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                       Abstract 

       In order to elucidate the seasonal and interannual variations of oceanic CO2 

uptake in the Greenland Sea and the Barents Sea,  pCO2'' was measured between 1992 

and 2001. Monthly relationships between  pCO2s" and SST were derived, and then 

 pCO2s" and air-sea CO2 flux were calculated for the two seas using SST data from the 

NCEP/NCAR reanalysis. The  pCO2"a values were normalized to the year 1995 by 

assuming that  pCO2s" increased at the same growth rate (1.5  laatm  yr-1) as  pCO2air did 

for the period of 1992 to  2001. The annual net air-sea  CO2  flux for 1995 was evaluated 

to be 52 gC  m  2  yr-1 for the Greenland Sea and 46 gC  m-2  yr-1 for the Barents Sea. The 

CO2 flux into the ocean reached the maximum in winter and the minimum in summer. 

The seasonal variation of oceanic CO2 uptake was affected much stronger by wind 

speed and  ApCO2 than by sea ice coverage. The annual CO2 uptake by these seas  (70°-

80°N,  20°W-40°E) in 1995 was estimated to be 0.050 GtC  yr  '. 

       The interannual variation of the annual CO2 uptake was positively correlated 

with the North Atlantic Oscillation Index through wind speed and negatively with 

 ApCO2 and sea ice coverage. This study also indicated that wind speed and sea ice 

coverage play a major role for the interannual variation of oceanic CO2 uptake in this 

area, while  ApCO2 has a minor effect. 

       We also observed  pCO27, DIC, and  813C in the Southern Ocean during the 

summer from 2001 through 2003. The  pCO2sea values measured on the Umitaka-Maru 

cruise from January to February 2003 showed a negative correlation with SST. We 

derived the  pCO2s"—SST relationship based on the results from this cruise, and 

calculated  pCO2"' and air-sea CO2 flux in this ocean using the obtained relationship and 

the SST data from NCEP/NCAR reanalysis. The results showed that the  pCO2s" value 

was low  (<  345  [tatm) in the Australian side and high (>360  patm) in the Antarctic side.



The average oceanic CO2 uptake for the two months of January and February was 

estimated to be 0.012 GtC  month' for the Indian and western Pacific sectors  (110°-

150°E) and 0.14 GtC  month-' for the whole Southern Ocean. 

       It was found that the physical process is much more essential than the 

biological process for the CO2 uptake in the Southern Ocean even in summer, while the 

biological process is important in the Greenland Sea and the Barents Sea, by comparing 

the values of air-sea CO2 flux for the respective seas. 

       From the results obtained by multi-ship observations with 4 research vessels 

in the Southern Ocean in summer, we found that the values of  pCO2"a off the coast of 

the Antarctic Continent (66°S) varied temporally by 100  Ilatm for 5 months, mainly due 

to seawater upwelling from deep layers and biological activities limited by iron supply. 

The total  CO2 uptake by the ocean for 5 months amounted to 0.037 GtC  yr-1 for the 

western Pacific Sector  (140°-150°E) and 1.4 GtC  yr-1 for the whole Southern Ocean. We 

also found that nDIC decreased with time from December 2001 to March 2002 in the 

upper layer of 100-200 m, depending on latitude, due to biological activities during 

summer, while it increased temporally but slightly in the layer below 100-200 m due to 

re-mineralization of organic matter. 

       The increase rates of  pCO2"a for the area covered by this study, except for 

SSIZ, were estimated to be 1.5-2.2  matm  yr-1 by comparing the difference of  pCO2"a 

measured by 10-year JARE cruises, which is larger than that of  pCO2"a (1.4  ['atm  yr-1). 

For SSIZ, we estimated the  pCO2"a increase rate to be 2.6  Ratm  yr-1 based on our result 

of DIC increase rate of 1.2 mol  kg"  yr-1. A significant difference of  813C for 10 years 

was not detected.
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Chapter 1 

Introduction



        The terrestrial atmosphere contains many greenhouse gases such as carbon 

dioxide (CO2), methane and nitrous oxide, and CO2 is one of the most important 

greenhouse gases in maintaining and changing the climate. The atmospheric CO2 

concentration has been increased from 280 ppmv in pre-industrial era to about 375 

ppmv in 2003, due to fossil fuel combustion and deforestation, which was demonstrated 

by recent direct atmospheric measurements and analyses of ancient air occluded in polar 

ice cores (Barnola et al., 1987; Conway et al., 1994; Etheridge et  al., 1996; Keeling et al, 

1989, 1995; Nakazawa et al., 1993, 1997; Neftel et al., 1985; Kawamura et  al ., 2000; 

Ishidoya 2003). Therefore, it is crucial for predicting future possible climate change to 

understand the global carbon cycle, i.e. to quantify CO2 uptake and release by the 

oceans and the terrestrial biosphere. 

       The ocean is a major carbon reservoir on the Earth's surface, and it absorbs a 

certain amount of anthropogenic CO2 emitted into the atmosphere. The oceanic CO2 

uptake has been estimated using various methods such as measurements of atmospheric 

02/N2 ratio and carbon isotopic ratio of CO2 and model inversion analyses (Keeling and 

Shertz, 1992; Francey et al., 1995; Keeling et  al., 1995; Rayner et al., 1999; Le  Quer6 et 

 al., 2003), but there are still large uncertainties in their estimates. For example, Prentice 

et al. (2001) reported an average oceanic CO2 uptake of 1.9 GtC  yr-1 with uncertainty of 

0.7 GtC  yri for the 1990s, based on atmospheric  021N2 observations . However, 

Takahashi et al. (1997) reported that the global ocean as a whole is nearly in equilibrium 

with atmospheric CO2, but locally in disequilibrium by as much as 30%. They also 

suggested that high latitude oceans act as a CO2 sink, due to strong wind and lower 

partial CO2 pressure in the surface ocean  (pCO2"a) than in the atmosphere  (pCO2air). 

       It is considered that the vertical transport of carbon from the surface ocean to 

the deep layer plays a key role in oceanic carbon uptake. Once carbon is transported 

from the surface ocean to abyssal depths, either by physical or biological processes, it 
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can be effectively sequestered away from the atmosphere over 1000 years (Broeker and 

Peng, 1982). In this context, high latitude oceans, such as the Greenland Sea and the 

Southern Ocean, are thought to be an important sink for atmospheric CO2 (Anderson, 

1995; Noji et  al., 2000). In the central Greenland Sea gyre, the Greenland Sea Deep 

Water, which is source water that ventilates North Atlantic Deep Water, is formed 

(Aagaard et  al., 1985). 

       In the Greenland Sea gyre, Hood et al. (1999) evaluated an annual average 

 AfCO2  (CO2 fugacity difference between the atmosphere and the ocean) of 71  patm, 

based on 6-month measurements by CARIOCA drift buoys. They also estimated the 

oceanic CO2 uptake to be 2.4-4.2 x  10-3 GtC  yr' for the Greenland Sea gyre (74°-76°N, 

10°W-5°E; 0.15 x 106 km2) during the period from August 1996 to July 1997. Skjelvan 

et al. (1999) derived the CO2 uptake of 1.2 0.15 x  10' GtC  yr' for the Greenland Sea 

(0.81 x  106 km2) and the Norwegian Sea (1.39 x 106  km2), based on their observed data 

from the regions of 74.5°-75.5°N and 5°W-3°E (25.6 x  103 km2) and 64.5°-70.5°N and 

 7°W-5°E (33.8 x  103 km2) during the  1996-1997 period. By analyzing the  fCO2sea values 

measured during 9 cruises between 1982 and 1998, Olsen et  al. (2003) reported the CO2 

uptake of 8.2 x  102 GtC  yr-I for the northern North Atlantic (45°-80°N) in the 

wintertime (October to March), with interannual variability of about 7 % due mostly 

to changes in wind speed and  X02air. 

       The formation of intermediate/deep water also occurs in the Barents Sea 

(Kaltin et  al., 2002). High dense water is formed on the shelf of the Barents Sea by 

surface cooling and brine rejection due to sea ice formation, and then penetrates into the 

intermediate/deep layers in the Arctic Ocean.  Schlosser et al. (1990) pointed out that 

atmospheric CO2 absorbed by the Barents Sea would be stored in the Arctic Ocean for 

more than 100 years. Based on measurements of the total dissolved inorganic carbon, 

total alkalinity, temperature, salinity, and nitrate in the water column, Kaltin et  al. 

                          3



(2002) calculated the oceanic  CO, uptake to be 29 ± 11 gC  rn-2 for 3 months starting 

from the late winter of 1999. 

       The Southern Ocean is also considered to be an important region for the 

anthropogenic CO2 uptake, mainly due to its large area and high wind speeds (Sabine 

and Key, 1998), although biological activities are rather limited by lower iron supply 

(Martin et  al., 1990). However, there are large differences among oceanic  CO, uptake 

estimated by previous studies. For example, Takahashi et al. (2002) estimated the 

Southern Ocean CO2 uptake to be 0.6 GtC  yr-1 based on global measurements of  ApCO3, 

while Rayner et al. (1999) found to be about 0 .1 GtC  yr-1 using their atmospheric 

inverse model. 

       Recently, another importance about carbon cycle in the Southern Ocean was 

pointed out. Orr et  al. (2005) reported that Southern Ocean surface waters would begin 

to become under-saturated with respect to aragonite, a metastable form of calcium 

carbonate  (CaCO3), by the year 2050 due to acidification of seawater caused by taking 

up  CO2, and that this undersaturation could extend throughout the entire Southern 

Ocean and into the sub-arctic Pacific Ocean by 2100. Therefore, it is important, not only 

for quantifying the oceanic  CO2 uptake but also for predicting the influence of absorbed 

CO2 on marine biological activities, to examine temporal and spatial variations of 

carbon system in the Southern Ocean. 

       The purpose of this thesis is to collect data of  pCO2"a and its relevant factors 

extensively and discuss temporal/spatial variations of carbonate system in the northern 

and southern polar oceans based on those data. For this purpose, we measured  pCO2s" 

in the Greenland Sea and the Barents Sea for the period 1992-2001, calculated the air-

sea  CO, flux, and examined seasonal/interannual variations of the oceanic  CO, uptake 

in terms of CO2 partial pressure difference between the ocean and the atmosphere 
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 (ApCO3 =  pCO2"a-  pCO2"T), sea surface temperature (SST), wind speed and sea ice area 

to show what controls the air-sea  CO, flux in the northern polar oceans. The results will 

be presented and discussed in detail in Chapter 3, after describing our experimental 

procedures employed in Chapter 2. 

       In addition to measurements in the Greenland Sea and the Barents Sea, we 

also acquired the  pCO2"a data on the Umitaka-Maru cruise in the Indian  (110°-140°E) 

and western Pacific  (140°-150°E) sectors of the Southern Ocean from January to 

February 2003. The collection of  pCO2"a, Dissolved Inorganic Carbon (DIC) and its 

 8'3C data were further made on the Aurora Australis, Hakuho-Maru, Tangaroa and 

Shirase cruises in the western Pacific sector (140°-150°E) in 2001 and 2002. Based on 

these measurements, we derived spatial variations of  pCO2"a and air-sea  CO, flux, as 

well as summertime variation of carbon system, for the Southern Ocean. The 

examination was also made on temporal variations of  pCO2s", DIC and its  813C in this 

ocean, using their data from previous studies (Hashida, 1993; Ishii et  al., 1998). 

Furthermore, we compared the air-sea  CO, flux for the Southern Ocean with those for 

the Greenland Sea and the Barents Sea, to characterize the  CO, uptake by the northern 

and southern polar oceans. The results and discussion will be presented in Chapter 4.
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            Chapter 2 

Sample Collection and Analytical Procedures



    In order to elucidate spatial and temporal variations of partial  CO, pressure in the 

surface sea  (pCO2s"), air-sea CO, flux, dissolved inorganic carbon (DIC) and its carbon 

isotopic ratio  (d13C) in northern and southern polar oceans, we collected sea water 

samples and air samples equilibrated with surface seawater on board research vessels in 

the Greenland Sea, the Barents Sea and the Southern Ocean.  In this section, we describe 

our experimental and analytical procedures employed for these components.

2.1 Measurement and calculation of  pCO2"a and estimation of 

CO2 flux 

2.1.1 Measurements of  pCO2sea in the Greenland Sea and the Barents Sea

air-sea

    Comprehensive measurements of  pCO2"a and its relevant factors were made on 9 

cruises in the eastern Greenland Sea and the western Barents Sea during the period 

August 1992-April 2001, as outlined in Table 2-1. Hydrographic stations for the  pCO25" 

measurements, major current system (Furevik, 2001), and  minimum/maximum sea ice 

areas found from the NCEP/NCAR reanalysis data (Kalnay et al., 1996) in both seas are 

depicted in Fig. 2-1. There are two branches of the warm Norwegian Atlantic Current 

that flow northward off the Norwegian coast; one is the West Spitsbergen Current and 

the other is the branch that enters the Barents Sea (Furevik, 2001; Kaltin et al., 2002). 

The cold Eastern Greenland Current flows southward along the Greenland coastline. 

 In these measurements, the  pCO2"a values were obtained using a discrete flask 

sampling with subsequent laboratory analysis. A schematic diagram of our sampling 

system for air equilibrated with seawater is given in Fig. 2-2. The system consists of a 

shower-head type equilibrator, a diaphragm pump, a chemical desiccant column 

 (Mg(C104)2), a four-way valve, and a stainless flask (1 L) with two stopcocks at both
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ends (Watai et al., 1998). Seawater introduced into the equilibrator was vented to the 

atmosphere so that air samples were collected at ambient pressures. All the flasks were 

evacuated at 1.3 x  10-5 Pa at 120 °C for 24 hours in our laboratory before shipping, and 

each flask was thoroughly flushed by uncontaminated air aboard ship before sampling. 

After connecting the flask to the sampling system, the air was circulated at a flow rate 

of 0.5 L  min' for 15 minutes to ensure equilibrium in  CO, between seawater and air 

(Watai et al., 1998), and then collected in the flask. 

    From August 1992 to January 1999, seawater was taken 3-5 m below the surface 

using a submersible pump (> 100 L  min"), and part of it (12 L  min") was diverted into 

the equilibrator. It was found that the temperature of seawater in the equilibrator agreed 

well with SST to within ± 0.1 °C. During November 1999-April 2001, uncontaminated 

seawater was taken from the sea-chest of the vessel, and it was observed that the 

temperature of seawater in the equilibrator was higher than SST by 0.55 °C in 

November 1999 and 0.82 °C in April 2001. In October 2000, we did not measure the 

seawater temperature rise in the equilibrator. Therefore, the average of the two values 

for November 1999 and April 2001 (0.68 °C) was taken to be the rise in seawater 

temperature from the inlet to the equilibrator. The uncertainty in the temperature rise 

was considered to be 0.14 °C in October 2000, but this does not affect the results of the 

present study (see Chapter 3). 

    All the flasks filled with air samples were sent to our laboratory, and their  CO, 

concentrations were determined against our air-based  CO, standard gases with a 

precision of 0.5 ppmv within 3 months of sampling using a gas-chromatograph 

equipped with a flamed ionization detector and a converter of  CO, to CH4 (Watai et al., 

1998). The  CO, concentrations of our standard gases are traceable to the WMO 

standards (Tanaka et  al., 1987;  htt  ://  arison). We

also confirmed that the  CO, concentrations of air samples stored in our flasks were
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stable to within ± 0.1  ppmv for 3 months (Nakazawa et al., 1997). 

 2.1.2 Measurements  pCO2sea and  pCO2air in the Southern Ocean 

       Observations of  pCO2"a  and  pCO2alr (atmospheric CO2 partial pressure) were 

made from October 2001 to March 2002 in the western Pacific sector (140°-150°E) 

using  WV Aurora Australis belonging to the Australian Commonwealth Scientific and 

Research Organization (CSIRO),  R/V Hakuho-Maru belonging to the University of 

Tokyo,  R/V Tangaroa chartered by the National Institute of Polar Research, icebreaker 

"Shira se" belonging to the NIPR. In 2003,  pCO2s" measurements were made between 

the Indian  (110°-140°E) and western Pacific (140°-150°E) sectors of the Southern Ocean, 

using R/V Umitaka-Maru belonging to Tokyo University of Marine Science and 

Technology. The observations by these ships are summarized in Table 2-2. The tracks of 

the 2001-02 and 2003 cruises and the locations of fronts in the Southern Ocean 

determined according to Chaigneau and Morrow (2002) to be described in Chapter 4 are 

depicted in Figs. 2-3 and 2-4. 

        On these cruises,  pCO2s" was continuously measured. The measurement 

system used is similar to that shown in Fig. 2-2, except that part of a four-way valve, the 

sampling flask and their relevant tubing was replaced with a non-dispersive infrared 

(NDIR) CO2 analyzer and a gas-handling system for CO2 standard gases and air 

equilibrated with seawater. The gas-handling system was also equipped with a tubing to 

measure the atmospheric CO2 concentration. The CO2 standard gases were introduced 

into the NDIR analyzer every 1 hour for calibrating its output relative to the CO2 

concentration. 

       Uncontaminated seawater was taken from the sea-chest of the vessel and 

introduced into the equilibrator at approximately 10 L min'. It was found that the 
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temperature of seawater in the equilibrator was higher than SST, which is similar to the 

measurements in the Greenland Sea and the Barents Sea . The temperature rises 

measured on these cruises are shown in Table 2-3 . 

        In situ measurements of  pCO2air were also carried out using the above-

mentioned system, except for the Umitaka-Maru cruise . To calculate air-sea CO2 flux 

for the Umitaka-Maru cruise , we used the atmospheric CO2 concentration data at Syowa 

Station (69°S, 39°E). 

2.1.3 Calculation of  pCO2 and air-sea CO2 flux 

       The values of  pCO2"a  and  pCO2a'r were calculated by the equation, 

 pCO2 =  _xCO2 x (P  p(1-120)).  (2-1) 

Here, xCO2 is the measured CO, concentration of dry air equilibrated with seawater or 

that of ambient dry air, P is the barometric pressure, and p(H20) is the saturated vapor 

pressure. As mentioned above, the temperature rise of seawater between its inlet and the 

equilibrator was observed on three cruises after 1999 in the Greenland Sea and the 

Barents Sea , as well as on all cruises in the Southern Ocean . The effect of temperature 

rise on the measured value of  pCO2 was corrected using the iso-chemical temperature 

dependence of  pCO2 given by Takahashi et al. (1993), 

 oln(pCO2) 
  = 4.23  (%°  C-1)  . (2-2) 

 OT 

    The CO2 flux  (f) between the air and the sea is conventionally given by the 

product of the gas transfer velocity  Kc02 as a function of wind speed (Wanninkhof, 

1992; Wanninkhof and  McGills, 1999), the solubility of  CO213 (Weiss , 1974), and the 

partial pressure difference  ApCO2; 

          f =  icc02air                  - .13 • (pCO2 -  pCO2')=  Kco  2  •  .13  •  ApCO2 = E  •  ApCO2. (2-3) 
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Here, E represents the gas transfer coefficient , which is usually assumed to be 

independent of SST, since  K(02  and  /3 counteract their temperature dependence (Tans et 

 al  .  , 1990).

2.2 Measurements of DIC and  813C 

2.2.1 Collection of seawater sample 

       In the Southern Ocean, seawater samples were collected from the deep layer 

to the surface by using a Niskin bottle, and then each sample was filled into a 100 ml 

vial for analyses of DIC and its  813C. A small amount (0.03 g) of mercury (II) chloride 

 (HgC12) was added to the samples to kill plankton contained in the samples, by which 

the influence by plankton activities during sample storage can be avoided . The seawater 

samples collected were kept under cool and dark conditions until they were analyzed for 

DIC and its  813C. The samples were sent to Meteorological Research Institute , Japan 

and CSIRO, Australia, and then analyzed for DIC by using a coulometer. Some samples 

were also sent to Tohoku University for a mass spectrometer analysis of  813C in DIC . 

2.2.2 DIC Analyses 

       DIC in the seawater sample was analyzed using a carbon coulometer (UIC 

Co., Ltd., model 5011 or 5012) (Ishii et al., 1998) and its improved model (Nippon ANS 

Co.). The analysis system of DIC used comprises a CO2 extraction unit, a  coulometer, a 

standard gas injector and a control unit (Fig. 2-5). The extraction unit is used to extract 

CO2 from seawater sample by mixing it with phosphoric acid, as well as to transfer the 
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extracted  CO2 to the  coulometer. The standard gas injector carries the CO2/N2 standard 

gases to the coulometer to watch whether the analyzer operates normally. The control 

unit manages analytical procedures of DIC and data storage. CO2 gas transferred by N2 

carrier gas from the extraction unit to the coulometer is absorbed by cathode solution in 

an electrolysis cell and titrated coulometrically. The coulometer used is as follows. 

       The electrolysis cell was separated by ceramic so that chemical reaction 

between the cathode and anode sides proceeds gently. The electrolysis cell on the 

cathode side was filled by the cathode solution after the magnetic stirrer was injected 

and then attached with a platinum electrode. The cathode solution was a mixture of 

dimethyl sulfoxide, water, mono-ethanolamine and tymolphthalein. The electrolysis cell 

on the anode side was filled by the anode solution saturated with potassium iodide and 

then attached with a silver electrode. When CO2 extracted from seawater is introduced 

into the cathode side by N2 carrier gas, the respective reactions occur on the cathode and 

anode sides:

       Cathode side: CO2 + HO(CH2)2NH2  HO(CH2)2NHCOOH 

 2H20 +  2e-  ---> H2(g) +  20H-

          HO(CH2)2NHCOOH +  OH-  HO(CH2)2NHC00- +  H2O 

        Anode side: Ag°(s)  Ag+ +  e-

                     2Ag+ +  41  -->  2AgI2- 

These reactions are rewritten as:

(2-4) 

(2-5) 

(2-6) 

(2-7) 

(2-8)

  Ag°  +  21  + CO2 + HOCH2CH2NH2  AgI2- +  1  /2H2 + HO(CH2)  2NHCOO- (2-9) 

Therefore, electron equivalent to CO2 participating in this reaction flows between the 
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electrodes. The total amount of  CO, is calculated by counting electrical quantity .

2.2.3 Mass Spectrometer Analyses of  813C

 8'3C in DIC was determined by analyzing CO2 gas extracted from seawater 

sample. Our  CO, extraction system consists of a Pyrex glass flask in which sample 

seawater is reacted with phosphoric acid (H3PO4),  H2O trap at about -100°C and two 

 H20/CO2 traps  at  -197°C, a sample tube and a rotary pump . A schematic diagram of the 

system is shown in Fig. 2-6. The traps were made of Pyrex glass and contained many 

thin glass tubes to trap  CO, or  H2O effectively . 

The CO2 extraction procedures were as follows . Firstly, water sample and H3PO4 of 

about 5 ml were introduced into the evacuated glass flask , and mixed well using a 

magnetic stirrer. Then,  CO, gas released was transported from the reaction flask to the 

traps by evacuating the whole system by the rotary pump .  CO2 collected in the trap was 

sublimated by increasing its temperature to about -100°C and transferred to the sample 

tube cooled at —197°C by liquid nitrogen. After completing the collection of CO, gas , 

the sample tube was flamed off. 

A mass spectrometer used in this study was a Finnigan  MAT-8S , which consists of an 

inlet system for sample and standard, an analyzer system and a signal and data 

processing system. The inlet system is shown in Fig. 2-7. This system comprises two 

separate inlets for sample and standard gases, of which structures are designed to be the 

same to allow an alternative introduction of the two gases into the analyzer under the 

same condition. Each inlet has a variable volume for reserving the gas to be analyzed 

and an inlet capillary with an inner diameter of 0.5  mm connected to the analyzer. The 

inlet for the sample has also a tube cracker in which sample tube is broken to introduce 

 CO, into the analyzer. To minimize an influence of non-linear response of the pre-
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amplifiers of the detectors, ion beam intensities for the sample and standard have to be 

identical. This can  be attained by adjusting the pressure in the respective variable 

volumes, of which the volume is adjustable within a range from about 3.5 to 40 ml. 

       The analyzer system is evacuated with a turbo molecular pump till the 

pressure is about 5 x  106 Pa. The introduced  CO, sample is first fed to ionization 

chamber in the analyzer system. The ions leave from the ionization chamber through 

some lenses and enter into the magnetic sector field. After deflected by the magnetic 

field, the ions are caught by Faraday cup collectors suitably placed for each mass and 

are converted to ion current proportional to numbers of the ions arrived there. Our 

MAT-OS has 6 collectors, but three collectors of them were employed to obtain the ion 

current for mass 44, 45 and 46 of  CO2, so that values of  845 and 046 of the sample against 

the standard are calculated. The definitions of  e and  846 are: 

             R45 ) 
 645  =

R5sa, (2-10)  st 

 R46  646  = (2-11) 
 R46 

 st 

where R denotes the ion current ratios of mass 45 or 46 against that of mass 44 and 

subscripts  `sa' and  'sr denote the sample and standard, respectively. Values of 013C and 

0180 of a CO2 sample are calculated from the  measured  b45 and 046 by using the formulas 

described in Morimoto (1993). 

       Analytical procedures of CO2 samples were as follows. The sample tube, in 

which the extracted CO2 was sealed, was cleaned using ethanol and put into the tube 

cracker mad of Pylex grass. The tube cracker was connected to the inlet system by an 

air-tight coupler with 0-rings, and the inlet system including the tube cracker was 

evacuated using a rotary pump first and then a turbo molecular pump for 8 minutes. 

After evacuation, the sample tube was cracked and the released CO2 was introduced into 
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the variable volume for sample. After this, the procedures proceeded automatically by 

control of the personal computer. The ion beam was focused again by tuning the 

accelerating voltage finely. Then, the respective ion currents for mass 44 , 45 and 46 of 

the standard and sample were measured 8 times alternately and the measured values 

were averaged to obtain the  845 and  846 values . Outliers of the measurements, which 

were defined as those lying more than 2 standard deviations from the respective average 

value, were excluded. It took about 12 minutes to analyze one CO2 sample . Precisions 

of our  MAT-8S were estimated to be  ± 0.02 and ±  0.05%0 for  813C and  0180, respectively 

(Morimoto 1993). Our laboratory standards of isotope analysis of CO2 are pure CO2 

gases prepare by reacting NBC-18  (813C  of  -5.03%0 and  8180  of  -23.04%c relative to V-

PDB) and NBS-19  (813C of  +1.95%0 and  8180 of  -2.2%0 relative to V-PDB) with 100% 

phosphoric acid at  25°C.
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Table 2-1. Summary of cruises in the Greenland Sea and the Barents Sea for the  1992-

2001 period

Year Month Cruise Name  Vessel Name Observed Territory Sampling Method

1992 Aug. Lance  75°-79°N  11°W-9°E Anchor

1993 Aug. Lance  74°-79°N  13°W-9°E Anchor

1994 April-May Polar Ship  70°-75°N  18'W-10°W  Anchor

1995 June ICE BAR Lance  74°-78°N  19°E-35°E Anchor

1996  July-Aug. ICE BAR Lance  74°-81°N  17°E-35°E Anchor

1999  Jan.-Feb. / VEINS Ian Petrov/Lance  70°-80°N  0°-30°E Anchor

1999 Nov. VEINS Lance  7P-80°N  11°E-20°E Underway

2000 October Lance  71°-78°N  13°E-19°E Underway

2001  April CONVECTION Lance  71°-77°N  11°W-19°E Underway
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Table 2-2. Summary of cruises 

Ocean for the 2001-2003 period

for  pCO2"a measurements in the Southern

Year Month Cruise Name Vessel Name Observed Territory

2001  Oct.-Dec. Aurora Australis  44°-67°S  140°-147°E

2002 Jan.  KH-01-3 Hakuho-Maru  45°-65°S  140°-170°E

2002  Jan.-Feb. JARE43 Tangaroa  44'--66°S  140°-150°E

2002/2003 March JARE43 Shirase  47°-66°S  70°-150°E

2003 Jan.-Feb. Umitaka-Maru  20°-67°S  110°-147°E
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Table 2-3. Temperature rise occurred between the sea surface and the equilibrator for the 

respective cruises.

Year Vessel Name Temperature rise from SST (CC)

2001 Aurora  Australis 0.7

2002  Hakuho-Maru 0.4

2002 Tangaroa 0.9

 Temp(eq)*0.07-0.77  (Temp(eq)<11)
2002/2003 Shirase

0  (Temp(eq)>11)

2003 Umitaka-Maru 1.1

For the Shirase cruise, the temperature rise can be expressed as a function of 

temperature in the equilibrator.
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Fig. 2-1. Geographical locations where  pCO2sea measurements were made from 1992 
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                 Chapter 3 

Temporal and Spatial Variations of  pCO2sea and air-sea CO2 

    Flux in the Greenland Sea and the Barents Sea



    In order to understand temporal and spatial variations of  pCO25C' and air-sea  CO, 

flux in the Greenland Sea and the Barents Sea,  pCO2"3 was measured 9 times during the 

period 1992-2001. In this chapter, the results of  pCO25" obtained from these 

measurements, as well as the  air-sea  CO, fluxes calculated from the differences between 

measured values of  pCO2air and  pCO2"a, will be reported. Based on these results, the 

seasonal and interannual variations of  pCO„s" and air-sea  CO, flux will be discussed. 

The discussion will also be made for the relationship between North Atlantic Oscillation 

and oceanic  CO, anomaly.

3.1 Long-term trend of  pCO2sea and  pCO2". 

    The  pCO2"a values obtained in the western Greenland Sea in April 1994 and in the 

same month in 2001 were compared to determine the long-term trend. The comparison 

indicated a  pCO2"' increase of 28 ± 21  iaatm, on average, during that period. However, 

further detailed discussion of the long-term trend is beyond the scope of this paper 

because the spatial variability is too large and time series data are not available for that 

region. 

    Recent studies have revealed a secular increase of  pCO2,"a in the subtropics 

(Gruber et al., 2002; Keeling et al., 2004; Midorikawa et al., 2005) and even in the high 

latitudes, such as the Southern Ocean (Inoue and Ishii, 2005) and northern North 

Atlantic, where deep convection occurs in winter. In the Barents Sea, Omar et al. (2003) 

compared the  fCO2"a data taken in 1967 and in 2000-2001. They found that  jCO2s" has 

increased at a rate similar to the atmospheric  CO, increase over the past 33 years. By 

inspecting observational data from the northern North Atlantic, Olsen et al. (2003) 

found that the  pCO2"' has increased at a rate larger than that of the  pCO2th. Furthermore, 
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 Lefevre et al. (2004) reported that the  pCO2"a has increased at a rate of 1.8  tiatm  yr-i in 

recent decades, which is slightly higher than that of the  pCO2alr, in the North Atlantic 

(50°-70°N, 80°-10°W). 

     In this study, we simply assumed that the  pCO2' has increased at a rate equal to 

that observed for  pCO2air (Olsen et al., 2003; Omar et al., 2003). The  pCO2' values were 

derived from the atmospheric  CO2 concentration data at  Ny-Alesund (Morimoto et al., 

2001), which show an average increase rate of 1.5 ppmv  yr-1 for the 1992-2001 period. 

By assuming the increase rate to be 1.5  ttatm  yr' for  pCO2"a, we normalized all the 

observed data of  pCO2s" to the year 1995  (pCO295"a) to evaluate the  seasonal variation 

in the air-sea  CO, flux.

3.2  pCO25ea-SST relationships

    The data of  pCO2"a are unevenly distributed in space and time; thus, it is 

necessary to interpolate/extrapolate the observed  pCO2"a values to evaluate the annual 

CO2 uptake in the Greenland Sea and the Barents Sea. It is known that variations in 

 pCO2" are mainly due to changes in temperature, mixing of the upper ocean, and 

marine biological activities (Broecker and Peng, 1982). The  pCO2" variations are often 

apparently related to SST (e.g., Tans et  al., 1990; Inoue et al., 1995; Cosca et al., 2003). 

Seasonal variation in the relative contribution of those processes influencing  pCO2' 

leads to a different temperature dependence of  pCO2s". Therefore, we determined the 

apparent relationships between the  pCO2s" and SST for each month and combined them 

with the dataset of SST that is available throughout these seas. 

    Figure 3-1 shows the relationships between the  pCO295"a and SST for the 

Greenland Sea and the Barents Sea. The temperature dependence of  pCO2,95sea is 
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noticeably different for different seasons. 

    The  pCO295"a increases with increasing SST, except for May and June. The 

temperature dependence of  pCO2,95"a varied from 1 to 3  %°C-' from August to April. 

These temperature dependences deviate from that of the solubility (Eq. 2-2), which 

suggests the effect of the mixing of the upper ocean and biological activities against 

SST change. In May, when SST was lower than 1 °C, we found a negative correlation 

between  pCO295"a and SST. This relationship may be closely related to the biological 

CO2 uptake, which starts in the western area of the Greenland Sea at this time of the 

year (Skjelvan et al., 1999; Anderson et  al., 2000). In June, a higher  pCO2,95"a (>250 

 luatm) was observed when  SST  > 2 °C and  <  -1 °C, and a lower  pCO2,95"a (<200  luatm) 

was observed when SST was about 1 °C. A large temperature dependence of  pCO2 ,95"a 

was noted in July (6  VC). This might be caused by the CO2 drawdown close to the 

sea ice in the western Barents Sea (Fig. 3-2). Such a complicated  pCO2 _95sea-SST 

relationship also indicates that processes other than solubility, possibly biological 

activities (spring bloom), predominantly control the variation in  pCO295sca. Therefore, 

we tried to derive the  pCO2,95' values during the spring bloom using SST and 

chlorophyll-a data. However,  pCO295s" could not be approximated by these two 

parameters alone, as pointed out in the equatorial Pacific by Dandonneau (1995) earlier. 

To document the  pCO2"a distribution during the spring bloom, it is necessary to use 

variables that are directly related to the photosynthesis/respiration of phytoplankton, 

such as nitrate and phosphate (Wanninkhof et  al., 1996).

3.3 monthly  pCO2"a maps 

    In order to draw monthly maps  of  pCO295s" for the Greenland Sea and the Barents 
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Sea, we used  seasonally different  pCO2,95"a-SST relationships obtained by fitting the 

data given in Fig. 3-2 with, 

              pCO295'(i ) =  a(t) x SST + b(t),  (3-1) 

where a(t) is the slope and b(t) the intercept at a given time (month) t. In this procedure, 

since the  pCO2"a values observed at SST higher than 2  °C in June are fairly close to 

those for July, we included those data to derive the  pCO2.95"a-SST relationship for July. 

We also assumed that the negative relationship found in May is valid at SST lower than 

0.55 °C in June, and the positive relationship at SST higher than 0.55 °C in June/July is 

applicable to the same SST range in May. The temperature of 0.55 °C is the intersecting 

point of the two  pCO2,95"a-SST regression lines shown in Fig. 3-2(B). For January and 

February, the same positive  pCO295"a-SST relationship was used, considering active 

deep convection and low marine biological activities in this period of the year. 

Furthermore, under the assumption that the  pCO2 ,95"a-SST relationship varies smoothly 

with time, the slope and the intercept for March, September, and December with no 

observational data were deduced by interpolating linearly the results of contiguous 

months. The respective parameters obtained by fitting to Eq. 3-1 are summarized in 

Table 3-1. As shown in Fig. 3-3, the values of  pCO295"a calculated using Eq. 3-1 with 

the best-fit parameters agreed well with the observed  pCO295s" values with a standard 

deviation of ± 14  !xatm for the differences between the observed and calculated values. 

    To see the seasonal cycles of  pCO2,95' calculated by Eq. 3-1 and to examine 

whether they could reconstruct the actual features throughout the year, we compared the 

 pCO2,95' values by Eq. 3-1 and observational data taken in the present with those of 

earlier studies (Anderson et al., 2000; Hood et  al., 1999; Olsen et  al., 2003; Omar et al., 

2003; Takahashi et al., 2002; Weiss et  al., 1992) for two sites at 75°N, 0° in the central 

Greenland Sea and at 74°N, 17.5°E in the western Barents Sea (Fig. 3-4). The  pCO2 ,95"a 
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values calculated in this study are 15-30  patm higher than those observed by Weiss et al. 

(1992) in the Greenland Sea in July 1981 and in March 1982. However, if the  pCO2"a 

increased at the same rate as  pCO2air from 1981 to 1995, the calculated  pCO2 values 

agree well with the observed values within a range of —9 to 6  patm. This means that our 

assumption about the annual increase of  pCO2"a is generally reasonable. 

    The calculated  pCO2,95"a in the central Greenland Sea (Fig. 3-4 (A)) shows a 

seasonal variation of about 95  patm, with two maxima, one in April and another in 

November, and a minimum in June. Anderson et al. (2000) reported a seasonal variation 

of  fCO2sea with a maximum in November and a minimum in August. Furthermore, we 

compared our  pCO295"a values with those of Olsen et  al. (2003). Their equation gives 

the  pCO2"a values in the year 1995 and is applicable to the period from October to 

March. The values of  pCO2"a calculated by Olsen et  al. (2003) for the October-March 

period agree well with our results within a range of 3 to 14 patm, except for October. In 

October, a large difference of 32  patm was found between the  pCO2"a values of this 

study and those observed by  Olsen et  al.(2003).  ThefCO2"a values given by Hood et  al. 

(1999) and Anderson et al. (2000) are generally higher than our calculated values. On 

the other hand, the average values of  pCO2"a obtained by Takahashi et  al. (2002) for two 

sites (76°N, 2.5°W and 76°N, 2.5°E) are 15-25  patm lower than those of our results, 

showing a seasonal variation with high values in February/March and low values in 

July. 

    As seen in Fig. 3-4(B),  pCO2,95s" varied largely on a time scale of a few months in 

the western edge of the Barents Sea. The  pCO295s" showed a hump in July, which is 

caused by the large temperature dependence of  pCO295s" in June and July (Table 3-1). 

The  pCO295"a values calculated for March also agreed well with those obtained by 

Weiss et al. (1992), if their  pCO2"a values are shifted up by an amount equivalent to the 

rise in  pCO2air over the period in question. Omar et al. (2003) obtained a  pCO2"a value 
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for October that was slightly lower than our values , and the results by Olsen et  al. 

(2003) for the October-March period agree well with ours, except for October. In 

October, a large difference of 32  !iatm was also found between the  pCO2,95sea values and 

those observed by Olsen et al. (2003). The  pCO2s" values by Olsen et al . (2003) deviate 

largely from ours in the Greenland Sea and the Barents Sea in October , due to the 

difference in temperature dependence of  pCO2"a between both studies . 

    The average values of  pCO2"a given by Takahashi et al . (2002) for two sites (76°N, 

17.5°E and 72°N, 17.5°E) show a rapid increase from February to April , with a gradual 

monotonic decrease thereafter towards the minimum in autumn and winter; the seasonal 

evolution identified by Takahashi et  al. (2002) has a noticeably different temporal 

behavior than that in our results. 

    The  pCO295s" of the western Barents Sea is higher than that of the central 

Greenland Sea. However, the seasonal variation in the  pCO295"a of the western Barents 

Sea showed a different pattern from that of the central Greenland Sea (Figs . 3-4(A) and 

3-4(B)). These variations were caused by the monthly varying temperature dependence 

of the  pCO295"a and SST distribution. In the western Barents Sea, SST is about 2-3 °C 

higher than the SST in the central Greenland Sea throughout the year . 

    The monthly distributions of  pCO2,95"a for the Greenland Sea and the Barents Sea 

are presented in Fig. 3-5. The area of sea ice was at its minimum in August and at its 

maximum in January (Fig. 3-2). The warm West Spitsbergen Current and the cold 

Eastern Greenland Current produce the longitudinal characteristics of a  pCO295"a 

distribution that is high on the east side and low on the west side, reflecting mainly the 

temperature dependence of  pCO295"a. The current flowing northeastward in the Barents 

Sea originated from the Norwegian Atlantic Current (Fig . 3-2) shows relatively high 

 pCO2,95"a in comparison with the surrounding areas. 

    In May and June,  pCO2,95"a in the western Greenland Sea decreases to levels 
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lower than 250  luatm, depending on SST. In the spring of 1995, Skjelvan et al. (1999) 

found that the values  offCO2s" measured along 75°N were similar to the winter values 

in the eastern area of the Greenland Sea and that  X02"a decreased rapidly from about 

320 to 240  ttatm at 3°W due to the CO2 drawdown by biological activities in the 

western area. However, in the spring of 1997, they also found that the  X02' values in 

the western area were relatively constant (270-300  vatm) , probably due to unusually 

cold temperatures at that time (Chierici , personal communication).

3.4 Seasonal variation of the air-sea CO2 flux 

       Based on the monthly distributions of  pCO295"a given in Fig. 3-5 and  pCO2air 

at Ny-Alesund, the air-sea CO2 fluxes in the Greenland Sea and the Barents Sea were 

calculated for the respective months. To calculate the monthly averaged CO2 fluxes for 

the 1992-2001 period, we used the NCEP/NCAR reanalysis data (Kalnay et al ., 1996) 

for the SST, wind speed, atmospheric pressure , and sea ice distribution. Since the 

NCEP/NCAR reanalysis data are prepared for each grid of 1.875° by 1.904°, the air-sea 

CO2 fluxes were also obtained on the same spatial resolution . Therefore, the total  CO2 

flux in the whole area is  presented by the equation, 

                      F  =  E(Ei•  ApCO2.i  •  Si). (3-2) 
 =  0 

    Here, i represents the grid number, and S shows the sea area. In this calculation , 

we assumed that the CO2 exchange across the air-sea interface is thoroughly prevented 

by the sea ice. 

    The results are shown in Fig. 3-6. In general, the Greenland Sea and the Barents 

Sea are sinks for the atmospheric  CO2. The flux is small  (<  2 mol  M-2  yr-1) in the eastern 
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Greenland Sea because warm currents with small  ApCO2 are flowing in this region 

(Skjelvan et  al., 1999; Olsen et al., 2003). By contrast, larger  CO2 fluxes  (>  6 mol  rn-2yr-

1) are found in the north western area for the period of December to March, which is 

ascribed to strong winds (7-9 m  s-1) as well as to low  pCO2 ,95"a. In May and June, larger 

air-to-sea CO2 fluxes are  inferred in the areas where the negative  pCO295"a-SST 

relationship was applied to derive  pCO2,95"a. During the period from July to September, 

when the wind speed ranges between 3 and 6 m  s" , the CO, flux is reduced by 70 % 

compared with the wintertime value, even for the same  ApCO2. 

    The air-sea  CO, fluxes estimated for the Greenland Sea and the Barents Sea are 

summarized in Tables 3-2 and 3-3, respectively, along with those reported in earlier 

studies. Our result for the Greenland Sea (52 ± 20 gC  M-2  yr-1) agrees well with those of 

earlier studies. From the calculation of  ./UO2sea based on measurements of the total 

dissolved inorganic carbon, total alkalinity, temperature, salinity, and phosphorous 

concentrations in the central Greenland Sea (75°N,  0°) for the 1993-1997 period , 

Anderson et al. (2000) estimated the average annual  CO, flux to be 53 ± 4 gC  M-2  yr" . 

Hood et al. (1999) also reported a CO, flux of 55 gC  111-2  yr-1 for the last two years of the 

period, 1996 and 1997. On the other hand, Skjelvan et al. (1999) gave a somewhat 

larger  CO, flux of 71 gC  ni2  yr-1 for the 1993-1995 period . For the Barents Sea, we 

estimated the annual CO2 flux to be 46 ± 27 gC  M-2 yr' . This value also agrees well with 

that of 44 ± 10 gC  m'  yr" derived by Fransson et al. (2001). 

    However, a more detailed inspection of Tables 3-2 and 3-3 indicates noticeable 

differences in the seasonal behavior of the  CO, flux observed in the present and earlier 

studies. The  CO, uptake estimated by Skjelvan et al. (1999) for the Greenland Sea in 

summer and autumn is larger than ours. This difference can be attributed to the wind 

speed used to calculate the air-sea  CO, flux. Compared with our values, the  ApCO2 

values given by Skjelvan et al. (1999) are about 13  [tatm higher in summer and 11  Flatm 
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lower in autumn. These differences would yield only a 10 % difference in the air-sea 

CO2 flux under the same wind conditions. On the other hand, the NCEP/NCAR data 

used in this study give average wind speeds of 5.4 and 8.5 m  s-' for summer and autumn, 

respectively, and Skjelvan et al. (1999) used wind speeds of 7.2 and 11.2 m  s  ' for the 

respective seasons in their analysis. By changing the wind speed in the range covered by 

both studies, the air-sea  CO2 flux can be altered by a factor of 2. For winter and spring, 

Skjelvan et al. (1999) used almost the same wind and  ApCO2 fields as ours. Therefore, 

there is better agreement between the results of both studies for these seasons than for 

summer and autumn. 

    The  CO2 fluxes derived by Hood et  al. (1999) using the ECMWF wind data agree 

well with our results within our estimated uncertainties. The oceanic CO2 uptake 

estimated by Kaltin et al. (2002) for the Barents Sea depends largely on the C/N ratio of 

new production. Their estimate of the CO2 flux, 44 ± 40 gC  M-2  yr', agrees fairly well 

with the estimate in this study when the C/N ratio is assumed to be 6.6. 

    It is important to clarify how the seasonal evolution of the  CO2 uptake in the 

Greenland Sea and the Barents Sea is controlled by various oceanic and atmospheric 

phenomena. Figure 3-7 shows the monthly averages of the  ApCO2, relative ice cover, 

wind speed, and the CO2 uptake for the region  (70°-80°N,  20°W-40°E) covered by the 

Greenland Sea and the Barents Sea. In general, the seasonal variation of  ApCO2 is 

negatively correlated with the wind speed, and, to a lesser extent, with the ice cover. 

The monthly CO2 uptake reaches low values (0.034 GtC  yr  ') in April and November 

and high values (0.062 GtC  yr  1) in May and September, reflecting different seasonal 

variations of the variables used in its calculation. In order to quantify how  ApCO2, the 

gas transfer velocity, and the relative ice cover affect the CO2 uptake, we used the 

equation, 
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 f  (0  = E(t)  •  ApCO2(0-  S(t), (3-3) 

where  Faf(t) is the total  CO, uptake in the Greenland Sea and the Barents Sea,  S(1) is the 

ice-free sea area,  ApCO2(t) is the spatially averaged value of  ApCO2 at month t, and 

E(t) is the spatially averaged value of the gas transfer velocity  E(t). This equation 

disregards the covariance term between the transfer velocity and the  ApCO2. The 

differential of  Fa.f.(t) with respect to time can be written as, 

 OFa.f. =  OE(t)  •  ApCO2(1)•  S(t)  +  E(t).  OApCO2(t) S(t) +  E(t)-  ApCO2(t)  •  OS(t)  , (3-4) 
 Ot  Ot  Ot  Ot 

where the first, second, and third terms on the right-hand side of Eq. 3-4 represent 

changes in the CO2 uptake caused by temporal variations in the gas transfer coefficient, 

 ApCO2, and the sea area, respectively. The calculated values of the respective terms and 

their sum are given in Fig. 3-8. The decrease in the CO, uptake seen from March to 

April is caused by the reduction in both  ApCO2 and the wind speed. From April to May, 

these contributions tend to counteract each other, but the contribution from the  pCO2"a 

decrease becomes so large that the CO2 uptake increases. For the period of August to 

October, the wind speed is a major factor for controlling the air-sea  CO, flux. In 

November and December, the air-sea CO2 flux increases, mainly due to rapid changes in 

 ApCO2. The seasonally varying sea ice area contributes to the decrease in the CO2 

uptake from September to November to a certain extent, but, compared with the wind 

speed and  ApCO2, it has a minor effect on the variations in the CO2 uptake.

3.5 Interannual variability of the CO2 flux 

    We examined the interannual variability of the air-sea  CO, flux in the 

                         36

same way



as Olsen et al. (2003) did. We assumed that the only intercept values given in Table 3-1 

for the empirical  pCO2"a-SST relationships varied with the atmospheric CO2 increase 

rate (1.5  !iatm  yr  1) over the period from 1992 to 2001. This assumption means that the 

 ApCO2 was not affected by the uptake of anthropogenic  CO,. Figure 3-9 shows the 

monthly and 1-year running mean anomalies of the  ApCO2, sea ice area, wind speed, 

 CO, uptake, and the monthly and 1-year running means of the North Atlantic 

Oscillation Index (NAOI) during the same period. By comparing these anomalies with 

the average values of the  CO, uptake and its relevant factors, i.e., the wind speed, 

 ApCO2, and sea ice area, we estimated the contributions of the anomalies of the 

respective factors to the  CO, uptake to be 13, 4, and 15 %, respectively. Considering the 

anomalies of the wind speed, SST, and sea ice area, the interannual variability of the 

 CO, uptake amounts was found to be 18 % of its average value. Contrary to the 

equatorial Pacific, where large interannual variations in the air-sea  CO, flux occur due 

to changes in the  ApCO2 distribution (Feely et  al., 2002), the Greenland Sea and the 

Barents Seas are the oceans in which  ApCO2 is a minor factor in determining the 

interannual variability. Olsen et al. (2003) reported that the interannual variability of the 

 CO, uptake for the entire north Atlantic Ocean in the winter season between 1981 and 

2001 was about 7 %. They also reported that changes in the wind speed and  fCO2air 

accounted for most of its interannual variations. Their finding that the wind speed is 

crucial for the interannual variations of the air-sea  CO, flux is in agreement with our 

results. The NAOI is an index derived from the north-south distribution of the sea level 

pressure over the North Atlantic Ocean. Therefore, the NAOI is closely related to the 

wind speed over the northern North Atlantic. The anomaly of the  CO, uptake varies 

similarly with those of the wind speed and the NAOI. The anomalies of  ApCO2 and the 

sea ice area are negatively correlated with the NAOI. In the North Atlantic sector, the 

climate variability on a time scale of months to decades is dominated by the North 
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Atlantic Oscillation (Wallace and Gutzler, 1981). Therefore, both the decadal change in 

 CO2 uptake and the interanuual variation could occur in the Greenland Sea and the 

Barents Sea. 

    Overland and Wang (2005) reported that the ice area has decreased by about 20% 

over the past two and a half decades, primarily in the western Arctic ocean, and a 

decrease in sea ice has occurred in the last decade, as shown in Fig.3-9 in their paper. 

Jones et  al. (2001) reported an SST increase of 0.18 °C per decade in the Northern 

Hemisphere over the same period. The wind speed also seemed to decrease slightly, but 

not significantly, when an rms deviation of ± 3.0 m  s' is taken into account (Smith et al., 

2001). If these long-term trends are added to Eq. 3-1, the CO2 uptake is consequently 

expected to increase at a rate of 8 x  10' GtC  yr-2, which is mostly caused by the 

decrease in the sea ice area. Skjelvan et  al. (1999) also suggested an increasing trend in 

the CO2 uptake of about 9 x  10' GtC  yr-2 in the Greenland Sea. These results indicate 

that more anthropogenic CO2 will possibly be stored in the Greenland Sea and the 

Barents Sea due to a decrease in sea ice area in the near future. However, the oceanic 

dynamics and biological activities in the near future may be different from the present 

conditions. Therefore, extended observations and analyses are needed to forecast the 

variation of air-sea CO2 flux in the Greenland Sea and the Barents Sea.
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 Table 3-1. Coefficients of the linear function (Eq. 3-1 in the text) expressing the  pCO2"a-SST 

relationships for the respective months derived on the basis of the  pCO2sea data taken in 

the Greenland Sea and the Barents Sea for the 1992-2001  period. a, b. N,  cr, r, and ci 

represent the slope  (pawl  °C-') and intercept  qtatm) of the linear function determined by 

a least-squares fit, the volume of data used, the standard deviation  (iLtatm), the 

correlation coefficient of the fit, and the 95 % confidence interval, respectively.

5-6  (SST<0.55°C) 

5-6  (SST>0.55°C) 

     7
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Table 3-2. Air-sea CO2 fluxes (gC  m-2  y(1) in winter (January to March), 

     summer (July to September), and autumn (October to December), 

     fluxes in the open water areas of the central Greenland Sea.

spring (April to June), 

and annual  CO,

Winter Spring Summer Autumn Annual

Hood et  al. (1999) 58 64 52 43 55

Skjelvan et  al. (1999) 58 ±  14(995) 52 ± 21(1995)±(1995)77 + 26—(1993)16— (1995) 71

Anderson et al. (2000)  53  ±  4

Olsen et  al. (2003) 44  —  61(Feb.) 35  — 53  (Nov.)

This work 72±25 45±21  37±  14 54±21  52  ±  20

The uncertainties of Skjelvan et  al. (1999) are estimated based on the standard deviations in wind speed 

and natural variability observed in the  fCO2' measurements. The uncertainty of Anderson et al. (2000) 

is due to the variability in the wind field and extent of sea ice from 1993 to 1997.
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Table 3-3. Air-sea CO2 fluxes (gC  m-2  yr  1) in winter (January to March), 

    summer (July to September), and autumn (October to December), 

    in the open water areas of the Barents Sea.

spring (April to June), 

and annual  CO, fluxes

 Winter Spring  Si Summer  Autumn  Annual

Fransson et  al. (2001) 44  ±  10

 116  ±  44

(C/N = 8.75)

Kaltin et al. (2002)
 44  ±  40

 (C/N = 6.6)

This work 63 ±22 28 ± 13 43  ±  17 49  ±  18 46 ±18  8

The uncertainties of Kaltin et  al. (2002) include the analytical error, the variability in the source 

water concentration, and the uncertainty in the fresh water estimates. The oceanic uptake of 

atmospheric  CO, by Fransson et al. (2001) was determined by the difference in the export 

production computed from the nutrient deficit and the observed deficit of dissolved inorganic 

carbon. The uncertainty for this calculation procedure was estimated.
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Fig. 3-1. Relationships between  pCO2' and SST for the Greenland Sea and the Barents Sea for 

the periods of January to April (A), May to early August (B), late August (C), and 

October to November (D). All the  pCO2 values plotted were normalized to the year 

1995, assuming that they have increased secularly at the same rate as  pCO2,a1r (1.5  Ratm 

 yr-1). The solid and dashed lines show the values obtained by applying a least-squares fit 

to the data.
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3-2. The same as in  Fig.2-1. Geographical locations where  pCO2sea measurements were 

made from 1992 through 2001. The atmospheric CO2 data used to calculate  pCO2a'r in this 

study were taken at Ny-Alesund in the Svarbard Islands (79°N, 12°E). The dashed gray 

line shows the boundary of the climatological sea ice area in August, and the dashed black 

line shows the climatological sea ice area in January. The arrows represent the major 

currents in the Greenland Sea and the Barents Sea (Furevik  et al., 2001), including the 

Norwegian Atlantic Current (NWAC), West Spitsbergen Current (WSC), and East 

Greenland Current (EGC).
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Fig. 3-4. Seasonal variations of  pCO2"a in the central Greenland Sea (panel A) and the western 
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 pCO2' values calculated for the respective locations at 75°N and  0° and 74°N and 17.5°E 

using the empirical  pCO2'-SST relationships with coefficients given in Table 3-1. The 

red circles represent our observed  pCO2s" values normalized to the year 1995. In panel A, 

the purple triangles denote  the  pCO2' observed by Weiss et al. (1992) for 1981 and 1982, 

the green dotted line, the  fCO2s" by Hood  et al. (1999), the aqua rectangle, the  fCO2" by 

Anderson et al. (2000), the gray dashed line, the  pCO25" by Takahashi et  al. (2002), and 

the solid purple line, the  fCO2" calculated using the  fCO2"-SST relationships given 

empirically by Olsen et  al. (2003). In panel B, the purple triangles show the  pCO2sea 

values observed by Weiss et  al. (1992) for 1981 and 1982, the gray dashed line, the 
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              Chapter 4 

Temporal and Spatial Variations of Carbon System 

           in the Southern Ocean



       In order to understand spatial and seasonal variations of carbon system in the 

Southern Ocean, measurements of  pCO3"a, DIC and its  613C were made in the Indian 

sector  (110°-140°E) and the western Pacific sector (140°-150°E) of the ocean during 

the period  2001-2003. In this chapter, the results obtained from these measurements 

will be reported and discussed.

4.1 Variation of  pCO2s" measured on Umitaka-Maru cruise in 2003 

       In this section, we discuss spatial distributions of  pCO2"a measured using 

R/V Umitaka-Maru in the Indian and western Pacific sectors, as well as those of air-sea 

 CO2 flux derived on the basis of the measurement results of  pCO2"a. 

4.1.1 Fronts and zones in the Southern Ocean 

       Significant characteristic of the Southern Ocean is that there are several 

circumpolar fronts, by which vertical structures of water temperature, salinity and 

chemical components such as nutrients are changed greatly. Their locations are defined 

based on vertical structures of water temperature and salinity (Nagata et al., 1988; Orsi 

et al., 1995) or variations of the two factors in the surface ocean (Chaigneau and 

Morrow, 2002). The fronts are labeled Sub Tropical Front  (STF), Sub Antarctic Front 

(SAF) and Polar Front (PF) in order from north to south. Furthermore, ocean zones 

being separated by the fronts are also important to characterize the Southern Ocean. 

These zones are named Sub Antarctic Zone (SAZ), Polar Frontal Zone (PFZ), Polar 

Zone (Polar Zone) and Seasonal Sea Ice Zone (SSIZ). The locations of these fronts and 

zones are shown in Fig. 4-1 for the Umitaka-Maru cruise. We determined the locations 

of STF, SAF and  PF in accordance with their definitions by Chaigneau and Morrow 
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(2002). The northern boundary of SSIZ was assumed to be 62°S on the basis of the 

distributions of surface salinity and ice concentration from NCEP/NCAR reanalysis 

data (Enomoto and Ohmura, 1990). The locations of the respective fronts and SSIZ 

determined for the Umitaka-Maru cruise are summarized in Table  4-1. This table 

shows that the respective fronts on the  110°E line are located about 2.5 degrees north 

of those on the 140°E line, while the locations of SSIZ on 110° and 140°E lines existed 

at the same latitude. 

4.1.2 Latitudinal and longitudinal distributions of  pCO2', SST and SSS 

       The measurements on board  Umitaka-Maru were made for the period of 24 

January to 12 February, 2003, along the tack shown in Fig. 4-1. Measured values of 

SST, Sea Surface Salinity (SSS) and  pCO2"a are plotted in Fig. 4-2 against latitude. It 

can be seen from this figure that the  pCO2" values are generally lower than  pCO2', 

but the differences between both values are not so large. 

       In the north side of PF (50°S) along 110°E, SST and SSS decreased and 

 pCO2s" increased with increasing latitude. In PZ (50°-62°S), SST decreased with 

increasing latitude, and SSS and  pCO2' showed relatively constant values of 33.5 and 

355  tiatm, respectively. In SSIZ (south of 62°S), SST and SSS decreased with 

increasing latitude, and  pCO2s" showed a fairly constant value of 350  lkatm. 

       The latitudinal distributions of SST, SSS and  pCO2"a along 140°E are similar 

to those along  110°E, but there are some differences between the results from the two 

journeys. For example, the SST values on the 110°E line were generally higher by 

about 2°-3°C than the values on the 140°E line, reflecting the fact that the fronts on the 

 110°E line were located north of those on the 140°E line. The values of SSS along 

110°E were higher by about 0.3 than the values along 140°E, except for SSIZ. In SSIZ, 
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SSS on the  110°E line decreased with increasing latitude, while SSS on the 140°E line 

showed a fairly constant value of 33.2 and increased rapidly from 33.0 to 33.6 south of 

65°S. The  pCO2"a values obtained from the two journeys were fairly close to each 

other, but slight differences of about 5  lutatm were seen in the south side of 60°S. The 

variability of  pCO2.'" on the 140°E line in SSIZ was relatively larger than that on the 

110°E line. 

       Figure 4-3 shows the longitudinal distributions of SST, SSS and  pCO2"a 

along the Antarctic continental coastline. It can be seen from this figure that the values 

of these parameters distributed evenly against longitude and their variability was fairly 

small. The values of SST, SSS and  pCO2"a ranged between -0.5°C and 3.5°C, between 

33.0 and 33.5, and between 350 and 365  patm, respectively.

4.1.3  pCO2 -SST relationship 

       As described in Chapter 3, it is very useful for estimating  pCO2"a in areas 

without measurement to investigate the relationship between  pCO2"a and SST using 

their existing data. Therefore, we examined the temperature dependence of  pCO2"' 

measured on the Umitaka-Maru cruise, to make a distribution map of  pCO2"a for the 

Indian and western Pacific sectors with a longitudinal interval of 110°-150°E. The 

results are shown in Fig. 4-4. The  pCO2sea-SST relationships derived for the 110°E line, 

Antarctic continental coastline and 140°E line are similar to each other. The  pCO2"a 

values showed a general trend of decreasing with increasing SST, but such a 

relationship was not clearly seen when SST was lower than 5°C. Previous 

measurements in the Southern Ocean (Hashida, 1993; Metzl et  al., 1999; Inoue and 

Ishii. 2005) also reported the negative relationship between  pCO2s" and SST,  but more 

detailed inspection of the results indicated that there are noticeable differences between 
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the  pCO2s"-SST relationships obtained by the present and other studies. Hashida 

(1993) obtained the negative and positive relationships between  pCO2"a and SST in 

March when SST was lower and higher than 15°C, respectively. Metzl et al. (1999) 

also showed the negative relationship between  pCO2"a and SST, which is similar to 

that by Hashida (1993), but they observed the strong positive relationship in January 

1995 when SST was lower than 0°C. Inoue and  Ishii (2005) reported that the weak 

positive relationship was found when SST was lower than 10°C, the relationship was 

negative when SST was in a range between 10° and 15°C and the positive relationship 

was observed when SST was higher than 15°C. The differences among these results are 

caused mainly by seasonal/interannual variations of water transport or biological 

activities. 

4.1.4 Spatial distributions of  pCO2"a and air-sea CO2 flux 

       In order to draw a  pCO2sea distribution map in the Indian (110°-140°E) and 

western Pacific (140°-150°E) sectors, we used the  pCO2"a-SST relationship, 

 pCO2s"  = 358.7 — 0.75 x  SST  , (4-1) 

which was obtained by fitting to the data given in Fig. 4-4. As seen from Fig. 4-5, the 

values  of  pCO2"a calculated using Eq. 4-1 agree well with the observed values, and the 

standard deviation for differences between the observed and calculated values was 

estimated to be 4.1  ['atm. 

       For the calculation of  pCO2"a in the Indian and western Pacific sectors, we 

used the average SST data for January and February 2003, taken from the 

 NCEP/NCAR Reanalysis data (Kalnay et  al. 1996) as done in Chapter 3. The latitude-
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longitude distribution of calculated  pCO2s" value for the Indian and western Pacific 

sectors are presented in Fig. 4-6, together with that of SST. The results show a 

characteristic feature of low  pCO3"" values of about 345  itAatm on the Australian side 

and high values of 360  [tatm on the Antarctic side , reflecting the north-south SST 

difference, as depicted in Fig. 4-6 (a), and the temperature dependence of  pCO3'' , as 

given in Fig. 4-4. 

       Based on the distribution of  pCO2"' given in Fig. 4-6 and  pCO2air measured at 

Syowa Station (69°S, 39°E), the distribution of average air-sea  CO, flux for the two 

months of January and February 2003 was calculated for the Indian and western 

Pacific sectors. The calculated results are shown in Figure 4-7, together with the wind 

speed data used. In general, the Indian and western Pacific sectors of the Southern 

Ocean act as sink for atmospheric  CO2, and the  CO, flux ranges between 0 and 3 mol 

 yr-1. Small air-sea CO, fluxes (less than 1.5 mol  m  2 yr') are found south of  PE, as 

well as south of Australia, due to relatively low wind speeds . On the other hand, large 

CO, fluxes (more than 2.5 mol  rn-2  yr') are seen around SAZ, although strong winds 

(more than 16 m  s-') are observed in PFZ. For the comparison with our results, the air-

sea CO2 fluxes calculated by Takahashi et al. (2002) for the same area are shown in Fig . 

4-8. Our results for the Indian and western Pacific sectors are similar to those by 

Takahashi et al. (2002), except for PZ of the western Pacific sector where the 

Takahashi et  al.'s distribution indicates  CO, source area, while ours implies weak sink . 

       Based on the results of the above-mentioned calculation, we estimated the 

summertime oceanic CO2 uptake in the Indian and western Pacific sectors to be 0.012 

GtC  month'. By assuming that this flux is applicable to the whole Southern Ocean, the 

 CO, uptake of 0.14 GtC  month-' is obtained. On the other hand, Takahashi et al. (2002) 

reported that the summertime oceanic CO2 uptake for the same area was 0.009 GtC 

 month-' for the Indian and western Pacific sectors, and 0.12 GtC  month' for the whole 
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Southern Ocean .

4.2 Variations of  pCO2s" 

2002

in the western Pacific sector in the summer of

      Our  pCO,'" measurements in the western Pacific sector  (140°-150°E) were 

made in March of the respective years from 2001 to 2003 using R/V Shirase . Since our 

measurements are temporally discrete , we describe our results briefly here, 

       As described above, it is important for discussing  pCO2s" variations in the 

Southern Ocean to understand where oceanic fronts existed . We determined the 

locations of Sub Tropical Front , Sub Antarctic Front and Polar Front, in accordance 

with their definitions by Chaigneau and Morrow (2002) . The northern boundary of 

Seasonal Sea Ice Zone (SSIZ) was assumed to be 62°S on the basis of surface salinity 

and ice concentration distributions from NCEP/NCAR Reanalysis data (Enomoto and 

Ohmura, 1990). The locations of the fronts and zone determined for four cruises are 

summarized in Table 4-2. 

4.2.1 Aurora Australis cruise 

     The measurements on board Aurora Australis were made for the period of 31 

October, 2001 to 12 December, 2001. Measured values of SST, SSS and  pCO2"a are 

plotted in Fig. 4-9 against latitude. It can be seen from this figure that the results 

obtained during the southward (outward) and northward (homeward) journeys are 

similar to each other, but there are also some differences between the results from the 

two journeys. North of STF (47°S) and in SAZ (47°-49°S), SST and SSS decreased and 
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 pCO2"a increased from 300 to 350  liatm with increasing latitude. In PFZ (49°-53°S), 

SST and SSS showed humps at 50.5° and  51  °S for the southward and northward 

voyages, respectively, and  pCO2"a decreased slightly from 360 to 347  ['atm , going 

southward. In PZ (53°-62°S), SST decreased with increasing latitude , while SSS and 

 pCO2sea showed almost constant values of about 33.8-33.9 and 350-360  ['atm, 

respectively. In SSIZ (south of 62°S), SST showed a constant value of about -1.5 °C, 

and SSS increased with latitude after showing a minimum value of 33.5 at 63°S . The 

latitudinal distribution of  pCO2"a is similar to that of SSS, with a minimum value of 

310  iutatm at 63°S and a maximum value of over 400  ttatm around  67°S. The values of 

 pCO27 observed in this zone are higher than those of  pCO2air-

4.2.2 Hakuho-maru  (KH-01-3) cruise

     The measurement by Hakuho-maru was made from 3 January, 2002 to 20 

January, 2002. Figure 4-10 shows the latitudinal distributions of SST, SSS and  pCO2"a 

measured on this cruise. North of  STF (47°S) and in SAZ (47°-49°S), SST and SSS 

decreased and  pCO27 increased from 285  lAatm to 310  laatm with increasing latitude. 

In the northern part of PFZ (49°-50°S), SST and SSS showed a rapid decrease around 

49°S and  pCO2"a increased rapidly from 310 to 350  patm with increasing latitude . On 

the other hand, going southward in the southern part of PFZ (50°-53°S), SST and SSS 

decreased and  pCO2"a also decreased slightly from 350 to 340  ILtatm. In PZ (53°-62°S) , 

SST decreased with increasing latitude and  pCO2"a varied from 333 to 350  iaatm, but 

SSS showed a fairly constant value of about 33.8. In SSIZ (south of 62°S), SST was 

almost constant at around 1 °C, a slight southward decrease of SSS occurred, and 

 pCO2s" decreased remarkably to lower than 200  tatm due to marine biological 

photosynthesis especially south of 65°S. Compared with the results from the Aurora 
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Australis cruise, a large difference can be seen in the  pCO2"3 distribution in SSIZ.

4.2.3 JARE43 Tangaroa cruise

       Figure 4-11 shows SST, SSS and  pCO2"a measured on the Tangaroa cruise 

for the period of 25 February, 2002 to 4 March, 2002. North of STF (47°S) and in SAZ 

(47°-50°S), SST and SSS decreased with increasing latitude, while  pCO2"" increased 

from 300 to 340  !katm. In PFZ  (50°-52°S), SST and SSS were rapidly lowered and 

 pCO2"a increased from 340 to 355  ttatm, going southward. In PZ (52°-62°S), SST 

decreased with increasing latitude and  pCO2s" varied from 342 to 360  lAatm, but SSS 

showed almost constant values of approximately 33.8. In SSIZ (south of 62°S), SST 

decreased gradually going southward, and SSS increased with latitude after showing a 

minimum value of 33.7 at 63.5°S.  pCO2"a showed a minimum value of 305  p.atm at 

65°S.

4.2.4 JARE43 Shirase cruise

       Shirase cruise was made from 9 March, 2002 to 19 March, 2002. The 

measured values of SST, SSS and  pCO2s" are plotted in Fig. 4-12 against latitude. It 

should be noted that the locations of fronts such as STF, defined by surface SSS, might 

be incorrect because the SSS data obtained by Shirase were sparse. In SAZ (45°-49°S), 

SST and SSS decreased and  pCO2"a increased from 340 to 355  lAatm, going southward. 

In PFZ (49°-53.5°S), SST showed a hump at 52°S and then decreased with latitude, and 

SSS decreased monotonically and  pCO25Ca decreased from 357 to 347  1.tatm toward 

high latitudes. In PZ (53.5°-62°S), SST decreased with increasing latitude, showing a 

fairly constant SSS of about 33.8 and a similar value of  pCO2"a around 350  Ratm.  In 
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SSIZ (south of 62°S), SST and  pCO2s" decreased and SSS decreased 

latitude.

with increasing

4.2.5 Temporal and spatial variations of  pCO27 and air-sea CO2 flux 

        We derived summertime average fields of SST, SSS and  pCO25Ca for the 

Southern Ocean, using the results from the above-mentioned cruises . Their average 

latitudinal distributions obtained are shown in Fig . 4-13. In general, temporal and 

spatial variability of  pCO2"a in the Southern Ocean was larger than that of  pCO3air, as 

well as that of  pCO2"a in other oceans (see Chapter 3) . The values of  pCO2s", including 

one standard deviation represented as a shaded area in Fig . 4-13, were always lower 

than those of  pCO2alr, except for parts of  SSIZ and PFZ . The variability of  pCO2s" and 

SSS was much larger in the southern part of SSIZ  (64°-66°S) than in other areas of the 

Southern Ocean, while SST showed almost the same variability as in other areas . The 

average values of  pCO2s" plotted in Fig. 4-13 show low values of about 315  ikatm in 

SAZ and about 300  p.atm in SSIZ and high values of about 355  laatm in PFZ . Based on 

measurements of  pCO2"a and  pCO2d'r, the air-sea CO2 fluxes at the respective latitudes 

were calculated for the above-mentioned individual cruises and then averaged to 

estimate the summertime fluxes in this ocean area. The average air-sea CO2 fluxes 

obtained are plotted in Fig. 4-14. The air-sea CO2 flux indicated low values of less than 

 lmol  ria-2  yr-1 in PFZ and high values of more than 3 mol  tri2  yrd north of  STF and 

SSIZ, reflecting mainly the distribution of  ApCO2. It is also seen that the air-sea CO2 

flux fluctuates irregularly in SSIZ due to large variability of  pCO2s" observed in this 

zone. 

       In order to examine variations of  pCO25ea in summer, SST , SSS and  pCO2' 

observed at the respective latitudes of  45°,  48°, 53°, 58°, 63° and 66°S are plotted in Fig . 
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4-15 against time. As shown above, SST in this ocean was always high at lower 

latitudes and decreased going southward. On the other hand, SSS was highest at 45°S, 

and the respective values at 48°, 66°, 53°, 58° and 63°S decreased in order. Although 

SSS is expected to be low off the coast of the Antarctic Continent due to the inflow of 

fresh water originated in melted ice sheet into the Southern Ocean, the values at 66°S 

were high, especially in November and December.  pCO3"" at 66°S also indicated the 

high values of over 400  p.atm for these two months, which are higher than  pCO2', and 

then decreased rapidly to 200  ['atm. These temporal variations of SSS and  pCO2s" are 

ascribed to physical and biological processes in the ocean: Deep waters with high 

salinity, containing high nutrients, iron and CO,, were transported to the surface in 

November and December 2001. By this upwelling, photosynthesis of marine biota 

became active and then weak one month after, probably due to limitation of iron 

supply in the Southern Ocean (Martin et al., 1990). In this regard, our measurements 

indicated that the concentrations of nitrate ranged from 30  ptmol  kg-1 to 13  timol  kg-1 

for the two months, while that of iron obtained by Lai et  al. (personal communication) 

was 0.922 nM in January. Martin et  al. (1990) also found in the Southern Ocean that 

the iron concentration increased from 0.05 to 0.7 nmol Fe  kg-1 with increasing depth 

between the surface and 1500 m. As a result,  pCO2"a off the coast of the Antarctic 

Continent (66°S) varied in a range of over 100  liatm during a few months. On the other 

hand,  pCO2s" at the other latitudes of 45° to 63°S showed a small variability of less 

than 25  ratm. 

       Figure 4-16 shows the temporal variations of air-sea CO2 flux at the 

respective latitudes of 45°, 48°, 53°, 58°, 63° and 66°S. The values ranged from -2 mol 

 M-2  yr-1 at 66°S in December to 6 mol  rn-2  yr' at 63°S in January, depending on both 

 ApCO2 and wind speed. At most latitudes, the air-sea CO2 fluxes showed a maximum 

value in January, due to the largest  ApCO2 value in that month. The average air-sea 
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 CO, flux in the ocean area covered by this study is plotted in Fig. 4-17 against time. 

The y-axis of the figure also represents the  CO, uptake for the Southern Ocean which 

were calculated by assuming that the average air-sea  CO, flux derived for the present 

area with a longitudinal interval of 140°-150°E can be applicable to the whole Southern 

Ocean. The  CO, flux reached a minimum value of 1 mol  ni2  yr-1 in December and a 

maximum value of 3 mol  m2  yr-1 in January, and the total  CO, uptake by the ocean for 

the five summer months amounted to 0.037 GtC  yr  ' for the present measurement area 

and 1.4 GtC  yr-1 for the whole Southern Ocean. Metzl et al. (1999) measured a clear 

seasonal variation of air-sea  CO, flux at 40°-50°S in the Indian sector, as depicted in 

Fig.  4-18. The  air-sea  CO,  fluxes  in  this area are  higher by 1-2 mol  M-2  yr-1, on average, 

than those in the Southern Ocean, but close to those at  45° and 48°S due to a large  CO, 

sink in SAZ (Fig. 4-14). If it can be assumed that the average  CO, flux in the area 

covered by this study shows a temporal variation similar to that derived by Metzl et al. 

(1999), it is suggested that the  CO, uptake in the Southern Ocean varies seasonally, 

with the maximum in January-February and the minimum in September. Metzl et al. 

(1999) also reported that the  CO, uptake at 40°-50°S in the Southern Ocean amounted 

to 1.05 GtC  yr-1, and Takahashi et al. (2002) evaluated the  CO, uptake in the Southern 

Ocean (south of 50°S) to be 0.6 GtC  yr-1. These estimates are smaller than our annual 

 CO, uptake of 1.4 GtC  yr-1 calculated on the basis of the five-month measurements. 

The cause of this difference is attributable to the fact that the summertime oceanic CO, 

uptake is highest through the year (Metzl et  al., 1999). Even if this is the case, our 

results certainly imply that the Southern Ocean acts as an important  CO, sink.

4.2.6 Comparison of the seasonal variations of  pCO2sea and air-sea CO2 flux in the 

Southern Ocean, the Greenland Sea and the Barents Sea
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       To examine the air-sea  CO, exchange in the Southern Ocean in more detail, 

we compare the present results with those from the Greenland Sea and the Barents Sea, 

which are described in Chapter 3. The temporal variations of  pCO2s" at the respective 

latitudes in the Southern Ocean are shown in Fig. 4-19, together with those in the 

Greenland Sea  (75°N,  0°) and the Barents Sea (70°N,  40°E). The  pCO2"a values 

observed in the two northern seas were usually lower than those in the Southern Ocean. 

The  pCO2s" value at  66°S varied rapidly between 200 and 400  vatm during three 

summer months, which is much larger than those in the Greenland Sea and the Barents 

Sea in summer. This difference is attributable to different biological activities in the 

two ocean areas. As described above, Martin et  al. (1990) pointed out that the marine 

biological activity in the Southern Ocean is strongly controlled by iron. To examine the 

importance of biological activity in the air-sea  CO, exchange,  ApCO2, wind speeds and 

air-sea CO, fluxes at the respective latitudes in the Southern Ocean, as well as in the 

Greenland Sea and the Barents Sea, are summarized in Table 4-3. The average  ApCO2 

value was calculated to be 31  1.tatm for the Southern Ocean and 80  luatm for the 

Greenland Sea and the Barents Sea. The fact that  ApCO2 is larger in the Greenland Sea 

and the Barents Sea than in the Southern Ocean is due to strong biological activities in 

the former seas. However, the wind speed in the Southern Ocean is higher by 2.7 m  s-', 

on average, than that in the Greenland Sea and the Barents Sea, reflecting a strong 

circumpolar westerly in the Antarctic region. Consequently, the air-sea  CO, flux is 

smaller by 0.8 mol  nf2  yr-1 in the Southern Ocean than in the Greenland Sea and the 

Barents Sea. These results suggest that even in summer, the physical process is much 

more essential than the biological process for the oceanic  CO, uptake in the Southern 

Ocean, while the biological process is important for the summertime  CO, uptake in the 

Greenland Sea and the Barents Sea.
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4.3 Variations of DIC in the western Pacific Sector in summer

       It is very important for understanding the air-sea CO2 exchange to elucidate 

not only the distribution of surface  pCO2"a but also that of Dissolved Inorganic Carbon 

(DIC), since DIC varies temporally and spatially by marine biological activities and 

water transport processes. In this section, we discuss temporal and spatial variations of 

DIC in the western Pacific Sector in  summer, which were measured on the Aurora 

Australis cruise in November and December 2001, the Hakuho-Maru cruise in January 

2002 and the  JARE43 Tangaroa cruise in January 2002.

 4.3.1 Spatial distribution of nDIC

      The latitude-depth distributions of water temperature and salinity measured 

on the Aurora Australis cruise are shown in Fig. 4-20, and the distribution of nDIC 

(DIC normalized to a salinity of 34 p.s.u.) is shown in Fig.  4-21. In general, the water 

temperature was high in the surface and at low latitudes, and low in the deep sea and at 

high latitudes, while nDIC showed an opposite behavior, i.e. low in the surface and at 

low latitudes, and high in the deep sea and at high latitudes. Such a distribution of DIC 

is formed mainly in relation to a temperature dependence of  CO, solubility, biological 

consumption of inorganic carbon and re-mineralization of organic matter. On the other 

hand, the distribution of salinity is more complicated than those of the water 

temperature and nDIC. However, isothermals and isohalines of the figures indicate that 

the water temperature and salinity were fairly constant from the deep layer to the 

surface in the ocean south of 65°S. High DIC concentrations of over 2000  [tmol  kg' 

were also seen south of 65°S. These facts would support our assumption that the deep 

water rich in nutrient, salinity,  CO, and iron was transported to the surface in 
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November and December, as described in section 4.2.5. 

       The water temperature distribution measured on the Hakuho-Maru cruise, 

shown in Fig. 4-22, is similar to that on the Aurora Australis cruise. However, the 

salinity distributions on both cruises were different, especially at low latitudes. One 

possible cause of such a difference may be attributable to complicated water transport 

in this area, but it is also thought that the distribution of salinity for the Hakuho-Maru 

cruise is not well represented due to its sparse measurements. The cross-sectional 

representation of nDIC is given in Fig. 4-23. This distribution is also similar to that on 

the Aurora Australis cruise, but the low values of nDIC were found in the surface 

ocean around 65°S due to biological activities. These low values were observed being 

coincident with the low values of  pCO2"a. 

       The water temperature and salinity measured on the Tangaroa cruise south of 

60°S are shown in Fig.  4-24, and nDIC in Fig. 4-25. It is seen from Fig. 4-24 that the 

water temperature varied between  -1° and 2°C, and salinity was low in the surface and 

increased with depth. Remarkably low values of nDIC were found near 70 m at 62.5 °S 

due to biological activities, and  pCO2"a decreased slightly with increasing latitude. 

4.3.2 Temporal variation of nDIC 

       To examine temporal changes of nDIC in the Southern Ocean, the 

differences between the nDIC values measured on the Hakuho-Maru and Aurora 

Australis cruises (AnDIC) were calculated. Its latitude-depth representation is given in 

Fig. 4-(g). In general, AnDIC shows negative values at depths above 200 m, since 

biological activity was high when Hakuho-Maru cruised. The low values of nDIC 

measured on the Hakuho-Maru cruise were obtained from December to January when 

the  pCO2"a value was low, as shown in Fig.4-26. Large negative values of AnDIC of 

                         65



less than  -100turnol  kg' were found at 65°S where  pCO2"a was remarkably low. On the 

other hand, slightly positive values of AnDIC were observed below 200 m at latitudes 

between  44° and 60°S, as well as below 100 m south of 61°S. This observed 

distribution of AnDIC is formed by the fact that DIC is consumed by marine biological 

activities in the surface and resultant organic matter is re-mineralize below 200 m. 

       The differences between the nDIC values measured on the Tangaroa and 

Hakuho-Maru cruises  (AnDIC) are shown in Figs. 4-27. This figure shows that DIC 

generally increased with time for 1-2 months between both cruises, especially at 65°S, 

though large negative values of AnDIC were seen around 70 m at 62.5°S. This result 

clearly suggests that biological activities for the period when the Hakuho-Maru cruised 

were generally stronger than those when Tangaroa cruised. The AnDIC values for the 

Tangaroa and Aurora Australis cruises are also given in Fig. 4-27, which shows the 

results for four summer months. The AnDIC values were negative in the surface ocean, 

due to biological activities enhanced at the Tangaroa cruise more than at the Aurora 

Australis cruise. On the other hand, small positive values of AnDIC were seen below 

100 m due to re-mineralization of organic matter enhanced when Tangaroa cruised. 

The AnDIC distribution obtained from the Tangaroa and Aurora Australis cruises is 

similar to that from the Hakuho-Maru and Aurora Australis cruises.

 4.4 Temporal variations of  pCO2s", DIC and  813C over 10 years

       In this section, we discuss temporal variations of  pCO2sea, 

10 years to estimate their long-term trends in the Southern Ocean.

DIC and  OBC over
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4.4.1 Variation of  pCO2"a 

      The  pCO2"a values measured by  JARE30 in 1989, JARE31  in  1990, JARE32 

in 1991 and JARE43 in 2002 using  RN Shirase are plotted in Fig. 4-28 against latitude. 

It is seen from this figure that  pCO25" increased for the period 1989-2002, especially at 

low latitudes, but the increase rate of  pCO2'" for this period cannot be explicitly 

derived, since its year-to-year variation is too large to detect a clear trend. For example, 

 pCO2"a increased from 315 to 335  iaatm between 1990 and 1991 at 48°S, while it 

decreased from 350 to 330  patm between 1989 and 1990 and increased from 330  patm 

to 340 between 1990 and 1991 at 53°S. Jabaud-Jan et al. (2004) also reported that 

changes in  pCO25"  between 1998 and 2000 were -14.6 and 37.9  !„Latm for 50-56° and 

58-60°S in the Southern Ocean, respectively, due to anomalously warm weather 

conditions in the summer of 1998. Therefore, considering that the year-to-year 

variation of  pCO2"a is caused by changeable water transport and the temperature 

dependence of  pCO2"a, we examined the long-term trend of  pCO25ea in the following 

way. 

       Figure 4-29 shows the relationships between SST and  pCO25Ca obtained for 

the respective JARE cruises. It is evident from this figure that a significant difference 

of  pCO2"a between 1989 and 1991 is not clearly seen. For example, a hump of  pCO2' 

found at 47°S by the JARE32 cruise, as seen in Fig. 4-28, is not found in Fig. 4-29. 

Therefore, it is thought that for detecting the long-term trend of  pCO2"a, to examine the 

relationship between SST and  pCO2"a is more essential than to examine the 

distribution of  pCO2"a. By inspecting Fig. 4-29 from this viewpoint, it is found that 

 pCO2"a in a temperature range of over 9°C was increased by 20-28  liatm for 13 years. 

This amount of increase corresponds to the increase rates of 1.5-2.2  [tatm  yr-1. On the 

other hand, a significant increase of  pCO2"a was not clearly seen under 8°C, probably 
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being strongly influenced by biological activities. Especially, the  pCO2s" values 

measured by JARE43 at SSTs lower than 3°C were lower by about 20  ttatm than those 

measured on earlier cruises, due to biological activities enhanced especially when the 

JARE43 cruise was made.  Inoue and Ishii (2005) reported, from their observations for 

the period 1969-2002, that the  pCO2"a increase rate ranged between 0.7 and 1.8  ILtatm 

yr', and that the increase trend of  pCO2"a was not clearly observable in SSIZ, since 

biological activities negated the long-term increase of  pCO2s". The increase rate of 

 pCO2s" by Inoue and Ishii (2005) is generally lower by 0.6-0.8  lAatm  yr-1 than ours, but 

both results for SSIZ are identical to each other, suggesting that it is difficult to detect 

the long-term trend of  pCO2"a for SSIZ based on its direct observations in summer.

4.4.2 Variations of DIC and  (513C

       In order to derive the long-term trend of nDIC over 10 years, we compare the 

temperature dependence of nDIC for the JARE34 Shirase cruise with that for the 

JARE44 Tangaroa 2003 cruise. As described below, it is difficult to detect its  long-term 

trend based on 10-year observations even at the same location. Figure 4-30 shows the 

vertical profiles of nDIC measured at a location of 57°S and 148°E in 1993 on the 

JARE34 cruise and at a location of 55°S and 140°E in 2001 on the Hakuho-Maru 

cruise. It is seen from this figure that differences between nDIC at depths below 100 m 

from the JARE34 and Hakuho-Maru cruises were 7-19  pmol  kg-1, probably due to 

anthropogenic CO2 uptake by the ocean. However, in the surface layer shallower than 

100 m, the values of nDIC measured on the JARE34 cruise were higher than those on 

the Hakuho-Maru cruise, while the situation was reversed at a deeper layer. The lower 

values of nDIC measured in the surface layer on the Hakuho-Maru cruise may imply 

that biological activities negated the effect of anthropogenic CO2 uptake by the ocean 
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occurred for 10 years. 

       Figure 4-31 shows the relationships between the water temperature and nDIC 

for SSIZ, obtained by the two cruises of JARE34 and Tangaroa in 1993. It is known 

that the relationship between the two parameters for the Southern Ocean can be 

expressed by two different regression lines (Ishii et al., 1998). Ishii et  al. (1998) also 

reported from their JARE34 cruise measurements that nDIC measured for water 

masses with temperatures of  -1.7°C or lower in SSIZ preserves their wintertime state in 

the mixed layer. Ishii et al. (1998) estimated the wintertime nDIC value of the mixed 

layer to be 2184  lumol  kg-1, based on the JARE34 measurement data shown in Fig.  4- 

31(a). In this study, we also employed the same value of 2184  fimol  kg-1. On the other 

hand, we found from Fig. 4-31(b) that the wintertime mixed layer nDIC value was 

2196  vmol  kg-1 when Tangaroa cruised. By comparing these two values for SSIZ, a 

change in nDIC for 10 years was estimated to be about 12  iumol  kg-1, showing an 

average increase rate of 1.2  lamol  kg-1  yr-i. 

       As described above, it is difficult to detect the long-term increase of  pCO2"a 

in SSIZ based on its direct measurements in summer. Therefore, we tried to calculate 

the increase rate of  pCO25" by using the Buffer factor, our measurement results and 

related parameters. The time change in  pCO2' can be calculated by the equation, 

 OpCO2(60 = R x  OnDIC(60 x  pCO2. (4-2) 
 nDIC 

Here, nDIC,  pCO2,  OpCO2(8t),  OnDIC(8t) and R denote the wintertime values of nDIC 

and  pCO2', the changes in  pCO2"a and nDIC for 10 years, and the Buffer factor, 

respectively. In this calculation, we employed 14 (Inoue and Ishii, 2005), 12  txmol  kg 

per decade, 2184  !Amol  kg"' and340  !Aatm for the respective values of R,  OnDIC(6t), 
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nDIC and  pCO2. The value employed for  pCO2 of 340  1Ltatm was taken from the result 

obtained by  Takahashi et al. (2002) in the winter of 1995. Consequently, the average 

increase rate of  pCO3"a for 10 years was estimated to be 2.6  tiatm  yr-I. This estimation 

of the  pCO2sea increase rate was made rather roughly, but 2.6  patm  yr-1 derived here for 

SSIZ is fairly comparable to 1.5-2.2  piatm  yr-1 obtained above for the Southern Ocean 

except for SSIZ on the basis of direct  pCO2sca measurements, both values being higher 

than 1.4  !xatm  yr-1 of  pCO2'. 

       To detect the long-term trend of  813C for 10 years, we investigated the 

relationships between the  water temperature and  813C in DIC for the JARE34 and 

Tangaroa cruises in 2003. The measured values of  water temperature and  813C on these 

cruises are shown in Fig. 4-32. As seen in this figure, the relationship between both 

parameters for SSIZ can be also expressed by two different regression lines. Taking 

this into account, the results suggest that the  813C values measured on both cruises 

indicate around  0.9  %o for the wintertime mixed layer value and no significant 

difference of  813C is  detectable in the mixed layer for 10 years. If the nDIC increase 

rate of 1.2  [tmol kg'  yr-1 was caused by anthropogenic CO2 uptake by the ocean, the 

long-term change of  613C in the wintertime mixed layer for 10 years should be -0.04  %o 

per decade. This discrepancy suggests that further measurements of  813C are needed to 

quantify the anthropogenic CO2 uptake in the Southern Ocean.
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Table 4-1. Locations of oceanographic fronts along  110° and  140°E lines determined according 

     to definitions by Chaigneau and Morrow (2002). STF, SAF, PF and SSI represent Sub 

     Tropical Front, Sub Antarctic Front , Polar Front and Seasonal Sea Ice Zone, respectively.

 I10°E  140°E

STF

SAF

PF

Northern bound of SSIZ

 45°S  47-48°S

 47°S  49-50°S

 50°S  52-53°S

 62°S  62°S



 Table 4-2. The positions of oceanographic fronts in Southern Ocean. They 

Chaigneau and Morrow (2002). STF, SAF, PF and SSIZ represent Sub 

Sub Antarctic Front, Polar Front and Seasonal Sea Ice Zone, respectively.

are decided by 

Tropical Front,

Aurora Australis Hakuho-Maru Tangaroa Shirase

STF

SAF

PF

Northern bound of SSIZ

 47-48°S  47°S  47°S  45°S

 48.5-49°S  49°S  50°S  49°S

 53°S  53°S  52°S  54°S

 62°S  62°S  62°S  62°S
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Table 4- 3. Average values of  ApCO2, wind speed and air-sea  CO, flux for the Southern Ocean 

 (140°-150°E) from November to March, and the Greenland Sea and the Barents Sea from 

     May to September

Southern Ocean
 ApCO  ,  (ittatm) Wind Speed  (m/s)  CO, flux (mol/m2/yr)

 (140°-150°E)

 45°S (North of STF) 47 7.4 3.0

 48°S (SAZ) 32 8.0 2.4

 53°S (PZ) 18 8.7 1.4

 58°S  (PZ) 14 9.9 1.5

 63°S (SSIZ) 35 8.0 2.8

 66°S  (SSIZ) 37 6.1 1.9

Average 31 8.0 2.2

Greenland Sea

80 5.3 3.0

Barents Sea
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Fig. 4-8. Latitude-longitude distribution of the average air-sea CO2 flux (mol  r11-2  yr-1) calculated 

    for January and February 1995 on the basis of  Takahashi et  al.  (2002) 

 (http:  HMV  w.ldeo.columbia.edu/res/pi/CO2/carbondioxide/air _sea_flux/fluxdata.txt). 

    Gray shades show sea ice areas found from the NCEP/NCAR reanalysis data . Dashed 
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     our Umitaka-Maru cruise. The positive value of air-sea CO2 flux means oceanic CO2 

     uptake from the atmosphere.
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Chapter 5 

Summary



    For a better understanding of global CO2 budget, it is important to examine 

variations of ocean carbon system in high latitude areas where a limited number of 

observations have been done due to severe weather conditions. Therefore, we measured 

 pCO2"a in the Greenland Sea and the Barents Sea from 1992 through 2001, and  pCO2", 

DIC and its  813C in the Southern Ocean from 2001 through 2003. Based on these 

 measurements, we examined temporal and spatial variations of the respective 

components, as well as of air-sea CO2 flux derived. The examination was also made for 

inspecting the similarity and difference of carbon system in the northern and southern 

polar seas. The results obtained in this study are summarized below: 

    The values of  pCO2' measured in the Greenland Sea and the Barents Sea ranged 

between 200 and 350  Ilatm, which are generally lower than  pCO2air, supporting an 

effective ventilation of surface seawater to intermediate/deep layers in these seas, by 

which atmospheric CO2 is taken up by the seas. The  pCO2" value showed a positive 

correlation with SST for every month, except for May and June when a negative 

 pCO2"a-SST relationship was found in the western Greenland Sea due to CO2 uptake by 

biological activities. Our data also suggested that  pCO2"a increased secularly, as 

observed by Olsen et  al. (2003) and Omar et  al. (2003) in the North Atlantic Ocean and 

the Barents Sea, respectively. 

    By assuming that  pCO2"a increased at the same rate (1.5  1,tatm  yr-1) as  pCO2air, we 

derived a set of seasonally varying  pCO2"-SST relationships for the Greenland Sea and 

the Barents Sea to estimate the  pCO2sea values for areas where no observation was 

conducted. The values of  pCO2' calculated for 1995 using those relationships and the 

SST data were found to be low in the northwestern Greenland Sea in July and August (< 

220  laatm) and relatively high (>340  Ratm) in warm water originating in the Norwegian 

Atlantic Current in April. 
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    The air-sea CO2 fluxes were calculated for 1995 using the gas transfer coefficient, 

wind speed, and  ApCO2 derived from the  pCO2"a-SST relationships, SST, and  pCO2air at 

Ny-Alesund. The air-sea CO2 fluxes for the Greenland Sea ranged between 37 gC  m-2 

 yr-1 in summer and 72 gC  m-2  yr' in winter, showing an annual average of 52 gC  m-2  yr-1. 

On the other hand, the CO2 fluxes for the Barents Sea were found to be 28 gC  m-2  yr-1 in 

spring and 63 gC  ill-2  yr-1 in winter, with an annual average of 46 gC  rn-2  yr-1. The total 

CO2 uptake in the Greenland Sea and the Barents Sea (70°-80°N, 20°W-40°E) was in a 

range of 0.034 GtC  yr' in summer to 0.062 GtC  yr-1  in winter, with an annual mean of 

0.050 GtC  yr'. 

    By examining the sensitivity of temporal variations of the oceanic CO2 uptake to 

the gas transfer coefficient as a function of wind speed,  ApCO2, and sea ice area, it was 

found that both the wind field and  ipCO2 are particularly important for the seasonal 

variation in the CO2 uptake. It was also found that the interannual variability of the CO2 

uptake was noticeably influenced by the wind speed (13  %, relative to the mean annual 

CO2 uptake) and the sea ice area (15 %), while the contribution of  ApCO2 (4 %) was 

minor. The interannual variability of the oceanic CO2 uptake due to anomalies of these 

three factors was estimated to be ±18 % of its average of 0.050 GtC  yr-1. The wind 

speed anomaly showed a positive correlation with the NAOI, while the anomalies of 

 ApCO2 and the sea ice area were negatively correlated with the index. The CO2 uptake 

anomaly showed temporal variations similar to the NAOI. 

    In order to understand spatial variations of  pCO2' and air-sea CO2 flux in the 

Southern Ocean, the measurements of  pCO2' were made by  R/V Umitaka-Maru in the 

Indian and western Pacific sectors from January to February 2003. The measured values 

of  pCO2" ranged between 340 and 365  vatm, which are generally lower than  pCO2air. 

The  pCO2' values measured in this ocean area showed a negative correlation with SST. 

We derived a set  of  pCO2"-SST relationship using the results from this measurement, to 
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estimate the  pCO27 values for areas with no observations. The values of  pCO2' 

calculated using the relationships derived and the SST data were found to be low  (<  345 

 Ratm) in the Australian side and high (>360  Ratm) in the Antarctic side. The average 

oceanic CO2 uptake for the Indian and western Pacific sectors between January and 

February was estimated to be 0.012 GtC month-1. By assuming that this flux is 

applicable to the whole Southern Ocean, the total CO2 uptake was calculated to be 0.14 

GtC  month-1. 

    For improving our present knowledge about summertime variations of  pC0r , 

air-sea CO2 flux and DIC, multi-ship observations with R/Vs Aurora Australis, Hakuho-

Maru, Tangaroa and icebreaker Shirase were made in the western Pacific sector  (140°-

150°E) from October 2001 to March 2002. The values of  pCO2' off the coast of the 

Antarctic Continent (66°S) showed large temporal variations of 100  liatm, caused 

mainly by seawater upwelling from deep layers and biological activities limited by iron 

supply. On the other hand,  pCO2"a at latitudes of  45° to 63°S showed a small variability 

with less than 25  luatm. The average air-sea CO2 flux reached a minimum value of  1 mol 

 171-2  yr-1 in December and a maximum value of 3 mol  IT1-2  yr-1 in January, and the total 

CO2 uptake by the ocean for the five summer months amounted to 0.037 GtC  yr-1 for the 

present measurement area and 1.4 GtC  yr-1 for the whole Southern Ocean. By 

comparing the values of air-sea CO2 flux for the Southern Ocean with those for the 

Greenland Sea and the Barents Sea, we found that the physical process is much more 

essential than the biological process for the CO2 uptake in the Southern Ocean even in 

summer, while the biological process is important for the summertime CO2 uptake in the 

Greenland Sea and the Barents Sea. 

    It was found from the DIC measurements that large negative nDIC differences 

were found between the Aurora Australis and Hakuho-Maru cruises especially at 65°S 

where  pCO2' was remarkably low due to biological activities. On the other hand, 
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slightly positive differences were observed not only between the Aurora Australis and 

Hakuho-Maru cruises but also between the Hakuho-Maru and Tangaroa cruises below 

200 m at latitudes between  44°  and 60°S, as well as below 100 m south of  61°S, due to 

re-mineralization of organic matter. 

    The temporal variations of  pCO2', DIC and  813C over 10 years were examined to 

detect their long-term trends in the Southern Ocean. The increase rates of  pCO2"a for the 

area covered by this study, except for SSIZ, were estimated to be 1.5-2.2  Ratm  yr-1, 

which are larger than those of earlier study. On the other hand, the  pCO2" increase rate 

deduced for  SSIZ from the DIC increase rate (1.2 mol  kg-1  yr-1 obtained by this study for 

SSIZ) was approximately 2.6  Ratm  yr-1. However, a significant difference of  613C was 

not detected from our 10-year measurements, probably due to a very small difference 

which is considered to be less than -0.04 %o per decade.

    As mentioned above, the physical process such as wind was much more essential 

than the biological process for the oceanic CO2 uptake in the Southern Ocean even in 

summer, reflecting the fact that air-sea CO2 exchange is greatly enhanced by strong 

wind, even when the value of  pCO2' is not much smaller than  pCO2a1r. It was also 

found in this study that the increase rate of  pCO2" (1.5-2.6  Ratm  yr-1) was higher than 

that of  pCO2' (1.4  liatm  yr-1). These results may suggest that the Southern Ocean acts 

potentially as a CO2 source in the future. In addition, the magnitude of the Southern 

Ocean CO2 sink is heavily disputed (Roy et al., 2003), and it is thought that the natural 

carbon cycle is responding to recent changes in climate in the Southern Ocean by 

ventilating deep waters rich in carbon, which reduces the capacity of the ocean to take 

up  anthropogenic  CO2. Therefore, further measurement and analysis of carbon system 

are required for the Southern Ocean, by which an understanding of the global CO2 

budget will be deepened. 
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