bars are standard deviation of 

technical triplicates. 

(d) Effect of expressing HA-TALE-VP64 targeting the PU.1-14kb (HA-T-VP64-PU.1-14) in 

mouse 416B on histone 3 lysine 27 acetylation (H3K27Ac) ChIP-qPCR enrichment (relative to 

IgG enrichment) at the PU.1-14kb, PU.1 prom, Map17 prom and Chr1 control region. 

HA-T-VP64-PU.1-14 expressed for 48 hr by addition of dox (+dox; red bars). Untransfected 

416B used as control (blue bars). Error bars are standard deviation of technical triplicates. 

(e) Effect of expressing TALE-VP64 targeting the Scl+40kb (T-VP64-Scl+40) in mouse Ainv18 

ES cells on Scl and Map17 gene expression, normalised to ActB. T-VP64-Scl+40 expressed for 

48 hr by addition of dox and gene expression in +dox cells (green bars) determined relative to –

dox control cells (pink bars). Error bars are standard deviation of technical triplicates. 

(f) Effect of expressing TALE-VP64 targeting the PU.1-14kb (T-VP64-PU.1-14) in mouse 

Ainv18 ES cells on PU.1 and Slc39a13 gene expression, normalised to ActB. T-VP64-PU.1-14 

expressed for 48 hr by addition of dox and gene expression in +dox cells (blue bars) determined 

relative to –dox control cells (red bars). Error bars are standard deviation of technical 

triplicates.   
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Figure 3.4 | Experimental Validation, related to Figure 3.2. 

(a) UCSC Genome Browser screen shot of RefSeq annotated genes within a ~150kb genomic 

window surrounding the PU.1-14kb enhancer (highlighted in green). 

(b) Effect of expressing T-VP64-PU.1-14 in human K562 (top), mouse 416B and mouse Ainv18 

ES cells on Rapsn, Psmc3, Mybpc3 and Madd gene expression, normalised to ACTB/ActB. 

T-VP64-PU.1-14 expressed for 48 hr by addition of dox and gene expression on 
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+dox/mCherry+ cells (blue bars) determined relative to –dox/mCherry- control cells (red bars). 

Error bars are standard deviation of technical triplicates (not detected: N.D). 

(c) Peak at the PU.1-14kb element could be identified in the HA-T-VP64-PU.1-14 sample, but 

not the control. 

Having validated the ability of TALEs targeting the Scl+40kb and PU.1-14kb 

elements to modulate endogenous gene expression in haematopoietic cell lines, the 

ability of TALEs to regulate target gene expression was assessed during development. 

To do so, the mouse EB differentiation system was used to generate haematopoietic 

progenitors. EBs are spheroid cell aggregates formed by embryonic stem (ES) cells 

upon differentiation, in which all three germ layers can form and follow normal 

developmental trajectories (Keller et al., 1993). EB differentiation has been validated as 

a useful and tractable in vitro model of embryonic haematopoiesis (Keller et al., 1993). 

The mouse ES cell line Ainv18 (Kyba et al., 2002), which constitutively 

expresses rtTA from the Rosa26 locus, was transfected and expanded stably integrated 

clones that displayed robust mCherry expression after 24hr post dox treatment (Figure 

3.5b). The data described below is a representative of multiple clones tested for TALE 

construct. TALE-containing ES cell lines were differentiated, induced TALE expression 

by addition of dox at day 4 (just prior to definitive haematopoiesis in this system) and 

assesse phenotypic effects after a further 48 hours of culture, all relative to a culture 

without dox treatment (-dox) (Figure 3.5a). Initial flow cytometric analysis of the day 6 

EBs confirmed pure mCherry+ populations at day 6 in the +dox cultures (Figure 3.5a, 

c). Following this protocol, Scl expression was upregulated by approximately 1.9-fold 
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in cells induced to express the TALE-VP64 targeting the Scl+40kb, while Map17 

expression was upregulated over 3-fold (Figure 3.6a). PU.1 expression was upregulated 

over 4- fold by the TALE-VP64 targeting the PU.1-14kb with no significant expression 

change in the PU.1 flanking gene Slc39a13 (Figure 3.6a). ES cells containing a 

PU.1-14kb targeting TALE for PU.1 repression were additionally generated by 

swapping the VP64 activation domain for the KRAB repressor domain (TALE-KRAB). 

Following the same EB differentiation and dox-induction protocol as above, it was 

observed that PU.1 expression was efficiently repressed by the TALE-KRAB, with 

expression reduced by over 50% (Figure 3.6a). The Slc39a13/ZIP13 gene upstream of 

the PU.1-14kb was unaffected by TALE expression suggesting that at least in this 

developmental context, PU.1-14kb activity is specific to PU.1 (Figure 3.6a). 

Figure 3.5 | Stable Transfection of ES Cells Using Piggyback Expression Vector. 

(a) Experimental approach using Ainv18 ES cell differentiation to study TALE-mediated gene 

expression perturbations in haematopoiesis. Mouse Ainv18 ES cells (constitutively expressing 

rtTA from the Rose26 locus (pR-26-rtTA) were co-transfected with the inducible TALE-PB 

a 

cb 
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construct and transposase. Stably integrated ES cell clones were expanded and cultured on 

inactivated MEFs. Targeted ES cells were differentiated into embryoid bodies (EBs), and TALE 

expression induced at day 4 by addition of dox. At day 6, EBs in +dox culture consistent of a 

pure mCherry+ population, as displayed in the representative histogram (right). Changes in 

gene expression, colony potential and surface marker phenotype were analysed at day 6 in the 

+dox expression in day 6 EBs. 

(b) TALE targeted ESC mCherry expression after 24hr post dox treatment. 

(c) TALE targeted EB mCherry expression after 24hr post dox treatment. 
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Figure 3.6 | Transient TALE Expression Affects Haematopoietic Cell Fate Decision. 

(a) Gene expression in day 6 EBs of Scl and Map17 after induction of TALE-VP64 targeting the 

Scl+40kb element (T-VP64-Scl+40; left panel), PU.1 and Scl39a13 after induction of 

TALE-VP64 targeting the PU.1-14kb element (T-VP64-PU.1-14; middle panel), and PU.1 and 

Scl39a13 after induction of TALE-KRAB targeting the PU.1-14kb element (T-KRAB-PU.1-14; 

right panel). TALE expression induced on day 4 (+dox) and displayed relative to uninduced 

a 

c 

d e 

b 
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(-dox) EBs, normalised to ActB. Error bars are standard error of the mean of three biological 

replicates. 

(b) Representative haematopoietic colonies numbers from 1 x 105 day 6 EB cells, colour scheme 

as in (a). Colonies grown in methylcellulose supplemented with SCF, IL-3, IL-6 and Epo. See 

Figure 3.7a for images of representative CFU colonies scored. Error bars are standard 

deviation of technical triplicates. Statistically significant changes (p < 0.05 or 0.01) in colony 

number from three biological replicates determined using the student t test are denoted by * 

and **, respectively. 

(c) Flow cytometry plots of day 6 EB cells showing Flk1 vs. CD41 (top) and VE-cadherin 

(VEcad) vs. CD41 (bottom). Representative staining patterns for TALE-VP64 (left) and 

TALE-KRAB (right) targeting PU.1-14kb clones, both uninduced (-dox) and induced (from day 

4; +dox). Distribution of cells within quadrant/gates shown as percentages. 

(d) Relative number of day 4 EB Flk1+-derived colonies containing CD41+ haematopoietic 

cells grown on confluent OP9 stromal cells for 84 hours (dox added to +dox wells after 36 

hours). See Figure S2G for representative scored colony image. Error bars are standard error 

of the mean from three biological triplicates. Statistically significant changes (p < 0.01) in 

colony number from three biological replicates determined using the student t test are denoted 

by *. Grey bars, -dox; black bars, +dox. 

(e) Average numbers of haematopoietic colonies from T-KRAB-PU.1-14 1 x 105 day 6 EB cells 

plated onto confluent OP9 stromal cells for 24 hours before CFU assay initiated by addition 

methylcellulose supplemented with SCF, IL-3, IL-6 and Epo. Error bars are the standard 

deviation of three biological replicates. Colour scheme as in (a). Statistically significant 

changes (p < 0.05) in colony number from three biological replicates are determined using the 

student t test denoted by *. 
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3.2 Transient Expression of a PU.1 Enhancer Targeting TALE Alters 

Embryoid Body Haematopoiesis 

Next, the phenotypic effect of TALE-mediated gene expression modulation 

was assessed by haematopoietic colony forming assays using day 6 EB cells (Figure 

3.7a). PU.1 is known to play a key role in haematopoietic differentiation in the adult 

bone marrow (Dakic et al., 2007), with PU.1 hypomorphs displaying myeloid 

differentiation defects leading to AML while PU.1 overexpression causes growth arrest 

and terminal differentiation (Rosenbauer et al., 2004; Mak et al., 2011). However, 

comparatively little is known about any possible functions of PU.1 during 

developmental haematopoiesis. TALE-VP64 mediated PU.1 upregulation resulted in a 

significant loss of colony forming ability in day 6 EBs (Figure 3.6b). By contrast, 

TALE-KRAB mediated PU.1 repression caused a doubling in myeloid (CFU-GM/G) 

and mixed colony (CFU-Mix) numbers (Figure 3.6b), although this was not statistically 

significant. Colony potential of day 6 EBs were largely unaffected by expressing the 

TALE-VP64 targeting the Scl+40kb, besides a slight (but not significant) increase in 

BFUe frequency (Figure 3.6b). These results confirm that TALE expression in EBs can 

reveal cellular phenotypes caused by the induced gene expression changes of key 

regulators such as Scl and PU.1. 

To be confident that TALE-VP64 expression alone was not affecting CFU 

frequency, ES cell lines carrying a non-functional TALE-VP64 (due to missense 

mutations in its DNA binding domain) were assessed, which were generated previously 
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(Gao et al., 2013). Non-functional TALE-VP64 expression did not affect CFU 

frequency in this assay (Figure 3.7b), and confirmed phenotypic changes observed by 

TALE expression are due to TALE-mediated gene expression perturbations. To 

correlate the changes in haematopoietic progenitors/CFUs with changes in the cellular 

composition of the day 6 EBs, day 6 EBs were analysed by flow cytometry. Consistent 

with the modest effects in colony forming assays, expression of the TALE-VP64 

targeting the Scl+40kb element minimally affected haematopoietic cell populations 

present in day 6 EBs (Figure 3.7c). Expression of TALEs targeting the PU.1-14kb 

marginally, but not significantly reduced total cell numbers recovered (Figure 3.7d). 

However, this was not due to increased apoptosis as assessed by Annexin V and DAPI 

staining of day 6 EBs (Figure 3.7d).  

Although TALE-VP64 mediated upregulation of PU.1 caused an increase in 

the relative size of the CD41+ population (Figure 3.6c and 3.7e), when combined with 

total cell numbers recovered from the EBs, this did not result in a significant increase in 

absolute CD41+ cells (Figure 3.7f). Interestingly, TALE-VP64 mediated PU.1 

expression caused a loss of the Flk1+ (mesoderm) population (Figure 3.7e, f), and 

significantly increased the CD41+VE cadherin+ (committing haematopoietic cells) 

population (by over 5-fold in absolute cell numbers; Figure 3.6c and 3.7f). Additionally, 

TALE-VP64 mediated PU.1 upregulation caused a loss of the CD41+cKithi (“early 

definitive haematopoietic progenitor”) population, that may help explain the loss of 

colony forming potential described above (Figure 6b, c). Combined with the CFU 
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assays, these data suggested that PU.1 upregulation may push differentiating cells 

towards a haematopoietic fate but then inhibits proliferation of the resulting blood cells. 

Consistent with this hypothesis, TALE-mediated PU.1 induction modestly increased the 

numbers of day 4 EB derived colonies containing budding CD41+ haematopoietic cells 

by 1.5-fold (Figure 3.6d and 3.7g), while PU.1 repression modestly reduced their 

frequency. 

In contrast, the major change caused by downregulation of PU.1 by the 

TALE-KRAB targeting the PU.1-14kb enhancer was an almost complete loss of the 

CD45+ population (committed definitive haematopoietic cells; Figure 3.6a). The above 

results caused us to speculate that the delayed haematopoiesis caused by PU.1 

repression might be masking an increase in haematopoietic CFU frequency. To test this 

further, day 6 EB cells were allowed to mature on OP9s for 24 hours before assessing 

CFU frequency (Figure 3.6g). This led to a significant 3-fold and 9-fold increase in 

BFUe and CFU-Mix colonies, respectively, consistent with published data that suggest 

PU.1 expression restricts haematopoietic cells to a myeloid fate (Mak et al., 2011). 

Combined, these data suggest upregulation of PU.1 drives haematopoietic commitment, 

but causes loss of proliferative ability within the haematopoietic population, while 

temporary downregulation of PU.1 inhibits the maturation and differentiation of early 

haematopoietic cells. 
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Figure 3.7 | Transient TALE Expression Affects Haematopoietic Cell Fate Decision. 
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(a) Representative images of haematopoietic colonies scored in methylcellulose CFU assays in 

Figures 6b and 7b. 

(b) Representative haematopoietic colonies numbers from 1 x 105 day 6 EB cells derived from 

mouse ES cells inducible expressing a non-functional TALE-VP64 (due to mutations within the 

DNA binding domain), previously generated (Gao et al., 2013). Dox added to EBs day 4 to 

induce TALE-VP64 expression. Colonies grown in methylcellulose supplemented with SCF, 

IL-3, IL-6 and Epo. Error bars are standard deviation of technical triplicates. No statistically 

significant changes in CFU numbers were seen from three biological triplicates, as determined 

by the student t test. 

(c) Flow cytometry plots of day 6 EB cells showing (from top to bottom) Flk1 vs. CD41, VE 

cadherin (VEcad) vs. CD41, cKit vs. CD41, CD45 vs. CD41). Representative staining patterns 

for a T-VP64-Scl+40 expressing mouse ES cell line, both uninduced (-dox) and induced (from 

day 4; +dox). Distribution of cells within quadrant/gates shown as percentages.  

(d) Total number (light grey bars), frequency of apoptotic (Annexin V+ DAPI-; dark grey bars) 

and frequency of dead (Annexin V+ DAPI+; black bars) T-VP64-Scl+40, T-VP64-PU.1-14 and 

T-KRAB-PU.1-14 expressing EB day 6 cells (+dox from day 4) relative to –dox controls. Error 

bars are standard deviation of three biological replicates. No statistically significant changes 

were seen from three biological triplicates, as determined by the student t test.  

(e) Flow cytometry plots of day 6 EB cells showing Flk1 vs. CD41 (top) and CD41 vs. CD45 

(bottom). Representative staining patterns for TALE-VP64 (left) and TALE-KRAB (right) 

targeting PU.1-14kb clones, both uninduced (-dox) and induced (from day 4; +dox). 

Distribution of cells within quadrant/gates shown as percentages. 

(f) Table displaying absolute cells numbers for cells populations identified by flow cytometry in 

Figure 2D ± standard deviation from three biological replicates, and p values (using the 

student t test). N.S; not significant. 
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(g) Representative image of day 4 EB Flk1+-derived colony containing haematopoietic (round, 

budding) CD41+ (stained black) cells scored in Figure 6d. Colonies containing endothelial cells 

that stained weakly CD41+ were not scored unless haematopoietic cells were also present. 

3.3 Single Cell Gene Expression Analysis of TALE-mediated PU.1 

Perturbation 

Having determined the phenotypic effects of TALE-mediated PU.1 expression 

perturbations by both colony assays and flow cytometry, next was asked what effects 

PU.1 modulation might have on TF regulatory networks. To investigate this, and the 

phenotypic pro-haematopoietic bias caused by PU.1 expression in mesoderm, the effect 

of TALE-VP64 expression was assessed on induction of 44 haematopoietic, mesoderm 

and endothelial TFs and surface markers as well as four control housekeeping genes in 

single day 6 EB VE cadherin+ (VEcad+) cells using the Fluidigm Biomark platform. At 

this time point, VEcad expression marks endothelium and haemagenic endothelial 

precursors, which were not expected to express robust PU.1 levels. To provide an 

internal control, a chimeric mixture of the wild type (WT) Ainv18 control and TALE 

inducible ES cells were differentiated, and sorted VEcad+ cells from mCherry and 

mCherry+ populations at day 6 (48 hours after dox addition; Figure 3.8a). The 

expression of all 48 genes in 160 single cells were assessed for each population, which 

after quality control, resulted in expression data for 136 and 147 cells, respectively, 

corresponding to a total of over 13,000 RT-qPCR expression scores. 

PU.1 was only expressed in 33% (45 of 136) of mCherry- VEcad+ cells 

(Figure 3.8b). By contrast, TALE-VP64 efficiently induced PU.1 expression to 84% 
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(124 of 147) of the mCherry+ VEcad+ cells. Moreover, PU.1 expressing cells in the 

mCherry+ VEcad+ population tended to express PU.1 at a higher level than the PU.1 

expressing cells in the mCherry- VEcad+ population (an average of 3.3 ΔCT higher, 

relative to Polr2a and Ubc expression; Figure 3.8b). This observation demonstrates 

that the TALE-VP64 can induce gene expression from the PU.1-14kb efficiently (but 

not with complete efficiency), and that the distribution of PU.1 expression levels within 

PU.1 expressing cells is altered with a much larger proportion of individual cells 

expressing high levels of PU.1. Single cell expression analysis therefore reveals both 

qualitative consequences (shift towards more cells expressing) as well as quantitative 

consequences (shift towards higher per-cell expression levels) of TALE-mediated 

activation of PU.1. 

Importantly, TALE-induced PU.1 expression was associated with consistent 

changes in the expression of other genes. For example, mCherry+ cells from the 

differentiated PU.1-14kb TALE-VP64 ES cells expressed several other haematopoietic 

genes at higher levels, such as Csf1r, Gata3, Gfi1b, Runx1 and Tel/Etv6 (Figure 3.8b), 

suggesting TALE-VP64 induced PU.1 expression precociously activates a 

haematopoietic TF network. Interestingly, mCherry+ cells also express less of several 

genes thought to be important for mesoderm or haemogenic endothelium, including 

Ets1, Etv2, Flk1, Notch1, Sox17 and VEcad (Figure 3.8b). Moreover, gene expression 

changes measured by RT-qPCR for Flk1, CD41, and Kit correlated well with expression 

of these surface markers by flow cytometry (Figure 3.6c, 3.8b, 3.7 and 3.9). As Kit 
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encodes the receptor for the pro-proliferative cytokine Stem Cell Factor (Scf), its 

downregulation at the transcriptional level and cell surface may partially explain the 

loss proliferative ability in PU.1-14kb TALE-VP64 induced day 6 EB cells (Figure 

3.6d). 

Pairwise all-against-all comparisons of the expression of the 44 TFs and 

surface proteins across all 283 single cells were performed by calculating Spearman 

rank correlation coefficients, which were displayed using a heatmap to illustrate both 

positive and negative correlations between pairs of genes. This identified two positively 

correlated gene clusters, a haematopoietic gene cluster (including PU.1), and a 

mesodermal/ endothelial gene cluster (Figure 3.8c). Although genes from both clusters 

can be co-expressed in single cells (Figure 3.8d), genes from the haematopoietic cluster 

predominantly showed negative correlation to genes from the haematopoietic cluster 

predominantly showed negative correlation to genes from the endothelial cluster 

(Figure 3.8c), suggesting an antagonism between these regulatory networks. Pairwise 

analysis and hierarchical clustering of cells based on their gene expression signatures 

largely separated the mCherry and mCherry+ cells within the VEcad+ population 

(Figure 3.8d). As expected, it was within the mCherry+ population that the positively 

correlated cluster of haematopoietic genes is more frequently activated, while 

expression of the mesodermal/endothelial gene cluster is downregulated. 
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Figure 3.8| Single Cell Analysis of TALE-Mediated PU.1 Expression in Haematopoietic 

Precursors Suggests a Role in the Transition from an Endothelial to Haematopoietic 

Transcriptional Programme 

a 

b 

c d 
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(a) Strategy for single cell gene expression analysis of TALE-mediated perturbations. Wild type 

(WT) Ainv18 and TALE-VP64 (targeting the PU.1-14kb) targeted ES cells were passaged once 

as a 50/50 mix before EB formation. Dox was added at day 4 and EBs disaggregated at day 6. 

Single VE cadherin+ (VEcad+) cells (mCherry+ and mCherry- sorted as TALE-VP64 expressing 

and WT, respectively) were sorted into 96 well PCR plates containing lysis buffer, RT/Taq and 

primers for pre-amplification. Single tube reverse transcription and targeted pre-amplification 

was undertaken, followed by multiplexed qPCR gene expression analysis using the Fluidigm 

platform. 

(b) Density plots of gene expression in day 6 EB VEcad+ mCherry- (136 WT Ainv18; in cyan) 

and VEcad+ mCherry+ (147 Ainv18 expressing TALE-VP64 targeting PU.1-14kb; in red). The 

density indicates the fraction of cells at each expression level, relative to housekeeping genes 

(Polr2a and Ubc). Cells with non-detected gene expression set to -12. See Figure SS for density 

plots for all 48 genes analysed in these two populations. 

(c) Hierarchical clustering of Spearman rank correlations between all pairs of genes (excluding 

housekeepers) from all 283 VEcad+ cells (red, positive correlation; blue, negative correlation).  

(d) Hierarchical clustering of the 283 VEcad+ cells according to gene expression (across) with 

genes ordered according to (C) (Dark red, highly expressed; grey, non-expressed). Top bar 

indicates cell type: cyan, mCherry-; red, mCherry+. 
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Figure 3.9| Single Cell Analysis of TALE-mediated PU.1 Expression, related to Figure 3.8. 
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Density plots of gene expression in day 6 EB VEcad+ mCherry- (136 WT Ainv18; in cyan) and 

VEcad+ mCherry+ (147 Ainv18 expressing T-VP64-PU.1-14; in red) for all 48 genes analysed. 

The density indicates the fraction of cells at each expression level, relative to housekeeping 

genes (Polr2a and Ubc). Cells with non-detected gene expression set to -12. 

3.4 PU.1 can Promote Haematopoietic Commitment of Haemogenic 

Endothelial Precursors 

The data described above suggest that precocious PU.1 expression in 

haematopoietic precursors can drive haematopoietic commitment through activation of 

a haematopoietic TF network. To investigate this further, single cell gene expression 

analyses for the CD41+cKithi population was performed additional from both WT 

Ainv18 and the PU.1-14kb TALE-KRAB differentiated ES cells. As above, 160 

mCherry+ and mCherry- cells were sorted at day 6 of culture, from which 142 and 141 

single cells, respectively, passed quality control. Within the CD41+cKithi mCherry- (WT 

Ainv18) population, over 90% expressed PU.1 (132 of 141), and clearly had acquired a 

committed haematopoietic gene expression pattern (including Runx1, Myb and Ikaros) 

with only a few cells expressing mesoderm/endothelial-associated genes (e.g. Sox7, 

Sox17 and Etv2; Figure 3.10a, 3.11). By contrast, less than 60% (85 of 142) of the 

CD41+cKithi mCherry+ (PU.1-14kb TALE-KRAB) cells expressed detectable PU.1 

transcript, and PU.1 was expressed at lower levels in those that did (an average of 2.8 

ΔCT lower; Figure 3.10a), thus demonstrating that the TALE-KRAB efficiently 

repressed PU.1 expression in CD41+cKithi cells. Expression of Csf1r, a known 
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downstream target of PU.1 is tightly correlated with PU.1 expression, and is not 

expressed in cells lacking PU.1 (Figure 3.10a). Other genes affected by repression of 

PU.1 in CD41+cKithi included downregulation of Ikaros and Lyl1, as well as 

upregulation of Erg, Gata2 and Myb or increasing the fraction of cells expressing the 

respective genes (Figure 3.10a). 

Having generated a total of 566 single expression profiles from the 

TALE-VP64 and TALE-KRAB perturbation experiments, next all expression levels 

were combined to explore the potential of this substantial dataset for the identification 

of potential regulatory relationships between the 48 genes measured. Pairwise 

all-against-all comparisons were performed as before by calculating Spearman rank 

correlation coefficients (Figure 3.10b). This analysis placed PU.1 next to a cluster of 

haematopoietic genes containing amongst others Myb, Runx1 and Ikaros. A second 

cluster of strongly correlating genes consisted of endothelial genes (e.g. Sox7, VE 

cadherin and Pecam1). Gata2 was adjacent to a third and somewhat smaller cluster, 

consisting of erythroid genes as Gata1, Epb4.2 and globin genes. Of note, PU.1 showed 

negative correlation with Gata2 as expected from the results in Figure 3.10b, but not 

with the core erythroid genes such as Gata1. Our analysis therefore suggests that the 

previously reported cross-antagonism between Gata1 and PU.1 (Rekhtman et al., 1999; 

Zhang et al., 1999; Nerlov et al., 2000; Zhang et al., 2000) may not be operative during 

the early stages of blood cell specification surveyed in this study. In contrast, a negative 
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correlation of PU.1 with many genes within the “endothelial” cluster was observed and 

suggesting that PU.1 may antagonize endothelial fate. 

 a b 

c d 

e f 
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Figure 3.10| TALE-Mediated Expression Perturbations Suggests Transcriptional Interactions 

During Blood Specification and a Role for PU.1 in Antagonising Endothelial Fate 

(a) Density plots of gene expression in day 6 EB CD41+cKithi (CD41cKit) mCherry- (141 WT 

Ainv18; in orange) and CD41cKit mCherry+ (142 Ainv18 expressing TALE-KRAB targeting 

PU.1-14kb; in purple). The density indicates the fraction of cells at each expression level, 

relative to housekeeping genes (Polr2a and Ubc). Cells with non-detected gene expression set 

to -12. See Figure 3.11 for density plots for all 48 genes analysed in these two populations. 

(b) Hierarchical clustering of Spearman rank correlations between all pairs of genes (excluding 

housekeepers) from using gene expression data from all 566 cells (VEcad+ and CD41cKit).  

(c) Principal component analysis (PCA) of the 566 VEcad+ and CD41cKit cells, in the first and 

second components, from the expression of all 44 genes (excluding the four housekeeping genes 

used as controls).  

(d) Principal component loadings indicate the extent to which each gene contributes to the 

separation of cells along each component in (C). 

(e) Current model of definitive haematopoietic specification from Flk1+ mesoderm through a 

haemogenic endothelial precursor to a haematopoietic stem/progenitor that can differentiate 

into lymphoid, myeloid or erythroid lineages.  

(f) Endothelial potential of TALE expressing VEcad+ cells, as a percentage of –dox control 

cells. 

To further assess possible effects of PU.1 expression perturbations on the 

entire multi-dimensional gene expression dataset from all 566 cells, Principal 

Component Analysis (PCA) was preformed. PCA separated VEcad+ and CD41+cKithi 

mCherry- cells into distinct populations across principle component 1 (PC1), consistent 

with the notion of two developmentally distinct populations (Figure 3.10c), confirmed 
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also by the PCA loading plot, which showed this separation to be driven by expression 

of endothelial genes in the VEcad+ population (including VEcad, Sox17 and Sox7) and 

haematopoietic TFs in the CD41+cKithi population (including Runx1, Myb, Gfi1b, 

Ikaros, and PU.1) (Figure 3.10d). The CD41+cKithi population is resolved into two 

populations by PC2, by expression of myeloid genes (including PU.1 and Csf1r) and 

erythroid genes (including Hbb-bH1, Gata1 and EpoR), thus suggesting the 

CD41+cKithi population contains myeloid and erythroid biased CD41+cKithi progenitor 

cells. PCA dataset therefore provided good resolution of early developmental 

populations based on current models of developmental haematopoietic specification 

(Figure 3.10e, based on (ref. Medvinsky et al., 2011). Interestingly, TALE-VP64 PU.1 

activated VEcad+ mCherry+ cells bridge the separation between the control VEcad+ and 

CD41+cKithi populations (Figure 3.10c), consistent with the notion that PU.1 

expression pushes VEcad+ cells to haematopoietic commitment, but is unable to drive 

the transition completely. By contrast, the separation of the TALE-KRAB PU.1 

repressed CD41+cKithi mCherry+ population from the CD41+cKithi mCherry population 

is less striking, although more PU.1 repressed cells are closer to the VEcad+ population 

and none form part of the most distant group of cells in the top right hand part of the 

plot (Figure 3.10c), consistent with the block in haematopoietic maturation observed 

for these cells. 
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Figure 3.11| related to Figure 3.10 
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Density plots of gene expression in day 6 EB CD41+cKithi mCherry- (141 WT Ainv18; in 

orange) and CD41+cKithi mCherry+ (142 Ainv18 expressing T-KRAB-PU.1-14; in purple) for 

all 48 genes analysed. The density indicates the fraction of cells at each expression level, 

relative to housekeeping genes (Polr2a and Ubc). Cells with non-detected gene expression set 

to -12. 

Both the pairwise correlation and PCA analyses suggested that PU.1 

expression contributes to a haematopoietic fate in VEcad+ cells. Therefore, the effect of 

PU.1 perturbation was assessed on endothelial potential of the day 6 VEcad+ cells. 

TALE-VP64 mediated PU.1 activation inhibited endothelial colony formation, while 

PU.1 repression did not (Figure 3.10f and 3.12). Combined, these data suggest 

activation of PU.1 expression during developmental haematopoiesis plays a role in 

driving a haematopoietic rather than endothelial transcriptional programme, and 

activation of PU.1 expression in haemogenic endothelium may be an important 

molecular decision in haematopoietic commitment. 

Such a large single cell gene expression dataset presented the opportunity to 

investigate underlying TF network interactions active during the 

endothelial-to-haematopoietic transition (EHT) using Partial Correlation Analysis. This 

analysis identifies network interactions  (edges) by detecting irreducible statistical 

dependencies between TFs. To visualise the results, the 34 network edges were plotted 

between the TF nodes with highly significant correlations (p values <0.0001; Figure 

3.13). Although this method of analysis provides positive/negative correlation 

information, directionality cannot be inferred. Most TF interactions were positive and 
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formed a highly interconnected network, which could be important in network 

stabilisation. Two types of negative correlations were observed: (1) between 

haematopoietic-specific and endothelial-specific genes, including Runx1 and Sox17, and 

(2) between haematopoietic-lineage specific genes, including Nfe2 and Gata3. Such TF 

antagonisms may be important switches in cell fate commitment. Interestingly, Runx1 

has previously been found to bind at the Sox17 loci in similar Runx1-expressing 

haemogenic endothelium (Lichtinger et al., 2012), suggesting such network interaction 

may be direct. As expected by above results, PU.1 is a highly connected node positively 

correlating with haematopoietic genes, consistent with a role for PU.1 in stabilising 

haematopoietic cell fate decision. 

 

Figure 3.12| related to Figure 3.10 

Representative images of endothelial colony assays from day 6 EB VEcad+ cells from 

T-VP64-PU.1-14 or T-KRAB-PU.1-14 ES cell lines as described in Figure 3.13. 

Figure S5
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Figure 3.13| Partial Correlation Analysis identified a highly interconnected TF network active 

during the endothelial-to-haematopoietic transition (EHT) 

(a) Above, schematic of method used to build TF network model in (b) and below, diagram key 

for (b). (b) TF network model built from Partial Correlation Analysis using Spearman 

correlation with highly statistically significant interactions (p<0.0001) displayed as 

connections (edges) between TFs (nodes). 

4 DISCUSSION 

Results presented here demonstrate a novel use of TALEs in combination with 

single cell gene expression profiling to investigate the consequences of transcriptional 

perturbation on developmental regulatory networks. High-throughput RT-qPCR 

coupled with comprehensive cellular assays uncovered a previously unrecognised role 
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for PU.1 during the development of early haematopoietic progenitors from haemogenic 

endothelial cells during ES cell differentiation. 

The analysis of several hundred single cells with TALE induction highlights 

the efficiency of TALE-mediated perturbation on endogenous gene expression at the 

single cell level, which proved to be comparable to alternative methods of perturbation 

such as siRNA knockdown (Kouno et al., 2013), and provided more physiologically 

relevant expression changes when comparing upregulation of gene expression using 

TALE-VP64 proteins with retroviral cDNA overexpression. Moreover, TALE-mediated 

perturbation does not require distinction between exogenous and endogenous cDNAs, 

allow normal co-and post-transcriptional processing to occur, and allows for detection 

by gene expression assays that are located in untranslated regions (UTR). 

The CRISPR-Cas9 system has recently been adapted to modulate gene 

expression by a similar mechanism to TALEs (Gilbert et al., 2013; Maeder et al., 2013; 

Perez-Pinera et al., 2013; Qi et al., 2013). As the CRISPR-Cas9 target specificity is 

based on guide RNAs rather than a modular protein domain, generation of these 

“designer” TFs is faster than assembly of TALEs (Gaj et al., 2013). However, a recent 

comparison between CRISPR-Cas9 and TALEs suggested higher targeting specificity 

for the latter (Fu et al., 2013; Mali et al., 2013). 

The majority of previous research on PU.1 has been on its role in adult 

haematopoiesis, where high PU.1 levels promote terminal myeloid differentiation while 

reduced PU.1 expression results in proliferation, reviewed elsewhere (Mak et al., 2011), 
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and consistent with CFU data. A novel link between PU.1 levels and the cell cycle has 

been described recently where PU.1, by regulating cell cycle lengthening, determines 

PU.1 protein accumulation within the cell, effecting lympho-myeloid cell fate decisions 

(Kueh et al., 2013). The data additionally highlight the importance of tightly regulated 

PU.1 expression for early haematopoiesis to occur. Indeed, the increased 

haematopoietic progenitor frequency seen by transient repression of PU.1 may provide 

a useful model to study cell seft-renewal and differentiation decisions. Moreover, since 

the TALEs used here target conserved DNA sequences within cis-regulatory elements, 

these tools can be directly applied to manipulate human haematopoiesis, with the 

additional key advantage that TALE-mediated perturbation can be temporally 

controlled. 

PU.1 has recently been shown to inhibit proliferation by directly controlling 

cell cycle regulators (Staber et al., 2013), which is consistent with observed loss of 

haematopoietic colonies after TALE-VP64-mediated PU.1 upregualtion and increase in 

haematopoietic colonies after TALE-KRAB-mediated PU.1 expression. Since the gene 

selection for single cell expression analysis was focused on TF networks controlling 

early haematopoietic development, genes other than those assayed are likely to 

contribute to the phenotypic changes caused by PU.1 expression perturbations, and this 

may well include cell cycle regulators. However, this data already suggest novel 

regulatory relationships, such as a tight positive correlation between PU.1 and Lyl1, and 

antagonism between PU.1 and Sox17 expression. Moreover, while gene expression 
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correlations can be extracted from WT gene expression data alone, TALE-mediated 

perturbations provide evidence that such correlations are due to TF network interactions. 

Interestingly, PU.1 has recently been suggested to positively regulate Lyl1 also in foetal 

thymocytes (Del Real and Rothenberg, 2013). It is worth highlighting that 

TALE-mediated perturbations caused consistent gene expression changes in single cells 

suggesting PU.1 operates within a tightly interconnected haematopoietic TF network. 

In adult haematopoiesis, PU.1-14kb is a known a target of Runx1 (Huang et al., 

2008), a critical TF for definitive haematopoiesis (Okuda et al., 1996; Wang et al., 

1996). Wilkinson et al. report that the PU.1-14kb element is active in vivo in 

midgestation AGM blood clusters, where definitive HSPCs arise. Using ES cell 

differentiation assays, Runx1 has been shown to initiate chromatin unfolding at the 

PU.1-14kb early during haematopoietic specification, priming it for later activity 

(Hoogenkamp et al., 2009). Such enhancer priming is likely to be important for efficient 

TALE-VP64 mediated induction of expression. While Hoogenkamp et al. were unable 

to determine the frequency of such priming events within the precursor population, the 

data presented here would be consistent with a model where the majority of VEcad+ 

cells contain primed PU.1-14kb enhancers, due to the high efficiency of 

TALE-mediated PU.1 expression activation in this cell type. Enhancer priming may 

also contribute to the low level expression of PU.1 prior to haematopoietic commitment, 

with more robust expression seen later as haematopoietic TF network circuitry is 

reinforced. Such low level expression may be analogous to transcriptional noise of 
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lineage regulators previously seen in adult haematopoietic progenitor cells (Pina et al., 

2012). 

When considered the translational relevance to the dental science fields, this 

study provided the usefulness of TALEs as a tool for analyzing the relationship between 

cellular function/differentiation and the target gene expressions, as well as the role of 

PU.1 in the transcriptional network of cell differentiation. As stated in the introduction, 

Spi1/PU.1 is important in Cfs1r signaling for driving macrophage differentiation, that is 

a key cell lineage of osteoimmunology (Lorenzo et al., 2011). In the inflamed 

periodontal tissue, abundant of immune cells were infiltrated and evoked a variety of 

immune reactions. It has been well-demonstrated that macrophages were present and 

activated in the periodontally-affected lesions to play some regulatory roles in 

osteoclastgenesis by producing inflammatory cytokines (Rayyan, 2013).  

A variety of regenerative therapies were clinically introduced in Periodontics, 

such as bone grafts, guided tissue regeneration treatment, and application of enamel 

matrix derivatives and signaling molecules for the last quarter-century. However these 

therapies have the issue in clinical practice, including technique sensitivity, limitations 

of indications, and the predictability and longevity of outcome (Illueca et al., 2006). 

Since emerging concept of tissue engineering in 1990s, application of stem cell therapy 

was also applied experimentally and clinically as the strategies for periodontal 

regeneration (Sarita et al., 2012). Unfortunately, this newly-developed therapy still has 

the issues and was not enabled to achieve the complete regeneration. To date, at least 
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five different dental stem cells; dental pulp stem cells, stem cells from exfoliated 

deciduous tissues, periodontal ligament stem cells, stem cells from apical papilla, and 

dental follicle cells, were applied for tissue engineering in the craniofacial area other 

than bone marrow and adipose tissue-derived stem cells. However, there are a number 

of technical issues for using these cells as source of cell-therapy, including isolation of 

appropriate cell types, establishment of optimal growth and differentiation, and the 

delivery for transplantationRef4). Also the craniofacial regeneration including tooth and 

periodontal tissue bioengineering has a unique characteristic to regenerate many types 

of hard and soft tissues with a 3D-configuration. In this point of view, Eleuterio et al. 

(2013) recently reported that stem cells from periodontal ligament and dental pulp 

differentially expressed proteins as compared to bone marrow stem cells, suggesting the 

different cell lineage using proteome analysis. Thus, it is very important to find the key 

signaling molecules and realize the detail of signaling pathway regulating oral tissue 

development. TALEs may be provide as a useful tool for revealing the full scope of 

these signaling pathways. 

In summary, I have validated use of TALEs targeting conserved cis-regulatory 

elements as an efficient, multifaceted tool to modulate endogenous gene expression and 

study TF regulatory networks perturbations in single cells, and in doing so have 

uncovered a role for PU.1 in haematopoietic specification. Understanding the 

physiological relevance and significance of myeloid cells development under steady- 

state condition regulated by PU.1 may facilitate the modification of treatment strategies 
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for periodontal wound healing in a diabetic inflammatory environment. Further studies 

are needed to elucidate the underlying molecular mechanisms and interactions during 

myeloid cells development, including the roles between Runx1 and Sox17 and Nfe2 and 

Gata3, other regulatory factors, and additional characteristics that endow myeloid 

subsets with their pro-inflammatory and hypersensitive potential such as their lineage 

(e.g. Diabetic-derived macrophages) and origin. 
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