MRI を用いた左心房内渦流の可視化に関する研究

-MRIによる渦流計測の妥当性及び計測断面設定に関する臨床的検討-

東北大学大学院医学系研究科医科学専攻

病態計測制御研究分野

柴田 宗一

要約	. 3
I. 背景	. 6
1. 左心房内渦流	. 6
2. 左心腔血流シミュレーションモデル	. 7
3. PC 法	. 8
Ⅱ. 研究目的	10
Ⅲ 研究专注	11
	11
1. 左心房シミュレーションモデルの作成	11
(1) 对象	11
(2)MRI 画像取得方法	12
(3) 断層画像からの3次元モデル作成	13
	13
(5) 烈流 体解 研 ソフト ワェア (FLUENT) を用いた 数値 シミュレーション	16
2. 左心房シミュレーションモテルの検証	17
(1) 左心房シミュレーションモデルを用いた形状変化及び数値計算	17
i 左心房の形状変化	18
道 左心房内淌流	18
<i>Ⅲ 左心房内壁せん断応力</i>	18
iv 肺静脈血流速度	19
v 左心室流入(僧帽弁)血流速度	19
(2) PC 法を用いた MRI による左心房内血流計測	19
i 左心房内渦流	20
ï 肺静脈血流速度	20
(3)心エコーを用いた左心室流入(僧帽弁)血流評価	21
3. 正常心における設定断面での計測	21
(1)対象	21
(2)撮影方法	22
(3) Velocity mapping(速度分布図)	23
(4)速度標準偏差分布	23

Ⅳ. 研究結果	25
1.左心房シミュレーションモデル、PC 法及び心エコーによる血流評	² 価 25
(1)形状評価	
(2)左心房内渦流	25
(3)左心房壁せん断応力	
(4)肺静脈血流速度	27
(5)左心室流入(僧帽弁)血流速度	
2. 正常心における設定断面での計測	
<i>(1)左心房内渦流</i>	
(2)速度標準偏差分布	29
V. 考察	
1.左心房シミュレーションモデルの妥当性	31
2. 左心房内渦流計測における断面設定の検証	33
3. 左心房内血流速度の標準偏差分布の意味	35
VI. 結論と展望	
文献	41
図説明	45
図説明表説明	45 79

【背景】

これまでの様々な診断に関する方法論の研究により左心房内に渦流が存在する可 能性が知られている。左心房内渦流の臨床的意義はまだ不明であるが、渦流の変化が 局所における左心房壁伸展刺激に変化を与え、液性因子の変化及びイオンチャネルの 変化を介して左心房の形態学的、電気生理学的変化を引き起こす可能性がある。近年 magnetic resonance imaging (MRI)を用いることにより、任意の計測断面における 血流状態や血流速度を測定することができる。また数値流体力学の急速な発達に伴い、 心エコーや MRI などの画像データを利用した、3 次元における心内腔内血流シミュ レーション解析も盛んに行われている。しかし、これまでに左心房内渦流の成因に関 するシミュレーションモデルでの解析や、MRI を用いた簡便な左心房渦流観察法に 関する研究はこれまでに報告されていない。

【目的】

本研究の目的は、数値流体力学にもとづき3次元における左心房内血流を再現する シミュレーションモデルを作成することと、シミュレーションモデルと phase contrast 法 (PC 法)を用いた MRI 血流計測結果を統合して MRI にて簡便に左心房 内血流を観察する方法を考案することである。

【方法】

正常心の MRI 画像データを利用して 3 次元左心房モデルを作成し、数値流体力

学を用いて、3 次元左心房内渦流を再現した。得られたモデルの妥当性検証のため、 左心房内血流を示す流線とPC法を用いた左心房内血流速度計測にて観察された左心 房内渦流を視覚的に比較した。更にシミュレーションから得られる肺静脈および僧帽 弁レベルにおける血流速度変化について比較を行った。シミュレーションデータから 得られる血流速度分布、壁せん断応力分布をもとに、左心房内渦流を観察する2次元 断面を設定した。断面選択に対する妥当性の検証のため、正常心6例に対し計測を行 った。また心腔内の血流速度分布に関して、各計測点における経時的な標準偏差を算 出し、測定精度を左右する因子の検討も行った。

【結果】

3次元左心房モデルを作成し、数値シミュレーションを用いて3次元における左 心房内渦流を再現し得た。PC 法で観察された左心房内渦流はシミュレーションで得 られた渦流は視覚的に一致していた。正常心6例に対し設定断面での計測を行った結 果、4 例で左心房内渦流が観察されたが、2 例では観察されなかった。観察されなか った群の1 例に対して装置を変えて再検査を行ったところ、左心房内に渦流を認めた。 観察された左心房内渦流はシミュレーションと同じ挙動を示した。観察されなかった 例では、左心房内での速度標準偏差が観察された群に比べて大きい傾向を示した。

【結論】

本研究にて作成した左心房シミュレーションモデルは左心房内における血流評価 において有用であると判断した。今後、本モデルを定量評価できるように改良し、異 常心の症例を蓄積することで、正常心と異常心における左心房の流体力学的・解剖学 的変化の相違を解明できるものとして期待される。左心房内渦流を計測する断面とし ては、①左心房の中心付近を含み、②少なくとも1本の肺静脈を含み、③僧帽弁を含 む断面が望ましいと考えられた。また体動アーチファクトが検査の質に影響を与える ことが判明し、左心房内における速度標準偏差分布を利用することでその影響を評価 することが可能であった。2次元断面設定に基づく撮像検査法は、撮像時間が数分で 済むために患者負担は軽度であり、十分に実用的な検査法である。今後、渦流と心疾 患との関連性を解明する上で役立つものと期待される。

I. 背景

1. 左心房内渦流

左心房内に発生する渦流に関して、古くは超音波診断法における左心房内におけ るモヤモヤエコーに関する報告がある。Beppu ら〔1〕は僧帽弁疾患の左心房におけ るモヤモヤエコーを"stirred sludge"と表現している。しかし、モヤモヤエコーは 心腔内血栓に関連した病態で多く観察されるものであって、正常心で観察される可能 性は低い。その後、Fyrenius ら〔2〕は magnetic resonance imaging (MRI)を用い て、正常心 11 例を観察し、全例に左心房内渦流を認めている。Kilner ら〔3〕も、 非対称な心房内血流として正常心における左心房内渦流を報告している。

日常診療においても、シネ MRI 画像上しばしば左心房内に渦流を明瞭に確認でき る。TOF (time of flight) 等の効果により、心腔内血流の可視化はある程度可能であ る。筆者はシネ MRI 画像の観察を行い、拡張障害を有する肥大型心筋症例では、正 常心と比べて僧帽弁閉鎖直後の左心房内に生じる渦流が小さく、出現時間も短いと感 じていた (図1)。渦流変化は左心房内での局所における壁伸展刺激ないし壁せん断 応力に変化を与える可能性がある。新生児ラットの心房心筋を用いた実験にて、伸展 刺激による心房筋肥大や電気的リモデリングが明らかにされている [4]。伸展刺激は タンパク・DNA (deoxyribonucleic acid) 比及び ANP (atrial natriuretic peptide) の発現を増加させ、心房心筋の肥大をもたらすと考えられる。また同時にカリウムイ オンチャネルを変化させ、電気的リモデリングを生じる [4]。左心房内渦流変化が左 心房の形状変化や電気生理学的変化に影響を与える可能性が考えられたため、渦流が 形成される機序や渦流を簡便に観察する方法について先ず関心を持った。

Fyrenius ら〔2〕は phase contrast 法 (PC 法)を用いて、正常左心房を 32 断層 16 位相にわたって MRI 血流速度計測を行い、得られたデータより particle trace 法を用 いて 3 次元空間内に左心房内血流線を再構築した (図 2)〔2〕。しかし、この方法は 撮像回数が多いため患者の負担が多くなり、検査結果を左右するような体動によるア ーチファクトの出現も懸念される。また上下の連続断面で、不連続な血流を結びつけ ることは、誤差を増やすことにもなる。よってこの手法を患者に適用するのは必ずし も容易ではない。

このような理由で簡便に左心房内血流、とりわけ渦流の観察ができる方法の改善が 必要であると思われた。左心房内渦流を評価し得る1断面が設定できれば、撮像が短 時間で済み、患者負担を軽減できる上にアーチファクト低減につながるため、日常診 療での実用性の向上が期待できると考えた。

2. 左心腔血流シミュレーションモデル

近年、生体における流体力学を用いた血流解析は長足の進歩を遂げており、2次 元ないし3次元空間内での経時的な血流変化の解析が可能となっている。なかでも数 値シミュレーションによる左心室内血流の解析に関しては、以下に示すような研究が 既に報告されている〔5-6〕。Saber〔5〕らは MRI 断層画像をもとに左心室モデルを 作成し、数値シミュレーション結果と PC 法にて測定した左心室腔内血流との比較を 行っている。また Spiegel ら〔6〕は、CT および MRI から得られた断層画像をもと に、左心室と左心房を含むモデルを作成し、心腔内血流シミュレーションを行ってい る。この研究での血流シミュレーションはあくまでも左心室を主体としたものではあ るが、左心室拡張中期と全左心室収縮期に左心房内を旋回する渦流が観察されている。

しかしこれまでの生体心臓を対象とした血流シミュレーション研究は左心室を 対象に行われており、左心房に焦点を当てた血流シミュレーションモデル作りは未だ 報告されていない。

3. PC法

PC 法は、血流速度を直接計測できる MRI 検査シーケンスである。PC 法による MRI 血流計測法では、計測したい血流の方向に 2 極型の血流計測用傾斜磁場を付加 し、傾斜磁場の極性を変えた 2 つのデータを収集する。得られた 2 つのデータの位相 を比較すると、静止したスピンに位相差は生じないが、移動したスピンは速度に比例 した位相差が生じる [7]。

PC 法による MRI 血流計測では、通常の強度画像(magnitude image)に加えて位相 画像(phase image)が再構成される。Moran [8] は、PC 法を用いて速度分布を強度画 像上に表示する速度分布図(velocity mapping)を提唱した。この表示法により心腔内 の速度ベクトル表示が可能となり、その後正常左心室内における速度分布〔9〕や Fontan 術後症例における右心系の速度分布の研究〔10〕など、種々の疾患に臨床応 用されている〔11〕。しかし、異常心症例における左心房内渦流に関しては、文献を 調べた範囲では未だ研究報告がみられない。

Lotz ら〔7〕は、PC 法における速度計測精度に関して 10%未満の誤差範囲と推定 している。しかし乱流が生じる場所では、血流が速過ぎても遅過ぎても、1つのボク セル内にいくつかの位相を持ったプロトンが存在することで信号強度が低下する flow void が生じる。この結果、不連続な血流速度変化を生じ、乱流付近での血流速 度評価は困難となる。Dyverfeldt ら〔12〕はこの flow void を逆手に取って、PC 法 で計測した速度標準偏差分布と turbulence intensity(TD)との相関を示し、速度の標 準偏差分布が乱流評価に有用であることを提示した。これは、乱流が存在すると1つ のボクセル内にいくつかの位相を持ったプロトンが存在し信号強度が低下し、観測点 での経時的な変化では、不連続な速度変化が生じ標準偏差が大きくなる性質を利用し た方法である。本研究では、左心房内における渦流ベクトルを描出すると共に、速度 標準偏差分布を利用して、乱流の評価を行った。

9

Ⅱ.研究目的

本研究目的は、数値流体力学にもとづき3次元における左心房内血流を再現するシ ミュレーションモデルを作成することと、シミュレーションモデルとPC法を用いた MRI 血流計測結果をもとにMRIにて簡便に左心房内血流を観察する方法を考案する ことである。

Ⅲ. 研究方法

正常男性1名における全左心房を含む連続した MRI 多断層画像より、左心房モ デルを作成し、数値流体力学による血流解析を行った。作成したモデルの妥当性につ いては、同一被験者に対して行った PC 法及び心エコーを用いた血流速度計測結果と 比較し、PC 法で得られる断面上の渦流および文献的に得られた正常心における断面 上の渦流とも比較を行い、左心房モデルおよび境界条件を検証した。つぎにシミュレ ーションより得られる左心房内血流速度分布をもとに、渦流計測のための1断面を設 定した。そして、正常男性6例を対象に、左心房内渦流観察における設定断面の妥当 性を検証した。

1. 左心房シミュレーションモデルの作成

(1)対象

あらかじめ心エコーにて、正常心であることを確認した 23 歳男性ボランティア の正常左心房を MRI 撮像対象とした。心エコーは、安静左側臥位にて行い、計測装 置には、PRO SOUND SSD-6500 (ALOKA、Tokyo、Japan)を用いた。左心室拡 張末期径 (LVDd: left ventricular end-diastolic dimension)、左心室収縮末期径 (LVDs: left ventricular end-systolic dimension)、左心房径(LAD: left atrial dimension)、左心室後壁厚(PW: left ventricular posterior wall thickness)、左心室中 隔壁厚(IVS: interventricular septum thickness)、左心室駆出率(EF: left ventricular ejection fraction)、左心室僧帽弁レベルにおける左室流入血流(A 波: atrial filling velocity、E 波: early diastolic filling velocity)およびその減衰時間(DT: deceleration time)、そして僧帽弁輪における組織ドップラー(E'波: early diastolic velocity of the mitral annulus)を計測した。対象者のエコー及び一般プロファイルを表 1、表 2 に示 す (表 1-2)。被験者には検査前に研究内容を説明し、書面にて同意を得た。

(2) MRI 画像取得方法

心電同期シネ MRI により、左心房の形態を断層画像として取得した。使用 MRI 装置は、Intera Achieva Nova 1.5T (Philips Medical Systems、Best、The Netherlands)である。受信コイルは、SENSE cardiac coil を用いた。使用シーケン スは 2D-BTFE(two-dimensional balanced turbo field echo)を用い、心電図同期を併 用し安静背臥位吸気位での撮影とした。造影剤は使用しなかった。またスキャンパラ メータは、TR (repetition time) 3.3 msec、TE (echo time) 1.7 msec、FA (flip angle) 60 °、slice thickness 5 mm、matrix size 256×256 、field of view (FOV) 400 mm、 撮像断面は oblique four-chamber view とした。健常ボランティアの撮影時における 心拍数は 91 拍/分であった。1 心拍内に 20 時相の撮影を行い、1 断面の計測にかか る時間は約 15 秒を要し、計 12 断面には撮像間の安静時間も含めて約6分を要した。

(3) 断層画像からの3次元モデル作成

数値計算に必要な 3 次元計算モデルを MRI から得られる断層画像をもとに作成 した(図 3)。MRI による左心房画像のうちで、容積が最大となる時相の断層画像の データをもとに、汎用スライス画像 3 次元化ソフトウェア Mimics 7.3 (Materialise N.V.、Belgium)を用いて、 3 次元 STL (standard triangulated language)モデルを作 成した(図 3(b))。僧帽弁尖の形状変化は画像からの抽出が困難であった。そこで、 僧帽弁は一般的な僧帽弁の面積が 400 ~ 600 mm² とされるため、直径 24mm (452 cm²)の円で置き換えた。また次節で示す弁輪位置を時間的に変化させる計算式に当 てはめることにより、モデルに連続的な左心房変化を与えた。作成した STL モデル を数値計算格子作成ソフトウェア GAMBIT 2.2 (ANSYS, Inc., USA)で読み込み, 4 面体の計算格子を適用した計算モデルを作成した(図 3(c))。要素数は、15 万要素で あった。

(4) 左心房形状における空間的・時間的変化の推定

左心房の経時的な形状変化は、僧帽弁輪の位置を用いて推定した。前節までの3 次元画像データ解析により、1時相における計算モデルを得ることはできるが、左心 房の形状は経時的に変化する。そのため、時間に対して連続的に変化する計算モデル が必要となる。左心房は、肺静脈により上部は固定され自由度は低いが、下部にあた る僧帽弁レベルでは、弁の動きと共に弁輪の位置が変化し、大きく変形する。そこで 本研究では、MRI 画像から得られる僧帽弁輪の経時的な位置を求めて、心房の経時 的な形状変化を推定した。

図4に左心房形状変化の模式図を示す(図4)。まず256×256 matrixのMRI 画 像において左上位置を原点にとった XY 座標系(図4(a))を想定し、phase 1、phase 2における僧帽弁の位置をそれぞれ(X,Y) = (x_{m1}, y_{m1}) 、(X,Y)= (x_{m2}, y_{m2}) とする。次に Y 軸を僧帽弁輪の動く方向と平行にとり、X 軸に対し回転角 θ 傾く X 軸を設定し、位 置変化が小さい(X,Y) = (x_{org}, y_{org}) を原点とした XY 座標系 (図4(b))に変換する。 座標の変換は以下の式で表される。

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & -X_{org} \\ 0 & 1 & -Y_{org} \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$
 (₹ 2)

 $(X, Y) = (x_{m1}, y_{m1}), (x_{m2}, y_{m2})$ を式 2を用いて、XY座標系に変換した値をそれぞれ(X', Y') = $(x_{m1}', y_{m1}'), (x_{m2}', y_{m2}')$ とした。簡略化のため、右の僧帽弁輪位置としては、Y' 軸に対称な左の僧帽弁輪位置とした(図 5)。XY座標系の phase 1 での壁面での位置 (x_{1}', y_{1}') は、Y座標が正の場合は以下の式により phase 2 での壁面の位置である (x_{2}', y_{2}') へ移動するとした。

$$x_{2}' = \left\{ \frac{y_{1}'}{y_{m1}'} \left(\frac{x_{m2}'}{x_{m1}'} \right) + 1 \right\} x_{1}'$$
 (£3)

$$y_2' = \frac{y_{m2}'}{y_{m1}'} y_1'$$
 (式 4)

但し、式4のY方向の動きは単純な圧縮であるが式3のX方向の動きは、Y座標に より圧縮率が異なる。即ち、Y'=0に近いほどX方向の圧縮率は小さくなり、Y'= ym1' に近いほど圧縮率は大きくなる(図4(b))。Y座標が負の範囲では、肺静脈を含む. 肺静脈部は動きが小さいため、本研究ではこの部分の位置を固定した。

最後に XY座標系における壁面全体の座標点を XY座標系へ変換し形状の変化を 得る。 XY座標系の phase 1 での壁面での位置 (x_1, y_1) から phase 2 での壁面の位置で ある (x_2, y_2) への変換式を式 5 にまとめた。

$$\begin{pmatrix} x_{2} \\ y_{2} \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & X_{org} \\ 0 & 1 & Y_{org} \\ 0 & 0 & 1 \end{pmatrix} \begin{cases} \cos\theta & \sin\theta & 0 \\ -\sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{cases} \begin{cases} \left\{ \frac{y_{1}'}{y_{m1}'} \left(\frac{x_{m2}'}{x_{m1}'} \right) + 1 \right\} & 0 & 0 \\ 0 & \frac{y_{m2}'}{y_{m1}'} & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{cases} \end{cases} \begin{cases} \left\{ \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ \end{pmatrix} \end{cases} \begin{cases} \left\{ x_{1} \\ y_{1} \\ 1 \\ 1 \\ 1 \\ \end{pmatrix} \end{cases} \qquad (\overrightarrow{\mathbb{T}}, 5)$$

以上の変換を各断面において行い断面間において線形補間を行った。また取得し た MRI 画像は 20 時相であるため、僧帽弁の 20 点の位置から周期スプライン補間を 行い、経時的変化の三次式を作成し、時間方向の補間をおこなった。これにより、計 算上は、time step を 1 周期につき 20 step 以上に設定した場合にも体積変化および 変化率は連続的かつなめらかに変化する事になる。

体積変化の推定に必要な左側の僧帽弁輪位置は、MRI 画像から手作業によって 取り出し、図の白点を僧帽弁輪の位置とした(図5)。中心点は図4の(X, Y) = (x_{org}, y_{org}) に対応し、取得した MRI 画像より、 (x_{org}, y_{org}) = (92 pixel, 102 pixel)とした。12断 面の MRI 画像の中で、僧帽弁が含まれる断面は slice 5、6、7、8 であった。各断面 20 時相において、手作業にて僧帽弁輪位置を確認し、それぞれの XY 座標系における 位置を示す (図6)。前述のとおり、計算においては簡略化のため、僧帽弁輪位置を 左右対称とし、また正常僧帽弁口面積は 400 ~ 600 mm²であることから、弁口を直 径 24 mm (面積 452 mm²)の円に置き換えた。

(5) 熱流体解析ソフトウェア(FLUENT)を用いた数値シミュレーション

得られた空間的・経時的に変化可能な左心房計算モデルを用いて数値シミュレー ションを行った。計算には、汎用熱流体解析ソフトウェア FLUENT 6.3 (ANSYS Inc.、 USA)を使用した。作動流体は血液とし、密度 ρ= 1050 kg/m³、粘度 μ= 3.5×10⁻³ kg/m・ sに設定した。計算方法は表3に示す(表3)。左心房における入口・出口の境界条件 を図7に示す(図7)。入口部は、4つの入口部全てに対して、肺静脈圧の文献値〔13〕 である 10 mmHg の1条件を与えた。一方、左心房出口部の境界条件は、左心房体積 の縮小時は僧帽弁開放、体積の増加時は僧帽弁閉鎖とし、それぞれの場合に応じた異 なる圧値を条件として与えた(図7)。本計算では簡略化のため、僧帽弁の開放・閉鎖 はそれぞれ phase 0 および phase 10 において瞬時に起こるとした。すなわち MRI 画像で左心室拡張期に相当する phase 0~10 は、計算モデルでの time step 0~100 に相当し、左心室収縮期に相当する phase 11~20 は、計算モデルでの time step 101~ 200に相当する。左心室拡張期圧は、文献値〔13〕より引用した0~10 mmHgより、 入口圧と同じとなる 10mmHg を除いた、0、2、4、6、8mmHg の 5 つの異なる圧力 条件を与えた(図7-8)。実際には、左心室拡張期圧は経時的に変化するが、本計算で は常時圧力を一定と仮定した。

本計算は非定常の周期計算であり、計算開始時においては初期条件の影響を受ける。そのため周期解への推移を調べ、5周期目の解を結果として用いることとした。

2. 左心房シミュレーションモデルの検証

左心房シミュレーションモデルの妥当性を検証するために、モデルの形状変化お よび数値シミュレーション結果を、モデルを作成した同一被験者において、MRI およ び心エコーを用いて計測した臨床データと文献より得られる心腔内血流データと比 較し検討を行った。まず左心房形状変化の推定法の検証のため、シミュレーションか ら得られる左心房断層画像とその断面に対応する実際の MRI 断層画像の変化との視 覚的な比較を行った。次に、境界条件設定による影響を検証するため、数値シミュレ ーション用断層画像を取得した同一被験者において、PC 法を用いた MRI 計測及び心 エコー計測にてより血流データを取得した。得られた血流データは数値シミュレーシ ョン結果と対比させて検討を行った。さらに文献的に報告されている心エコーで計測 された肺静脈及び僧帽弁付近の血流波形および PC 法を用いた MRI にて計測された左 心房内渦流との定性的な比較も行った。

(1) 左心房シミュレーションモデルを用いた形状変化及び数値計算

経時的な①左心房形状変化を再現し、数値シミュレーションから得られる、左心 房における②血流線、③壁せん断応力分布、④肺静脈血流速度、⑤左心室流入(僧帽 弁)血流速度を計算した。

i 左心房の形状変化

左心房壁の経時的変化の推定方法が妥当であることを確認するために、計算モデ ルにおける左心房輪郭線と、実際に計測した MRI 画像における左心房輪郭線との比 較を行った。比較に用いた画像は、左心房モデル作成時に撮影した断層画像とした。 断層画像は20時相あり、左心房を含む全ての時相で比較を行った。

ii 左心房内渦流

数値シミュレーションを用いて、血液が肺静脈から僧帽弁を通過するまでの過程 を3次元における流線として描出した。得られた流線を前後、左右、上下に投影し、 渦流の出現する時相、渦流の中心、渦流の及ぶ範囲で評価した。

iii 左心房内壁せん断応力

数値シミュレーションを用いて、左心房における壁せん断応力を算出し、経時的 な分布と伴に、RMS (root mean square)値分布についても検討した。RMS 値はデー タのばらつきを表し、本研究においては、壁せん断応力の変動の大きさを表す。本モ デルは壁が変形するため、各時刻において対応する位置の壁せん断応力から RMS 値 を算出した。式6で定義され、WSS (wall shear stress) は壁せん断応力、添字 RMS は RMS 値、i は各 time step、N は全 time step を表す。

$$WSS_{RMS} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} WSS_i^2}$$
 (£ 6)

iv 肺静脈血流速度

数値シミュレーションを用いて、肺静脈血流速度の経時的変化を算出した。肺静 脈に相当するモデルの各入口部において、各断面を通過する血流の平均速度を各肺静 脈における血流速度として算出した。

v 左心室流入(僧帽弁)血流速度

数値シミュレーションを用いて、左心室流入血流速度の経時的な変化を算出した。 僧帽弁に相当するモデルの出口において、断面を通過する血流の平均速度を左心室流 入血流速度として算出した。

(2) PC 法を用いた MRI による左心房内血流計測

左心房モデル作成時と同一の健常ボランティアを被験者として、左心房内血流速 度および肺静脈血流速度を PC 法を用いて計測した。使用 MRI 装置は EXCELART 1.5 T (Toshiba Medical Systems、Tokyo、Japan)、受信コイルには Torso SPEEDER Coil を用いた。使用シーケンスは phase shift magnetic resonance angiography を用 い、スキャンパラメータは TR 24 msec、TE 10 msec、FA 20°、slice thickness 5mm、 FOV 350 mm、matrix size 256×256、velocity encoding (VENC) 1m/sec、flow directions RO (read out)、PE (phase encode)、SS (slice select)とした。安静背臥位 とし、心電同期の上、吸気位での息止めにて撮像した。造影剤は使用しなかった。左 心房全体を計測領域に含むため、13 断面にわたり撮影を行った。撮影主断面を oblique four-chamber view とし、心四腔以外に左下肺静脈と右上肺静脈を加えた。計測時の 心拍数は 77 拍/分で、1 心拍内に 8 時相の計測を行った。1 回の息止め時間は約 50 秒であり、撮影には約 100 分を要した。

i 左心房内渦流

PC 法による MRI 計測により、強度画像と呼ばれる形態情報と位相画像と呼ばれる 速度情報での2種類の情報を得ることができる。速度情報は one voxel につき1方向 の速度成分を持つ。本研究では、可視化ソフトウェア (Tecplot360 2008、Tecplot Inc.) を用いて、左心房内の各点における voxel 毎の X、Y、Z の3方向速度成分を再合成 し、速度ベクトルを強度画像上に表示した。各ベクトルは、左心房内における流速の 絶対値および平面上における方向を示す。得られた PC 法による左心房内渦流をシミ ュレーション結果と比較した。

ii 肺静脈血流速度

PC 法を用いて、肺静脈から左心房へ流入する血流速度を計測した。肺静脈血流速 度の算出は、左下肺静脈が含まれる断面において、X = 124~130 pixel、Y = 128~132 pixel の範囲(図9、黒枠部)における速度を抽出し、平均速度、速度の標準偏差、最 大速度を算出した。その上で、シミュレーション結果との比較を行った。

20

(3) 心エコーを用いた左心室流入(僧帽弁)血流評価

心エコーを用いて、僧帽弁レベルの心腔内血流速度を計測した。心エコーは、安 静左側臥位にて行い、装置は PRO SOUND SSD-6500(ALOKA、Tokyo、Japan) を用いた。左心室流入血流の計測位置は、左心室側の僧帽弁尖接合部付近とし、サン プリングポイントにおける平面上の速度を測定した。得られた波形パターンについて、 シミュレーション結果との比較を行った。

3. 正常心における設定断面での計測

(1) 対象

ボランティア健常成人男性 6 名 (平均年齢 31 ± 5.2 才) とし、あらかじめ心 エコーにて、正常心であることを確認した。心エコーの実施方法は、研究方法 1 (左 心房シミュレーションモデルの作成)の対象者への実施方法と同様である。安静左 側臥位にて行い、計測装置には、PRO SOUND SSD-6500 (ALOKA、Tokyo、Japan) を用いた。左心室拡張末期径 (LVDd)、左心室収縮末期径(LVDs)、左心房径(LAD)、 左心室後壁厚(PW)、左心室中隔壁厚(IVS)、左心室駆出率(EF)、左心室僧帽弁レベ ルにおける左室流入血流 (A 波、E 波)およびその減衰時間(DT)、そして僧帽弁輪 における組織ドップラー(E 波)を計測した。対象者の一般プロファイルおよび心エ コープロファイルを表4に示す(表4)。また被験者には検査前に研究内容を説明し、

書面にて同意を得た。

(2) 撮影方法

撮影方法は研究方法 2 (左心房シミュレーションモデル検証実験) での実施方法 と同様である。使用 MRI 装置には EXCELART 1.5 T (Toshiba Medical Systems、 Corp.、Japan)を用い、受信コイルには Torso SPEEDER Coilを用いた。使用シー ケンスは phase shift magnetic resonance angiographyを用い、スキャンパラメータ は TR 24 msec、TE 10 msec、FA 20°、slice thickness 5mm、FOV 350 mm、matrix size 256×256, VENC 1m/sec とし、RO、PE、SS の 3 方向で計測を行った。心電同 期を用いて、安静背臥位で吸気位息止めにて撮影した。造影剤は使用しなかった。1 方向の撮影に要する息止め時間は約 50 秒であったが、酸素吸入は行わなかった。撮 像断面は oblique coronal view とし、心二腔像に左右上肺静脈を断面内に加えた断面 とした。撮像時間は約 10 分であった。

左心房内に渦が観察されなかった2名のうち1名に対しては、さらに MRI 装置 に Intera Achieva Nova 1.5T (Philips Medical Systems、Best、The Netherlands)、 受信コイルに SENSE Cardiac Coil を用いて再検査を行った。使用シーケンスは、 SENSE turbo field echo quantification を用いた。スキャンパラメータは TR 3.4 msec、TE 5.1 msec、FA 15°、 slice thickness 10 mm、FOV 350 mm、matrix size 256×256、VENC 1m/sec とし、RO、PE、SS の三方向で計測を行った。心電同期 を用いて背臥位とし、吸気位息止めにて撮影を行った。1方向の撮影に要する息止め 時間は約17秒であった。酸素吸入は行わなかった。造影剤も使用しなかった。撮像 断面は oblique two-chamber view とした。撮像時間は約3分であった。

(3) Velocity mapping (速度分布図)

MRI 検査により得られた DICOM 形式データは、オフラインにてパーソナルコン ピューター上でデータファイルへ変換した後に、可視化ソフトウェア(Tecplot360 2008、 Tecplot Inc.、USA)を用いてベクトル表示した。使用したパーソナルコンピ ューターは、DELL Precision M20 (DELL Inc.、Texas、USA)であり、中央演算装置 は Pentium M、2.3 GHz (giga herz)で、メモリは 1 GB (giga byte)、ハードディス容 量は 160GB である。使用した位相画像より得られる左心房内の各点における三方向 速度成分を再合成し、強度画像上に展開した。各ベクトルは、左心房内における流速 の絶対値および平面上における方向を示す。

(4) 速度標準偏差分布

左心房内の各点における速度絶対値の経時的変化から標準偏差を計算し、心腔内 における速度標準偏差分布を表示することとした。速度標準偏差は速度のばらつきを 示し、その原因としては乱流の存在が考えられている。その他の原因としては、計測 時の体動によるアーチファクトも一因と考えら得る [14]。体動や揺れによる静止位 置保持の不安定性、あるいは呼吸による動揺が計測時のアーチファクトとなる。解析 には、MRIの DICOM (digital imaging and communication in medicine)形式デ ータをオフラインにてパーソナルコンピューター上へ取り込み、データファイルへ変 換した後、可視化ソフトウェア (Tecplot360 2008、 Tecplot Inc.)を用いて、左心房 内の各点における速度絶対値の経時的変化から標準偏差を計算し、心腔内速度標準偏 差分布を強度画像上に表示した。

Ⅳ. 研究結果

1. 左心房シミュレーションモデル、PC 法及び心エコーによる血流評価

(1)形状評価

左心房の形状変化と体積変化を図 10-11 示す。図 10 に示す左心房の形状変化は、 体の正面から胸背方向へ見る像である(図 10)。時相数については MRI 画像データ が1心拍 20 時相から成るため、シミュレーション画像も1心拍を 20 分割し、phase 1~20 で示す。体積変化は熱流体解析ソフト(FLUENT)より直接算出し、グラフの縦 軸は左心房体積を示し、横軸に時相 (phase)を示す(図 11)。phase 1 は実際には体 積の最大時相ではなく phase 20 (= phase 0)において体積が最大であった。

壁の変化の推定方法が妥当であることを確認するために、MRI 画像との比較を 行った。phase 1、5、10、15の MRI 画像に、計算モデルの輪郭線を黄色で示す(図 12)。phase 1 は計算モデルを作成した MRI 画像であるため、ほぼ一致していること がわかる。しかし、phase 10 の拡張期(左心房は収縮)になるにつれて、左下肺静 脈付近(図 12 矢印部)では、計算モデルと実形状に差が見られた。

(2) 左心房内渦流

左心房血流シミュレーションおよび PC 法による血流計測ともに、左心房内に左 室拡張中期および左心室収縮初期(僧帽弁閉鎖時)に左心房内に渦形成を認めた。は じめにシミュレーションで再現された 3 次元左心房内渦流ついて述べる。図 13 に 3 方向(胸背方向、頭尾方向、左右方向)から観察した3次元空間における流線の様子 を示す(図13)。左心室収縮初期(僧帽弁閉鎖時)では右上及び右下肺静脈からの流 線はいずれも交差せずに直線的に尾側へ向い、左上および左下肺静脈からの流線は交 差しながら旋回し、渦流が形成されていた。渦の中心は、4本の肺静脈開口部をたす き掛けに結ぶ直線(右上肺静脈と左下肺静脈を結ぶ直線と右下肺静脈と左上肺静脈を 結ぶ直線)の交点よりやや左側に位置していた。渦の回転方向は前後方向・上下方向 ともに反時計回りであった。左心房内の流れは、左心耳にも交通をみとめるが、渦流 は左心耳まで達してはいなかった。なお左心室拡張期でも、左心房内に旋回する流れ を維持しながら、僧帽弁方向へ一様に流出していた。

次に、PC 法による測定で観察された渦流に (図 14(a)-(c)) について述べる。撮 像断面は oblique four chamber view 画像である。断面には左心房、左心室、右心房、 右心室の他に、右上肺静脈、左下肺静脈を含む (図 14(a))。シミュレーション同様に 僧帽弁閉鎖直後の左心室収縮早期に左下肺静から、右上肺静脈方面に旋回する渦形成 を認めた。僧帽弁開放とともに、一旦渦は消え、肺静脈から僧帽弁へ一様な流れとな った。しかし、流れが全体的に遅くなると伴に、左下肺静脈付近に再び渦流が出現し た (図 14(b)-(c))。

(3) 左心房壁せん断応力

図 15 に経時的な左心房内壁せん断応力分布を示す。また図 16 に壁せん断応力の

26

ばらつきを示す RMS 値分布図を示す。図 15-16 は、体正面から前後(胸背)方向へ 見たものである(図 15-16)。左心房シミュレーション結果から得られる壁せん断応力 分布図より、肺静脈左心房流入部と僧帽弁左心房流出部において壁せん断応力は大き いが、左心耳では全周期を通じて小さいことが示された(図 15)。算出した RMS 値 から、肺静脈部と僧帽弁において壁せん断応力は大きく、左心耳に関しては、全周期 を通じて 0.5 Pa 程度と壁せん断応力は小さいことが示された(図 16)。

(4) 肺静脈血流速度

数値シミュレーション結果による肺静脈から左心房へ流れ込む血流の経時的変 化を図 17 に示す(図 17)。グラフの縦軸は流速、横軸は time step である。肺静脈波 形に関して、数値シミュレーションでは、拡張期 2 相、収縮期 4 相および収縮直後の 不連続な逆向き流の計 7 相を認めた(図 17)。一方で PC 法による肺静脈から左心房 へ流れ込む血流の経時的変化を図 18 に示す。速度の算出は、左下肺静脈が含まれる 断面において、X = 124~130 pixel、Y = 128~132 pixel の範囲(黒枠部)(図 9)か ら抽出し、平均流速、標準偏差、最大速度を算出した。グラフ(図 18)は、縦軸に流 速、横軸に時間を表す。PC 法による血流速度計測では、拡張期 1 相、収縮期 1 相の 計 2 相を認めた(図 18)。左下肺静脈における拡張期波の平均流速では、シミュレー ション結果では、0.8~2.2 m/s であったのに対し、PC 法による計測では、0.35 m/s と大きく乖離していた。また肺静脈から左心房へ流れる血流を分析すると、拡張期肺 静脈血流速度は出口圧に依存し、高い出口圧に対して、低い肺静脈血流速度となる。 また心拍出量も高い出口圧に対して、低くなることが示された(表 5)。

(5) 左心室流入(僧帽弁)血流速度

数値シミュレーションから得られる僧帽弁を通過し左心室へ流れ込む血流の経時 的変化を図 19 に示す(図 19)。グラフは縦軸に流速、横軸に time step をとる。僧帽 弁を通過し左心室へ流れ込む血流パターンは、E 波(左心室拡張早期流入波)と A 波 (左心房収縮波)を有する2相性の血流パターンを示した(図 19)。心エコーから得 られる僧帽弁を通過し左心室へ流れ込む血流の経時的変化を図 20 に示す(図 20)。グ ラフは縦軸に流速、横軸に時間をとる。シミュレーションと同様に E 波(左心室拡張 早期流入波)と A 波(左心房収縮波)を有する2相性の血流パターンを示した(図 19)。平均血流速度は、シミュレーション結果が E 波 0.3~0.7 m/s、A 波 0.35~0.65 m/s に対し、心エコー計測では E 波 0.82 m/s、A 波 0.52 m/s と一致しなかった。またシ ミュレーションでは出口条件の圧が上昇するに従い、A 波に対する E 波の血流比は 1 より小さい値をとった。心エコーでは、A 波に対する E 波の血流比は 1をより大きい 値を示していた。

2. 正常心における設定断面での計測

(1) 左心房内渦流

正常心 6 例中 4 例に左心房内に渦流を認めた(図 21)。図 21 に観察された左心房 内渦流を示す。計測断面は oblique coronal view であり、左右上肺静脈と左心房、 左心室を含む(図 21)。左心房内に形成される渦流は、いずれも左心室拡張期中期と 収縮期初期(僧帽弁閉鎖後)に認め、収縮期中期には消失した。特に左心室収縮期 初期に認める心房内渦流は拡張期に形成される渦より大きく、渦の中心は左心房の 中央付近に位置していた。

初回検査で渦流を認めなかった 1 例に対し、別の MRI 装置を用いて再検査した 結果、左心房内に渦流が視覚的に確認された(図 22)。残る 1 例は再検査の同意が 得られなかった。

(2) 速度標準偏差分布

図 23 に左心房内における速度標準偏差分布を示す(図 23)。上段は左心房内に渦 流を認めた群であり、下段は渦流を認めなかった群である。撮像断面は oblique coronal view であり、断面には、肺動脈・左心房・左心室・右心室を含む。赤は速度 標準偏差の大きいところを示し、緑は速度標準偏差の小さいところを示す。両群とも に画面中央、左心室流入部を中心に速度標準偏差の大きい領域が存在する。渦流観察 可能群において、左心房内で渦流が観察される部位での速度標準偏差は、渦流の無い 左心房部位と比べ変化がないことが示された。左心房内に渦流を認めた群と渦流を認 めなかった群で、左心房内における速度標準偏差分布を比較すると、渦流を認めなか った群では、左心房内に速度標準偏差値の大きい領域が存在していた(図 23)。再検 査で左心房内に渦流を認めた症例で、初回に左心房内に渦流を認めなった際の左心房 内速度標準偏差は大きかったが(図 23)、後日装置を変えて再検査を行い左心房内に 渦流を認めた際の左心房内速度標準偏差は小さいことが示された(図 24)。

Ⅴ. 考察

1. 左心房シミュレーションモデルの妥当性

左心房形状変化の推定において、図 12 に示す通り形状は一ほぼ致しており、形 状推定方法は妥当であると結論づけた。左下肺静脈付近(図 12 矢印部)においては、 phase 10 の拡張期(左心房は収縮期)になるにつれて計算モデルと実形状に差が見 られた。この理由は、形状変化の推定に用いる僧帽弁位置を左右対称と仮定したため であると考えられた。今後、弁の設定には左右それぞれの僧帽弁位置に即した推定法 を考案し、さらに滑らかな僧帽弁開放を持たせたモデル作りを行えば、実形状との差 をより少なくできると考えられる。

肺静脈の血流速度の絶対値には、シミュレーションデータと PC 法による計測デ ータに開きがあるものの(図 17-18)、波形パターンとして収縮期波(S 波)、拡張期 波(D 波)の2 群を有する点では PC 法による計測結果に類似していた。正常心にお ける心エコーでの肺静脈血流パターン(図 25)を示す〔15〕。図 17 のシミュレーショ ンより得られた肺静脈血流(図 17)は、S 波および D 波は多峰性を呈しているもの の、図 25 の文献で示された心エコーで計測される S 波・D 波・AR 波(心房逆流波) に近いパターンを有していた。しかし血流速度に関しては、PC 法による MRI 計測結 果と比べ約 2~8 倍と大きく乖離していた(図 17-18)。シミュレーションと実際の計 測において血流速度が大きな相違があった原因としては、計算モデルにおいて、左心 房入口部での肺静脈面積を実際よりも小さく見積もったためと、僧帽弁輪位置を左右 対称としたために(図5)、左下肺静脈領域が他の肺静脈に比べ変動が大きくなったこ とが考えられた。右上肺静脈の血流速度変化を図26に示す、比較的PC法での計測 データに近い平均血流速度を示していた(図26)。モデル作成時における左上肺静脈 の画像抽出が妥当で、さらにこの肺静脈の可動性が少ない事も影響していたと考えら れる。

僧帽弁血流波形においても、血流速度の絶対値には開きがあるものの、波形パタ ーンに関しては、E波およびA波の2相性を示し、心エコー結果(図20)および文 献で示された波形〔15〕(図25(b))と一致した。

シミュレーションから得られる 2 次元断面へ投影した 3 次元左心房内渦流を、 Kilner ら〔3〕が行った研究結果とシミュレーションモデル作成被験者に対して PC 法で観察された左心房内渦流を比較検討を行ったところ、それぞれに定性的な一致を 認めた。図 27 は Kilner ら〔3〕が行った PC 法を用いた心腔内血流データの可視化結 果を流線で表示している(図 27)。心収縮期では、本研究のシミュレーション結果と 同様の渦流形成が見られる(図 13)。拡張初期では、弁が大きく開き左心室へ一様な 流出が生じており、本研究でも同様の流れが確認されている(図 13)。PC 法で計測 した左心房内血流においても、同様の流れを認めた(図 14)。

以上の検討結果から、今回作成した左心房モデルは、左心房内の血流に対し、定 量的評価に対しては測定値との間に乖離があり、まだ改善の必要があるものの、定性 的評価に対しては十分有用であると結論づけた。

2. 左心房内渦流計測における断面設定の検証

左心房内渦流計測における撮像断面としては、左心房の中心(左上肺静脈と右下肺 静脈と結ぶ線と左下肺静脈と右上肺静脈を結ぶ線の交点)付近を含むことが望ましい と考察した。正常左心房内における渦流は、シミュレーションおよび PC 法による計 測双方に、左心室拡張期中期と左心室収縮期初期~中期に渦流形成を認めた(図 21)。 これは、Fyrenius ら [2]の報告に一致する(図 27)。特に収縮期初期に出現する渦 流に関しては、渦の中心が左心房中心付近にあり、比較的大きくハッキリしているた め、定性的な評価には有用であると考えた。シミュレーション結果では、渦流の中心 は、左上肺静脈と右下肺静脈と結ぶ線と左下肺静脈と右上肺静脈を結ぶ線の交点より やや左側に存在していた(図 13)。

肺静脈に関しては、計測断面に少なくとも1本は含むことが望ましいと考えた。そ の理由は左心房中心とともに、肺静脈を通る断面を設定すれば、肺静脈から流れ込む 血流と左心房内に形成される渦流の動態が断面上で観察できる上に肺静脈血流速度 が病態把握に役立つと考えたからである。シミュレーションデータでは、左心房にお ける出入り口の圧較差が小さくなるに従い、肺静脈血流速度と心拍出量が低下する事 が分かった(表5)。つまり左心室拡張末期圧の上昇により、肺静脈血流速度の低下 が予想される。Nishimura らは経食動エコーを用いた検討で、肺静脈血流の D 波は 左心室流入血流の E 波と最大速度および deceleration time において関連があり、E 波のピークの約 50msec 後に D 波はピークとなると報告している[16]。左心室流入

血流 E 波の最大速度は主に僧帽弁での圧較差によって生じるとされ〔17〕、この時相 の肺静脈血流は左心房を導管として、直接左心室へ流れ込むためであると考えられた [18]。つまり拡張期肺静脈血流速度は左心室機能を反映する可能性があるので、経 時的な変化を観察することは心機能評価に役立つと考えられた。一方で、左心室収縮 期の肺静脈血流速度は重力の影響を受けることが報告されている〔19〕。左側臥位に した時には、右肺静脈の収縮期肺静脈血流速度が上昇し、右側臥位のした時には、左 肺静脈の収縮期肺静脈血流速度が上昇する〔19〕。これは左右肺静脈の血流容量変化 が影響していると考えられている〔19〕。しかし、本シミュレーションでは左右上下 の肺静脈の圧は 10mmHg に固定しているため、左右の肺静脈血流量の影響は受けな い。収縮期においても左肺静脈の流れが旋回しながら右上肺静脈に合流し、渦流を形 成する原因としては、右上肺静脈の僧帽弁に対する位置関係が影響していると考えら れた。右上肺静脈は僧帽弁に対して、他の3本の肺静脈よりも直上に位置している。 僧帽弁に対して角度を持つ左肺静脈は、右肺静脈に横から合流する形で左心房に流れ 込むために、渦流を形成すると考えられた。この解剖学的非対称性は左心房における 血流の持つ運動量損失を最小限に抑える効果があると推測される。Fyrenius ら〔2〕 も、渦流の形成には左肺静脈からの流入血が主に関与し、左心房内渦流は、右肺静脈 からの流入血が心房内に拡散せず、左心室へ直接流れ込む流路を確保し、血流の持つ 運動量および方向性の保持に関与すると述べている。

僧帽弁も撮像断面に含まれることが望ましいと判断した。その理由は、僧帽弁レベ

34

ルでの血流は、前述のごとく肺静脈血流と密接な関係にあり、左心房内の血流評価の 上で重要であると考えられるからである。また僧帽弁逆流のある症例では、左心房へ の逆流によって渦流形成の障害あるいは異常な乱流の発生する可能性があるため、正 常心以外の場合も含めて僧帽弁付近の血流評価は必要であると考えられる。

左心房内の渦流評価を行う上で、左心耳を撮影断面にいれる必要性は低いと考えら れた。左心耳はせん断応力が常に小さく、流れに関しても袋小路に近いことが本研究 のシミュレーションで示された。しかし左心耳は、心房細動における左心房内血栓好 発部位であり、臨床上の意義は少なくない。Blackshear ら [20] は、非リウマチ性 の心房細動に関連した検討で左心房内血栓の 91%が左心耳に形成されると報告して いる。これまでにも経食道エコーによる左心耳および左心房機能評価が数多く行われ ており [21]、左心耳は圧受容器や液性因子を介して、心房内圧および心房内血液量 を調節しているとも考えられている [22]。現時点では、左心耳機能はまだ完全には 解明されてはいないものの、今回の数値シミュレーション結果からは、左心房内の渦 流に関して左心耳の評価価値は小さいと判断した。

3. 左心房内血流速度の標準偏差分布の意味

左心房の観察において、血流速度標準偏差分布は乱流評価ばかりではなく、むし ろ体動アーチファクトの検出に使える可能性が示唆された。正常心 6 例における PC 法による左心房内血流計測結果を渦流確認可能群(図 23(a))と渦流観察不能群(図

35
23(b))に分け、血流速度(絶対値)の標準偏差分布に関して検討を行った。両群と もに左心房・左心室間には速度標準偏差の大きい領域が観察されるが、左心室の流入 血流部位であり、乱流が生じやすい場所と考えられた。渦流が確認できる群において、 左心房内に渦流を認める部位では、速度標準偏差が大きくはないことも示された(図 23(a))。左心房内の渦流は連続した流れであり、攪拌するような流れではないことが 推察される。一方で渦流観察不能群(図 23(a))は、渦流観察可能群(図 23(b))と 比較して、左心房内での速度標準偏差が大きいことが示された。特に渦流とは関係な い部位にも速度標準偏差の増大が認められ、この部位で乱流が発生する特別な事情は 考えにくく、体動に起因するアーチファクトの影響によるものと考えた。再検査にて 渦流が観察された1例では、初回の検査の際、呼吸停止時間や検査に要した時間が長 く体動の要因が入りやすかったのに比べ、後日の再検査では、呼吸停止時間や検査に 要した時間を短縮できたこともあり体動が少なく左心房内に渦流を観察できたもの と考えられた。MRI 検査の際の息止め時間は初回の検査の際 50 秒かかったが、2回 目の検査では17秒に短縮できた。左心房内における速度標準偏差分布の2回目検査 におけるばらつきは、1回目検査と比較して明らかに少なかった。スキャンパラメー タを比較すると1回目の装置ではTR 24msec、TE 10msec、VENC 1m/sec に対し、 2回目の装置ではTR 3.4msec、TE 5.1msec、VENC 1m/sec であった。2回目では TR、TEを短縮している。通常、撮像時間は式7で表される。

撮像時間 = TR x Ny(位相エンコードステップ) x NEX(積算回数) (式 7)

ここで、Ny=256、NEX=1 であることから、 TR の短縮により、検査時間を短縮す ることができる。しかし、加藤ら〔23〕は緩和時間、TR、TE、VENC が速度計測精 度に与える影響を調査し、各々が影響を及ぼす可能性があると報告している。従って、 速度計測精度に与える影響については今後検証する必要がある。

以上をまとめると、左心房内血流を評価する断面としては、①左心房の中心(4 本の肺静脈を結ぶ交点)付近を含み、②少なくとも1本の肺静脈を含み、③僧帽弁を 含む断面が望ましいと考えられた。

実際の計測では、新たな断面設定を行う為には試験撮像を必要とする。一般に、 日常診療では2腔像、4腔像および冠状断面像を心臓 MRI 検査の基本断面に使用す る施設が多い。2腔像、4 腔像および冠状断断面像は上記条件を満たす場合が多いた め、これらの断面を利用して計測することが、撮影時間の短縮につながると考えられ る。また計測したデータに関しては、左心房内における速度標準偏差分布を利用して、 検査の質を評価することが望ましいと考えられた。

37

Ⅵ. 結論と展望

左心房シミュレーションモデル

今回作成した左心房シミュレーションモデルは、左心房内の血流動態に対し、定 量的評価に対してはまだ改善の必要があるもの、定性的評価に対しては十分有用であ った。

PC 法による MRI 計測断面

左心房内渦流を評価する断面としては、次の3つの条件を有する断面が望ましい。

- ① 左心房の中心(4本の肺静脈を結ぶ交点)付近を含む
- ② 少なくとも1本の肺静脈を含む
- ③ 僧帽弁を含む

心臓 MRI 検査の基本断面に用いる 2 腔像、4 腔像および冠状断面像がこの条件を満たす場合が多いので、これらの断面を利用して撮影すると撮影時間を短縮することができる。実際には、通常の診断撮影終了後に、約3分の追加検査を行うことで左心房の血流評価は可能である。また、得られた計測データに関しては、左心房内の速度標準偏差分布を計測することにより、検査結果の質を評価することができる。現時点では、実際の臨床検査として実用性が高いと考えられる。

正常心における左心房内渦流

正常心における左心房内渦流は、左心室拡張期中期および、左心室収縮期に認め る。とくに左心室収縮期に観察される渦流は左心房の中心付近に位置し、拡張期の渦 に比べて大きくはっきりとしているため観察も容易である。渦は右肺静脈の直線的な 血流に対し、左肺静脈の血流が回り込む形で形成される。右上肺静脈が比較的直線的 に左心房へ流れこむのは、重力を最大限に活用するような流れをしているためと考え られる。一方で僧帽弁に対して角度を持つ左肺静脈は、右肺静脈の流れに対して角度 を持つことにより渦流を形成し、僧帽弁閉鎖時において肺静脈からの流入血流が左心 房内を旋回する事で、左心房内における血流の運動量損失を抑える効果があると考え られる。

研究の限界および将来への展望

本モデルを定量評価できるように改良し、異常心にも応用することにより、力学 的構造的変化の相違を解明する上で役立つものと考えられる。

本研究において設定した2次元断面にもとづく撮像検査方法は、数分で済み、患 者負担は軽度であり、十分に実用な検査法である。渦流の出現時期、持続時間、大き さの定量化を行い、正常心に限らず異常心の渦流を評価することで、渦流と心疾患と の関連性を解明することがと期待される。

左心房シミュレーションモデルと PC 法計測との比較検討や断面設定に関する研

究は確立途上にある。今後は、本研究で示された課題が克服され、MRI を用いた一 層簡便で臨床的に役立つ渦流計測検査法が発展し、種々の心疾患の病態診断の一助と して役立つことを切望し、本研究の結びの言葉とする。

文献

- Beppu S, Nimura Y, Sakakibara H, et al. Smoke-like echo in the left atrial cavity in mitral valve disease: its features and significance. J Am Coll Cardiol 6: 744–749, 1985
- 2. Fyrenius A, Wigström L, Ebbers T. Three dimensional flow in the human left atrium. Heart 86: 448–455, 2001
- 3. Kilner PJ, Yang GZ, Wilkes AJ, et al. Asymmetric redirection of flow through the heart. Nature 404: 759-761, 2000
- Saygili E, Rana OR, Reuter H, et al. Losartan prevents stretch-induced electrical remodeling in cultured atrial neonatal myocytes. Am J Physiol Heart Circ Physiol 292: H2898–H2905, 2007.
- Saber NR, Wood NB, Gosman AD, et al. Progress Towards Patient-Specific Computational Flow Modeling of the Left Heart via Combination of Magnetic Resonance Imaging with Computational Fluid Dynamics. Ann. Biomed. Eng 33: 42-52, 2003
- Spiegel K, Schiller W, Schmid T, et al. Numerical Simulation of the Left Ventricle and Atrium as Reference for Pathological Hearts. Proceeding of the fifth IASTED international conference biomechanics, Honolulu, USA, 78-83, 2007

- Lotz F. Cardiovascular Flow Measurement with Phase-Contrast MR Imaging: Basic Facts and Implementation. RadioGraphics 22: 651–671, 2002
- 8. Moran PR. A flow velocity zeugmatographic interlace for NMR imaging in humans. Magnetic Resonance Imaging 1: 197-203, 1982
- 9. Kim WY, Walker PG, Pedersen EM, et al. Left ventricular blood flow pattern in normal subjects: A quantitative analysis by three-dimensional magnetic resonance velocity mapping. J Am Coll Cardiol 26(1): 224-238, 1995
- 10. Be'eri E, Maier SE, Landzberg MJ, et al. In vivo evaluation of Fontan pathway flow dynamics by multidimensional phase-velocity magnetic resonance imaging. Circulation 98: 2873-2882, 1998
- 11. Underwood SR. Magnetic resonance velocity mapping: clinical application of a new technique. Br Heart J 57: 404-412, 1987
- 12. Dyverfeldt P, Sigfridsson A, Kvitting JPE, et al. Quantification of Intravoxel Velocity Standard Deviation and Turbulence Intensity by Generalizing Phase-Contrast MRI. Magn Reson Med: 56(4): 850-858, 2006
- 13. Smith JJ, Kampine JP, 村松準(監訳). 循環の生理第2版, 医学書院, 東京, pp 175-195, 1989
- 14. 荒木 力. MRI の基本 パワーテキスト, メディカル・サイエンス・インターナショナル, 東京, pp 194-338, 2004

- Pagel PS, Kehl F, Gare M, et al. Mechanical Function of the Left Atrium.
 Anesthesiology 98: 975–994, 2003
- 16. Nishimura RA, Abel MD, Tajik AJ, et al. Relation of Pulmonary Vein to Mitral Flow Velocities by Transesophageal Doppler Echocardiography Effect of Different Loading Conditions. Circulation 81: 1488-1497, 1990
- 17. Courtois M, Vered Z, Barzilai B, et al. The transmitral pressure-flow velocity relation: Effect of abrupt preload reduction. Circulation 78: 1459-1468,1988
- 18. Keren G, Sherez J, Megidish R,et al. Pulmonary Venous Flow Pattern -Its Relationship to Cardiac Dynamics: A Pulsed Doppler Echocardiographic Study. Circulation 71: 1105-1112, 1985
- 19. Tanabe K, Yoshitomi H, Oyake N,et al. Effects of supine and lateral recumbent positions on pulmonary venous flow in healthy subjects evaluated by transesophageal Doppler echocardiography. J Am Coll Cardiol 24: 1552-1557, 1994
- 20. Blackshear JL. Appendage Obliteration to Reduce Stroke in Cardiac Surgical Patients With Atrial Fibrillation. Ann Thorac Surg 61: 755-759, 1996
- 21. Agmon YJ. Echocardiographic Assessment of the Left Atrial Appendage. Am Coll Cardiol 34; 1867-1877, 1999
- 22. Stöllberger C. Is the left atrial appendage our most lethal attachment? Eur J

Cardiothorac Surg 18: 625-626, 2000

23. 加藤陽子, 姫野龍太郎. MRI 画像における血管領域抽出手法構築を目的とした

Phase Contrast 法の流速計側特性評価. 生体医工学 41-2: 115-121, 2003

図説明

図1. two-dimensional balanced turbo field echo 法(bright blood 法)によるシネ
 MRI における左心房血流画像:正常例と肥大型心筋症例における僧帽弁閉鎖直後の
 血流画像を示す。正常例では、左心房中央に曲がった黒い渦様の信号を認める(矢印)。
 肥大型心筋症例では、僧帽弁直上右側に小さな黒い渦様の信号を認める(矢印)。

図2. Fyrenius らが行った MRI による 3 次元左心房内渦流の測定〔2〕:(a)右上肺 静脈と左下肺静脈から左心房を通り、左心室へ流れる血流線を示す。右上肺静脈から 僧帽弁へ流れ込む血流はほぼ直線状に流れ込み渦流を形成しないが、左下肺静脈から の血流は旋回し渦流を形成する。RUPV:右上肺静脈、LLPV:左下肺静脈、LA:左 心房、LV:左心室

(b) 各時相における、肺静脈から左心房へ流入する血流速度(上段)、僧帽弁を通過 し左心室へ流入する血流速度(中段)、左心房内に出現する渦流(下段)を示す。下 段における渦の図は向きおよび渦の大きさを示し、背面のうすい影は出現時相を示す。 左心室収縮期に出現する渦流は拡張期に出現する渦流と比べ、渦は大きく出現時間も 長い。僧帽弁閉鎖 S(肺静脈収縮期波)、D(肺静脈拡張期波)、MD(肺静脈拡張中 期波)、R(心房逆流波)、E(左室拡張早期流入波)、A(心房収縮波)。

図3. 左心房計算モデルの作成: (a) MRI 断層画像をもとに、(b)1 時相における左 心房と左心室の3次元 STL(standard triangulated language)モデルを作成し、(c)4 面体の計算格子をあてはめた左心房計算モデルを作成した。

45

図4. 左心房形状変化の推定のための X'Y'座標系の設定: (a) 256×256 matrix の MRI 画像において左上位置を原点にとった XY 座標系を想定し、phase 1 、phase 2 における僧帽弁の位置をそれぞれ(X, Y) = (x_{m1}, y_{m1})、(X, Y)=(x_{m2}, y_{m2})とする。次に 回転角度 θ 傾き、Y'軸を僧帽弁輪の動く方向と平行にとり、位置変化が小さい(X, Y) = (x_{org}, y_{org})を原点とした X'Y'座標系に変換する。(b) 僧帽弁輪の位置を結んだ線の中点 に原点を置き、ある時相における位置を (x_{m1}', y_{m1}') とすると、次の時相における 位置は (x_{m2}', y_{m2}') で表わせる。

図5. MRI 画像における僧帽弁輪位置の定義:僧帽弁輪位置は僧帽弁の動く方向を 設定軸として、左右対称の位置にあると仮定した。

図6. 各スライスにおける僧帽弁輪の位置変化:12 断面の MRI 画像の中で、僧帽 弁が含まれる断面は slice 5、6、7、8 であった。各断面 20 時相において、手作業に て僧帽弁輪位置を確認し、それぞれの XY 座標系における位置を示す。

図7. 左心房入口部肺静脈圧、左心房出口部僧帽弁開放時圧の設定:左心房入口部 肺静脈圧は10mmHgに固定し、左心房出口部僧帽弁での圧は閉鎖および開放の2つ の相を与え、開放時は0~8mmHgとした。

図8. 左心房の経時的体積変化と各時相における入口部・出口部の圧条件:縦軸に 左心房体積、横軸に時間をとる。time step 100 を僧帽弁閉鎖とし、time step 1~100 が拡張期、time step 101~200 が収縮期に相当する。拡張期、収縮期の入口部圧は全 て 10mmHg であるが、拡張期出口圧は 0~8mmHg とし、収縮期出口条件は閉鎖と

46

した。

図9. 肺静脈血流計測位置:4腔像に近い断面での撮影を行い、左心房へ向かう方向を正の向きとした。黒枠(X = 124 ~ 130 pixel、Y = 128 ~ 132 pixel)の範囲における血流速度を抽出し、平均速度、速度標準偏差、最大速度を算出した。

図10. 正面から胸背方向に見たシミュレーションにおける左心房の経時的な形状変化 (phase 1、phase 5、phase 10、phase 15)

図11. シミュレーションから得られる左心房(LA)体積の経時的変化:横軸に時間 (phase)、縦軸に左心房体積をとる。

図12. 撮影画像と計算モデルとの左心房輪郭の比較:モデル作成に用いた左心房の 断層画像を示す。計算モデルにて推定した左心房輪郭を黄色線で示す。矢印の部分は 左下肺静脈付近を示し、実形状と計算モデルに差を認める。

図13. 3 次元左心房内渦流の平面投影像:前後方向、頭尾方向、左右方向からみた 左心室収縮初期における左心房内渦流と前後方向からみた左心室拡張期における左 心房内渦流を示す。左心室収縮期は130 time step、左心室拡張期は30 time stepの データを示す。time step 100 を僧帽弁閉鎖とし、time step 1~100 が拡張期、time step 101~200 が収縮期に相当する。

図14. MRI による phase contrast 法(PC 法) での血流速度計測: (a) 計測断面にお ける解剖学的位置関係を示す。断面は左心房、左心室、左下及び右上肺静脈を含む。 (b)-(c) 計測断面おける血流速度ベクトルを表示する。速度ベクトルは3方向成分を 合成した後、計測断面に投影した。矢印の長さは速度の絶対値を示し、向きは面上の 方向を示す。

図15. 経時的な壁せん断応力変化:数値シミュレーションによる壁せん断応力分布 図を示す。体正面から前後(胸背)方向へみた像である。

図16. 壁せん断応力の RMS (root mean square)値分布図:赤は高い RMS 値を示し、 青は低い RMS 値を示す。

図17. シミュレーションによる、左下肺静脈の左心房付着部位における左心房方向 への肺静脈血流速度変化:横軸に時相を取り、縦軸に肺静脈血流速度を示す。横軸 time step 0~100 は拡張期、time step 101~200 は収縮期に相当し、time step 100 に僧 帽弁は閉鎖する。入口圧は 10mmHg に固定の上、出口圧を 0~8mmHg に変化させ たそれぞれのシミュレーション結果を示す。

図18. PC 法で計測した左下肺静脈血流速度変化:4 腔像に近い断面での撮影を行い、 左心房へ向かう方向を正の向きとした。X=124 ~ 130 pixel、Y=128 ~ 132 pixel の範囲における速度を抽出し、平均速度、標準偏差、最大速度を算出した。

図19. シミュレーションによる左室流入血流速度変化:横軸に時相、縦軸に僧帽弁 を通過する血流速度を示す。横軸 time step 0~100 は拡張期(僧帽弁開放期)、time step 101~200 は収縮期(僧帽弁閉鎖期)に相当し、time step 100 に僧帽弁は閉鎖す る。拡張期における2つ目の山は左心房収縮期に相当する。入口圧は10mmHgに固 定の上、出口圧を0~8mmHgに変化させたそれぞれのシミュレーション結果を示す。 図20. 心エコーで計測した左室流入血流波形:左心室流入血流の計測位置を、左心 室側の僧帽弁尖接合部付近に置いた。早期流入波(E波)は0.82 m/s、心房収縮波は 0.52 m/s であった。

図21. 正常心で観察された左心房内渦流 (oblique coronal view):断面は、左上肺静脈、右上肺静脈、左心房、左心室を含む。左心房内に形成される渦流は、いずれも 左心室拡張期中期(a)と収縮期初期(僧帽弁閉鎖後)(b)に認めた。特に左心室収縮期 初期に認める心房内渦流は拡張期に形成される渦より大きく、渦の中心は左心房の中 央付近に位置していた。

図22. 再検査にて観察された左心房内渦流(oblique two-chamber view): 図 23(b) 右図症例に対し装置を変えて再検査を行った。断面は、左心房、左心室を含む。僧帽 弁閉鎖直後の左心房内渦流を示す。

図23. 血流速度標準偏差分布図: 左心房及び左心室における血流速度標準偏差分布 を示す。赤は標準偏差が大きいところを示し、緑は小さいところを示す。渦流観察可 能群では左心房内における速度標準偏差は小さいが、観察不能群では速度標準偏差大 きい領域が優勢であった。両群ともに左心室内の流入部領域の標準偏差は大きかった。 図24. 血流速度標準偏差分布図(再検査):図23(b)右図症例に対し装置を変えて再 検査を行った。左心房及び左心室における血流速度標準偏差分布を示す。赤は標準偏 差が大きいところを示し、緑は小さいところを示す。左心房内における速度標準偏差 が小さかった。左心室内で僧帽弁に近い流入部での速度標準偏差は他の領域と比べて 相対的に大きかった。

図25. 心エコーで計測された正常心における経時的な(a)肺静脈血流速度、(b)左心 室流入血流速度[14]:横軸に時相、縦軸に血流速度を示す。D(肺静脈拡張期波)、 S(肺静脈収縮期波)、AR(心房逆流波)、E(左室拡張早期流入波)、A(心房収縮波) 図26. シミュレーションモデルにおける右上肺静脈の血流速度:横軸に時相を取り、 縦軸に肺静脈血流速度を示す。横軸 time step 0~100 は拡張期、time step 101~200 は収縮期に相当し、time step 100 に僧帽弁は閉鎖する。入口圧は 10mmHg に固定の 上、出口圧を 0~8mmHg に変化させたそれぞれのシミュレーション結果を示す。 図27. Kilner らによる左心房内血流線図[3]:左右上下の肺静脈からの流入血流を 矢印で示す。(a) 左心室収縮期における左心房内血流(冠状断)を示し、流線は非対 称性に旋回しながら僧帽弁へ向かう。(b) 左室拡張初期における左心房内血流(冠状 断)を示し、肺静脈からの血流は僧帽弁を通過し、左室へ直接流入する。RPA:右肺 動脈、LA: 左心房、MV: 僧帽弁

50

正常例

肥大型心筋症例

図2-(a) [Fyrenius, Heart 86: 448-455, 2001 許可を得て転載]

図2-(b) [Fyrenius, Heart 86: 448-455, 2001 許可を得て転載]

(a) XY 座標系

(b) X'Y'座標系

僧帽弁 開放時出口圧;0~8mmHg (0 – 100 time step)

図 8

(a) phase 1

(c) phase 10

(d) phasse 15

図 10

図 11

(b) phase 5

(c) phase 10

上下(頭尾)方向(左心室収縮初期) 左右方向(左心室収縮初期)

前後(胸背)方向(左心室収縮初期) 前後(胸背)方向(左心室拡張初期)

Four-Chamber View に近い断面で撮影

図 14-(a)

phase 4

図 14**-(b)**

phase 5

図 14-(c)

図 15

図 17

図 18

シミュレーションによる僧帽弁通過左室流入血流速度

図 20

エコーで計測した僧帽弁通過左室流入血流速度

(b) 左心室収縮期(僧帽弁閉鎖直後)

たと助き

左心室

SD [m/s]

上肺静脈

左心房

右心室

左上肺静脈

左心室

左上肺静脈

上肺静脈

左心房

(b)渦流観察不能群

図 25 [Pagel, Anesthesiology 98: 975-994, 2003 許可を得て転載] (一部改変)

シミュレーションによる右上肺静脈血流速度

(a) 左心室収縮期

(b) 左心室拡張初期

表説明

表 1 左心房モデル 被験者一般プロファイル 表 2 左心房モデル 心エコープロファイル 表 3 計算方法 表 4 正常心 被験者プロファイル 表 5 僧帽弁左心房出口圧による心拍出量の変化

表 1 左心房モデル 被験者一般プロファイル

項目	計測値
年齢(年)	23
身長 (cm)	163
体重 (Kg)	63
血圧 (mmHg)	121/68
脈拍(拍/分)	91(洞調律)

表 2 左心房モデル 心エコープロファイル

項目	計測値
LVDd (mm)	37
LVDs (mm)	25
EF (%)	60
IVS (mm)	7
PW (mm)	10
LAD-long axis (mm)	31
LAD-4ch* (mm)	33 x 34
E/A	1.58
DT (msec)	168
E/E'	4.10

*4ch: four-chamber view

表 3 計算方法

	SIMPLE 法
対流項離散化	一次精度風上差分
圧力補間法	Standard
勾配・微分計算法	Green-Gauss Node Based
連立方程式解法	ガウス・ザイデル緩和法

表 4 正常心 被験者プロファイル

項目	平均	標準偏差
年齢(才)	31(24-36)	5.2
心拍(拍/分)	77	11
左心房径 (mm)	31	2.2
E/A	1.38	0.17
DT (msec)	195	22
E/E'	5.1	2.1

表 5 僧帽弁左心房出口圧による心拍出量の変化

僧帽弁左心房出口圧(mmHg)	心拍出量(l/min)
0	6.04
2	5.48
4	4.84
6	4.08
8	3.07

謝辞

本研究をまとめるにあたり、終始暖かいご指導を賜りました東北大学加齢医学研 究所病態計測制御分野 山家智之教授に深甚なる謝意を表します。また論文の作成に 際し、適切なご指導とご討論を賜った、東北大学大学院医学系研究科心臓血管外科分 野 田林晄一教授、同量子診断学分野 高橋昭喜教授ならびに高瀬圭助教、東北大学 加齢医学研究所機能画像医学分野 福田寛教授、宮城県立循環器・呼吸器病センター 放射線科 伊藤久雄先生に深く感謝致します。本研究の流体研究分野に関するご指導 を賜りました東北大学流体科学研究所超実時間医療工学研究分野 早瀬敏幸教授に も心より感謝の意を表します。本研究の共同研究者である特許庁職員 菅家裕輔氏 (元 東北大学流体科学研究所超実時間医療工学研究分野 博士課程前期学生)には 有益な御助言と研究のサポートをいただき深く感謝いたします。また臨床における循 環に関し助言をいただきました東北大学医工学研究科医用イメージング研究分野 西條芳文教授および東北大学加齢医学研究所病態計測制御分野 白石泰之助教には 篤く感謝の意を表します。本研究のデータ収集においては東芝メディカルシステムズ 株式会社 清水誓子氏、宮城県立循環器・呼吸器病センター放射線部 前沢裕道氏、 同 小野寺保氏には多大なご助力を頂き深く感謝いたします。本研究を遂行するにあ たり、臨床面でのご指導を賜りました宮城県立循環器・呼吸器病センター循環器科 大沢上先生、三引義明先生、渡邉誠先生、住吉剛忠先生、菊田寿先生に深く感謝いた します。また東北厚生年金病院循環器科 山口済先生には MRI の使用に関しマネー

81

ジメントと実験計画への助言をいただき篤く感謝の意を表します。快く図の転載許可 をいただきました Nature Publishing Group 社、BMJ Publishing Group 社、Paul Pagel 博士には感謝申し上げます。事務面での協力をいただきました東北大学加齢医 学研究所病態計測制御分野秘書 大崎麻衣子氏をはじめ研究への助言をいただきま した教室員のみなさまにも重ねて御礼申し上げます。