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Abstract

The sum rules in QCD and dualities in supersymmetric theories are well-known
non-perturbative techniques. The sum rules can be derived for theories whose global
symmetry is dynamically broken. They provide us with non-trivial relations among the
physical quantities. In supersymmetric gauge theories, the Seiberg duality can often be
used to analyze the strongly coupled gauge theories by using their weakly coupled dual
descriptions. Although the sum rules and dualities are powerful techniques for strongly
coupled theories in general, sum rules for supersymmetric theories or dualities in non-
supersymmetric theories are not widely used for their analysis. Since one may obtain
new insights from such trials, we study sum rules for dynamical supersymmetry breaking
and also try to apply the idea of Seiberg duality to chiral symmetry breaking in non-
supersymmetric QCD. We report the results of those analyses in this article.
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Chapter 1

Introduction and Overview

1.1 Introduction

Many quantum field theories have symmetries. Those symmetries play important roles for
physics. For example they constrain interactions among the particles and the Lagrangian
of the low energy effective theories. The local symmetries explain fundamental interactions,
such as electromagnetic, weak, and strong interactions. Even if the some of symmetries
are spontaneously broken, they provide us with non-trivial imprints, such as the Nambu-
Goldstone theorem which claims that there exists the same number of massless particles as
that of broken generators.

Global symmetries sometimes can be realized as dynamically broken ones as a consequence
of strong interactions. There are two particularly important examples of dynamical symmetry
breaking in phenomenology of particle physics. One is chiral symmetry breaking in QCD.
The QCD describes the inter-quarks interactions and at low energy, the strong force between
quarks causes a spectacular phenomenon, the quark confinement. This strong interaction
also breaks chiral symmetry, SU(Nf )L × SU(Nf )R, to diagonal subgroup, SU(Nf )V and
pions appear as Nambu-Goldstone bosons, the massless particle required in Nambu-Goldstone
theorem, of spontaneous broken chiral symmetry. The other interesting example is dynamical
supersymmetry (SUSY) breaking. SUSY is the only possible extension of space-time symme-
try consistent with Poincaré symmetry and relates fermionic degrees of freedom and bosonic
ones. Low energy SUSY has been considered as a solution to explain the light Higgs mass
compared with the scale of Grand Unified Theory. Also SUSY is required in superstring
theory, a candidate of fundamental theory of physics. Since we have not observed SUSY
yet, SUSY should be realized as spontaneously broken symmetry. Many dynamical SUSY
breaking models have been proposed in the literature.

Although the theories with dynamical symmetry breaking are important in particle physics,
their analyses are difficult since many important parts of physics cannot be accessed by the
perturbation theory. Therefore we need non-perturbative methods to analyze theories with
dynamical symmetry breaking. For example, Weinberg has derived non-perturbative results
in QCD using spontaneously broken chiral symmetry and its algebra [1]. His results are
called as the Weinberg sum rules. These are relations among spectral functions, and can be
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derived if the ultraviolet (UV) theory is asymptotically free and the symmetry is broken by a
vacuum expectation value (VEV) of an operator whose mass dimension is high enough. The
ingredients for deriving the Weinberg sum rules are (well-defined) operators such as currents
and their transformation laws under the broken symmetry. In the case of chiral symmetry
breaking in QCD, by using the charge-current algebra, Weinberg has derived two sum rules.
Once the spectral functions are approximated by summation of one-particle states of hadrons,
the rules reduce to relations among hadron masses and decay constants: f2π − f2ρ + f2a1 ≃ 0
and m2

ρf
2
ρ −m2

a1f
2
a1 ≃ 0. They catch qualitative features of hadron properties correctly.

Dualities are another class of non-perturbative method to analyze the dynamical system,
which is often used in SUSY theories. For example, the Seiberg duality [2] is known to be
the electric-magnetic duality in N = 1 supersymmetric gauge theories and is often used to
analyze strongly coupled supersymmetric gauge theories. The most characteristic feature of
Seiberg duality is to relate the gauge theories with different gauge groups. It is a duality
between SU(Nc) gauge theory with quarks have SU(Nf ) flavor symmetry and SU(Nf −Nc)
gauge theory with gauge singlet mesons and dual quarks. This duality passes the nontrivial
consistency checks, anomaly matching and the existence of mapping between their moduli
spaces.

The sum rules and dualities are well-known strong methods in non-SUSY and SUSY
theories, respectively, for the analysis of strongly coupled systems. However, the sum rules
for SUSY theories or dualities in non-SUSY theories are not widely used as tools for the
analyses, although in principle one may be able to obtain new insights from such trials. In
this article we report the results of such trials; we exchange the techniques to analyze chiral
symmetry breaking and dynamical SUSY breaking. We apply the idea of Seiberg duality [2] to
chiral symmetry breaking in non-SUSY QCD, and we derive Weinberg sum rules to dynamical
SUSY breaking from the SUSY current algebra [3]. Indeed, we obtain various new insights
as explained below.

We propose the low energy effective model of QCD to analyze the chiral symmetry
breaking through the idea of Seiberg duality. Since Seiberg duality is electric-magnetic duality
of supersymmetric gauge theory, we interpret the model as the magnetic dual picture of
QCD. If magnetic description is realized in QCD, the dual Meissner effect [4, 5] is plausible
explanation of QCD confinement. The condensation of the magnetic monopole, ⟨m⟩ ̸= 0,
makes the QCD vacuum to be in the dual superconducting phase, where color fluxes sourced
by quarks are squeezed into tubes, explaining the linear potential between quarks.

The magnetic description provides us not only the physical description of color con-
finement but also the vector mesons as the dual gauge bosons. It has been known that
the masses and interactions of the vector mesons, ρ and ω, and π are well described by
spontaneous broken U(Nf ) gauge theory [6]. In the model in Ref. [6], the vector mesons
obtain their masses through the VEV of scalar particles which have both gauge and flavor
symmetries. Interpreting the vector mesons as dual gauge bosons, such scalar particles are
magnetic monopoles since they have the quantum number of dual gauge symmetry. The
condensation of the monopole with flavor symmetry describes the both color confinement
and chiral symmetry breaking. Similar phenomena have been observed in supersymmetric
gauge theories [7, 8, 9, 10].

We identify the U(Nf ) gauge symmetry as the magnetic gauge symmetry and the magnetic
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gauge bosons as vector mesons. The identification of the vector mesons as magnetic gauge
bosons is motivated by recent discussions in supersymmetric gauge theories [11, 12, 13]. (See
also [14] for an earlier discussion.) One can derive the U(Nf ) gauge theory from the SUSY
regularized QCD with massive auxiliary fields [12]. The model contains the vector and scalar
fields as well as the string as a solitonic object. Since string carries a magnetic flux in the
magnetic picture, it can be naturally identified as the confining string via electric-magnetic
duality. We examine whether such identification works at the quantitative level [15]. By using
hadron masses and coupling constants as inputs, one can calculate the string tension and the
Coulomb force between static quarks. We obtain values which are consistent with those
inferred from the quarkonium spectrum and the Regge trajectories in the hadron spectrum.

We also consider the Weinberg sum rules in dynamical SUSY breaking models. We find
that sum rules can be derived for even “incalculable models”, such as models proposed in
Refs. [16, 17] and for the models we have not found yet. When we apply the analogy to the
Hidden Local Symmetry in QCD to SUSY breaking dynamics, the rho meson counterpart
in SUSY breaking dynamics should be a spin-2 resonance. If there is a direct interaction
between the Standard Model particles and SUSY breaking dynamics, the sum rules among
higher spin resonances may be observed as the first sign of the dynamical SUSY breaking.

In next section we overview the chiral symmetry breaking and dynamical SUSY breaking
models. We construct and analyze the low energy effective theory of chiral symmetry breaking
as magnetic description of QCD in next chapter. In construction of our model we require
U(Nf ) gauge group as magnetic gauge symmetry of SU(Nc) and it contains the magnetic
monopoles with dual gauge and flavor symmetry as Higgs fields of dual theory. Those
feature can be seen in the Seiberg duality of supersymmetric models. In Section. 2.1, we
write down the Lagrangian of that model and discuss the particles which we can explain
through the model. Higgsing U(Nf ) gauge model has vortex solution [18, 19, 20, 21] and it
can be interpreted as confinement string in our model since dual charge of our model can
be interpreted as ordinary color charge. The vortex solution and its comparison to QCD
data are discussed in Section. 2.2 and 2.3 respectively. The chiral phase transition at finite
temperatures is discussed in Section. 2.4. The detailed discussion of relation between our
model and the Seiberg duality is in Section. 2.5. In Chapter. 3 we discuss the dynamical SUSY
breaking. The Weinberg sum rules of dynamical symmetry breaking are derived using the
correlators of component currents in the supercurrent multiplet. The supercurrent multiplet
is known to be well-defined in wide class of SUSY theories. From the transformation laws
of the component fields, a set of sum rules can be derived involving states with spins 0, 1/2,
1, 3/2, and 2. Their correlators and derived sum rules are discussed in Section. 3.2 and
Section. 3.3 describes relationship between the sum rules and symmetry breaking models.

1.2 Overview

The chiral symmetry breaking in QCD and dynamical SUSY breaking are the most interesting
and attractive example of dynamical symmetry breaking in particle physics. We analyze those
dynamical symmetry breaking in this article. In this chapter we overview those dynamical
symmetry breaking.
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1.2.1 Chiral symmetry breaking

In this article we discuss the dynamical symmetry breaking. The most famous example
of dynamical symmetry breaking is chiral symmetry breaking. The QCD with massless
quarks have chiral symmetry, SU(Nf )L×SU(Nf )R and it is dynamically broken to diagonal
subgroup, SU(Nf )V . Although the quarks have masses, the chiral symmetry breaking
approximately explain hadron physics. For example pions can be interpreted as its Nambu-
Goldstone boson (their masses are 139 and 135 MeV for π± and π0 respectively) and hadrons
can be classified through remaining SU(Nf )V symmetry.

Hidden Local Symmetry model

The non-linear realization of chiral symmetry is most straightforward model describing low
energy physics of QCD and contains only pions. We introduce the light hadrons such as vector
particles, rho mesons whose masses are 770 MeV, into this model as extension. Hidden Local
Symmetry (HLS) model is such model [6] which describes not only the pions but also rho
mesons as gauge bosons of hidden local symmetry.

In order to explain the HLS model, we first comment on non-linear realization of chiral
symmetry:

L =
f2π
4
Tr
(
∂µU∂

µU †
)
, (1.1)

U = exp [2iπ(x)/fπ] , π ≡ πaT a. (1.2)

where fπ is pion decay constant and T a are the generators of flavor symmetry normalized as
TrT aT b = 1

2δ
ab. The transformation low of U(x) under flavor symmetry is

U(x) → gLU(x)g†R, (1.3)

where gL and gR are elements of SU(Nf )L and SU(Nf )R respectively. This Lagrangian (1.1)
is non-linear realization of chiral symmetry and describes only pions and their interactions.
As next step we introduce rho mesons into this model as gauge bosons and derive HLS
model [6].

We divide U(x) into two new fields, ξL(x) and ξR(x), as following:

U(x) = ξ†L(x)ξR(x), (1.4)

where ξL(x) and ξR(x) transform under SU(Nf )L and SU(Nf )R respectively. Using this
notation the theory have additional SU(Nf )V symmetry and their transformation laws are

ξL(x) → hξL(x)g
†
L, ξR(x) → hξR(x)g

†
R, (1.5)

where h is element of SU(Nf )V . In order to localize this additional symmetry we introduce
the gauge fields Vµwhich transform as

Vµ → ih(x)∂µh(x)
† + h(x)Vµh(x)

†, (1.6)
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and covariant derivatives as DµξR,L = [∂µ − iVµ(x)]ξR,L. The Lagrangian is

L = − 1

4g2
F 2
µν + LA + aLV , (1.7)

LA = −f
2
π

4
Tr
(
DµξL · ξ†L −DµξR · ξ†R

)2
, (1.8)

LV = −f
2
π

4
Tr
(
DµξL · ξ†L +DµξR · ξ†R

)2
, (1.9)

(1.10)

where a and g are model parameters and Fµν are field strength derived from Vµ(x). If we fix

the gauge as ξ ≡ ξ†L = ξR, LA is identical to the Lagrangian (1.1) and LV is

LV = f2πTr

{
Vµ −

1

2i

(
∂µξ · ξ† + ∂µξ

† · ξ
)}2

, (1.11)

which vanishes when we submit solution of Vµ equation of motion.

The Lagrangian (1.7) describes the interactions between pions and rho mesons. After
rescaling g−1Vµ → Vµ we obtain

gρππ =
1

2
ag, (1.12)

m2
ρ = ag2f2π . (1.13)

The observed value of gρππ, mρ and fπ are

mρ = 770MeV, gρππ = 6.03, fπ = 92.4MeV. (1.14)

If we take the model parameter as,

a ≃ 2, g ≃ 6, (1.15)

this model well describes those masses and interactions.

1.2.2 Supersymmetry and its breaking

The dynamical SUSY breaking is another interesting example of dynamical symmetry break-
ing. We derive the relationship of parameters in low energy description of dynamical SUSY
breaking through the approach of the Weinberg sum rules [1] which is traditionally used for
chiral symmetry breaking. In this subsection, we explain basic idea of supersymmetry and
its breaking.

SUSY is the only possible extension of symmetry of S-matrix consistent with relative
quantum field theories and relates the fermionic degrees of freedom and bosonic ones. This
relation derives attractive feature, the cancellation of quantum corrections between fermion
loops and boson loops, for supersymmetric theories. This is the main motivation of SUSY at
low energy since the expected value of higgs boson mass is too large without any cancellation
of quantum loop corrections.
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If SUSY is realized in nature, there should be additional particles as the partners of
ordinary Standard Model particles which we have already observed since SUSY requires
same numbers of fermionic and bosonic degrees of freedom. For example the supersymmetric
partners of gauge bosons are gauge adjoint Majorana fermions called as gaugino and that
of quarks are the complex scalar particles. Although the SUSY has attractive feature to
explain light higgs mass, we have not observed such supersymmetric partner particles yet.
Therefore we expect SUSY is realized as spontaneous broken symmetry. If SUSY is broken,
SUSY algebra requires that the VEV of the Hamiltonian takes the non-zero positive value,
i.e. ⟨H⟩ > 0. Therefore the Hamiltonian and hence the diagonal components of energy-
momentum tensor become order parameters of SUSY breaking. In discussion of SUSY
breaking, we attention this property, ⟨H⟩ ̸= 0, and consider the scalar potential takes non-
zero value or not since the non-zero expectation values of kinetic terms of Hamiltonian and
non-zero spin particles break the Poincaré symmetry.

Since we discuss the concrete model of dynamical SUSY breaking in next subsection,
we comment how to construct the SUSY models. First of all we consider the multiplets
of SUSY. The SUSY multiplets contain same numbers of fermionic and bosonic degrees of
freedom. For example chiral multiplets contain two components Weyl spinor and a complex
scalar field and vector multiplets contain two components Weyl spinor and vector fields with
±1 helicities. The superfields describe those multiplets using additional coordinates, θα and
θ̄α̇, which are transformed like Weyl spinor under Poincaré symmetry. The chiral superfields
are the superfields which depend on only the coordinates yµ = xµ − iθσµθ̄ and θ where xµ

are ordinary space-time coordinates and the superfields satisfied real condition are called as
real superfields.

Using the transformation laws of those superfields, we can construct SUSY invariant
Lagrangian. We extract the components fields which are transformed to the total derivative
terms or zero. We find that θθ components of chiral superfields and θθθθ components of
real superfields have such transformation laws. Therefore we can define SUSY theory using
two combinations of superfields and covariant derivatives. One of them is Kähler potential
which is combinations satisfied real conditions and contains kinetic parts of Lagrangian. The
remaining one is superpotential satisfied chiral superfields conditions.

Since Hamiltonian is the order parameter of SUSY breaking, we consider the scalar
potential to check whether the model breaks SUSY or not. The concrete formula of scalar
potential is

V =
∑

for each fields

FF ∗ +
∑

for each fields

1

2
DaDa (1.16)

where F and Da are θθ and θθθθ components of chiral and real superfields respectively and
index a describes gauge index of vector field, if the theory has canonical Kähler potential which
does not derive non renormalizable interactions. The auxiliary fields F can be determined
by superpotential W as following,

F = −∂W
∗

∂ϕ∗
(1.17)

where ϕ is the complex scalar component of chiral superfield corresponding with F compo-
nent. From this scalar potential (1.16), we immediately conclude that the non-zero expecta-
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tion value of F imply the spontaneous broken SUSY. Therefore we analyze the superpotential
in the investigation of many SUSY breaking models.

In the last part of this subsection, we also comment on R-symmetry which plays an
important role in our discussion in Chapter. 3. The R-symmetry is the phase rotation
symmetry of the generators of SUSY. Since the component fields in superfields transform
each other under SUSY transformation, each components in superfields are assigned different
R-charges. This fact also remarks that the new fermionic coordinates, θα and θ̄α̇, have the
R-charges, −1 and +1 respectively.

The R-charge of real superfields are zero since real conditions determine its phase. How-
ever those of chiral superfields are determined by the concrete formula of superpotential.
The R-charge of the superpotential is 2, since the θθ component of superpotential appears in
Lagrangian.

1.2.3 SUSY breaking models

There are many kinds of dynamical SUSY breaking model, such as IYIT model, “incalculable
model” and so on. In order to image the mechanism of dynamical SUSY breaking, we briefly
overview the dynamical SUSY breaking models and simplest linear model in this subsection.

O’Raifeartaigh model

At first we comment on linear sigma model such as O’Raifeartaigh model [22], though it is
not the dynamical symmetry breaking model. The simplest example of O’Raifeartaigh model
has superpotential,

W = −kΦ1 +mΦ2Φ3 +
y

2
Φ1Φ3

2, (1.18)

where Φ’s are chiral superfields and k, m and y are model parameters. Deriving the scalar
potential through this superpotential, we get

V = |F1|2 + |F2|2 + |F3|2 ,

F1 = k − y

2
ϕ∗3

2, F2 = −mϕ∗3, F3 = −mϕ∗2 − yϕ∗1ϕ
∗
3.

(1.19)

F1 and F2 cannot be zero simultaneously and the R-charge of both F terms are 0. Therefore
in this model, the SUSY breaking operator is dimension 2 operator F and the R-symmetry
is unbroken.

IYIT model and vector-like models

The simplest mechanism of dynamical SUSY breaking is conflicts between the minimum of
the scalar potential derived from superpotential at classical level and the constraint of moduli
space which comes from quantum effect. This mechanism breaks SUSY even if theories are
vector-like such as IYIT model [23, 24] and models in Refs. [25, 26, 27].
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IYIT models [23, 24] are examples of dynamical SUSY breaking without R-symmetry
breaking. The simplest IYIT model is SU(2) SQCD with SU(4)F flavor symmetry. The
matter fields are SU(2) doublet chiral superfields, Q, and singlet superfield, S. There
representation under SU(4)F flavor symmetry are 4 and 6 corresponding with Q and S
respectively. Its classical superpotential is

Wclassical = λSijQiQj , (1.20)

where λ is model parameter and i, j are SU(4)F indices. Indices of Sij are antisymmetric, such
that Sij = −Sji, since S belongs to 6 representation of SU(4)F . The effective superpotential,
which takes into account the full non-perturbative effects, are written down by gauge-invariant
low energy degrees of freedom Mij = QiQj . The concrete form of it is

WIYIT = λSijMij +X
(
PfM − Λ4

)
, (1.21)

where X is new chiral superfield, PfM ≡ ϵijklMijMkl are Pfaffian of antisymmetric matrix
Mij and Λ is dynamical scale of SU(2) gauge interaction. The additional part of superpoten-
tial comes from the constraint, PfM = Λ4, of quantum moduli space. This is O’Raifeartaigh
type superpotential and breaks SUSY.

ISS model

ISS model [28] has metastable SUSY breaking vacuum. This model is SU(Nc) gauge theory
with Nf flavor. Its superpotential is

W = miQiQ̄i, (1.22)

where Qi and Q̄i are quarks and antiquarks, mi are their mass parameters which are assumed
to be much smaller than the dynamical scale Λ, and index i takes the integer value between 1
and Nf . We assume Nc < Nf <

3
2Nc, where there is weakly coupled description of the theory

below the dynamical scale Λ. This weakly coupled description has gauge group SU(Nf −Nc)
and meson fields Mij ∼ QiQj and dual quarks qi and q̄i as law energy degrees of freedom.
The superpotential is

W = miMii −
1

Λ̂
qiMij q̄j . (1.23)

The FMij are

FMij = −m∗
i δij +

1

Λ̂
q†i q̄

†
j . (1.24)

The FM = 0 condition for all components of Mij cannot be satisfied. The matrix qiq̄j has
at most the rank Nf − Nc since the qi (q̄j) are (anti-)fundamental field of SU(Nf − Nc).
The rank of mass matrix miδij is maximum rank, Nf . Therefore this superpotential breaks
SUSY. Once we take into account the non perturbative effect, true supersymmetric vacuum
appear far away from the origin of the meson fields, M . The life time of fake vacuum can be
arbitrarily long if mi ≪ Λ.
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incalculable model

It is suggested that SUSY is dynamically broken in the theory which has no flat direction
at the fundamental level and spontaneous broken global symmetry. If global symmetry
is spontaneously broken in SUSY theory and SUSY is not broken at low energy, massless
chiral multiplet arises since it must contain Goldstone boson, and if the superpartner of
the Goldstone boson is not itself a Goldstone boson, this massless scalar boson reflects the
existence of flat direction at low energy effective theory. It seems quite implausible that the
low energy effective theory has flat direction if the classical theory at fundamental level does
not have flat direction. This means SUSY is not preserved at low energy.

“Incalculable models” are this kinds of dynamical SUSY breaking models such as chiral
gauge theory in Ref. [16, 17]. In this kind of model one cannot obtain the low energy modes
and its superpotential via direct calculations. An example of incalculable model is SU(5)
SUSY gauge theory with two chiral multiplets whose representations are 5̄ and 10. Since
we cannot construct gauge invariant polynomial from those two chiral multiplets, this model
does not have superpotential. After some discussion we conclude that this model has no flat
direction. We explain the explicit proof of this fact according to the discussion in Ref. [17].

Since this model does not have superpotential, the classical scalar potential is determined
by Da in Eq. (1.16). The auxiliary fields Da are proportional to ϕ†T aϕ, where ϕ contains
all scalar fields and the T a are the generators of gauge group in the (generally reducible)
representation to which ϕ belongs. The necessary condition to vanish scalar potential is

ϕ†T aϕ = 0, (1.25)

for any values of a. We consider the linear combination of the generator matrices of funda-
mental representation of SU(5) and the unit matrix with complex coefficient and introduce
new basis in the space expanded by them. This new basis contain real orthogonal matrices
(aij) for (i, j = 1, .., 5) and real antisymmetric matrices (aii − ajj) for (i, j = 1, .., 5, i ̸= j)

where (aij)k
l
= δikδj

l. Using this new basis the condition (1.25) are modified as

ϕ†Aijϕ = λδij , (1.26)

where matrix Aij is the tensor product of aij corresponding with the representations of ϕ
and λ is (real) constant. Since λ comes from the unit matrix part and it is contributed to aii
with same coefficient for each value of i, Eq. (1.26) takes same value, λ, for any values of i, j.
We compute the condition (1.26) in case of SU(5) with a 5̄ (F i) and a 10 (Tij). We obtain

2(T †T )ij − F iF †
j = λδij . (1.27)

To satisfy this condition we simultaneously diagonalize the both hermitian matrices, T †T
and FF †. Since T is antisymmetric, the eigenvalue of T †T are of the form (a, a, b, b, 0) with
a, b ≥ 0. However that of FF † are single positive value. Therefore the condition (1.27) cannot
be satisfied, unless T = F = 0. This implies that this model has no flat direction.

This model also has two non anomalous U(1) symmetries. The first, we denote U(1)A
symmetry, is transforms two chiral superfields as

F → exp(3iα)F, T → exp(−iα)T. (1.28)
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The second symmetry is R-symmetry whose transformation laws are

Wα(θ) → exp(−iα)Wα(θe
iα),

F (θ) → exp(9iα)F (θeiα),

T (θ) → exp(−iα)T (θeiα),
(1.29)

where Wα is the gauge adjoint chiral multiplet which contains the gaugino and field strength
of gauge bosons. (The gaugino is contained in the lowest component of Wα and the fermionic
components of other two chiral multiplets are the θ component of them.) If those two non
anomalous U(1) symmetries are unbroken at low energy, ’t Hooft anomaly match conditions
must be satisfied. There are four anomalies in this model. Using those charge assignments∗

one can easily compute them:∑
R3 = 4976,∑
RA2 = 450,

∑
R2A = 1500,∑
A3 = 125.

(1.30)

Those anomalies should be reproduced by low energy modes if those two U(1) symmetries
are unbroken. Therefore we discuss the U(1)A charges, A, and R-charges of the chiral
superfields describing the low energy modes. There are no massless fields with conserved
U(1) charge and spins greater than 1/2 because of theorem of Case, Gasiorowicz, Weinberg,
and Witten [29]. Therefore the low energy modes can be described by the spin less chiral
superfields or spin 1/2 chiral superfields with R = −1 and A = 0. At first we discuss the
possibility of zero spin chiral superfields. From the gauge invariance we conclude that the
A = 5n, where n is some integer. Using this integer n we also constraint the R-charges as
(n + R) mod 2 = 0, since the chiral superfields at low energy can be constructed by the
chiral superfields, F , T , and Wα, as well as even numbers of covariant derivative to satisfy
Lorentz invariance. (This implies that R+A is odd for fermions.) Considering the fact that∑

(R + A)3 is odd, we cannot reproduce anomalies (1.30) with even number of fermions.
In case of other possibility of chiral superfields, A is zero and R-charge of fermion is −1.
Those charges satisfy the same condition, R + A is odd, of fermionic components of chiral
superfields.

Affleck et al. compute for the solutions of anomaly equations. There are no solutions
with three particles and −500 ≤ Ai, Ri ≤ 500. With five particles and −50 ≤ Ai, Ri ≤ 50,
there are three:

Solution 1: (−5,−26), (5, 20), (5, 24), (0,−1), (0, 9),

Solution 2: (15,−6), (−15,−4), (10, 13), (−10, 11), (5, 12),

Solution 3: (−5,−10), (5, 12), (5, 16), (0, 3), (0, 5).

(1.31)

Clearly the simplest sets of chiral superfields with these quantum numbers are extremely
complicated. It seems quite implausible that the theory realizes the fermions with those
complicated quantum numbers at low energy.

This results suggest that the R-symmetry and/or U(1)A symmetry are spontaneously
broken at low energy. If the R-symmetry is spontaneously broken, there is a simple order

∗ The charge assignments of each constituent fermions are 10, 0, and −1 for F , T , and Wα respectively.
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parameter to describe the breaking of this symmetry: λαλα. If gaugino condensation,
⟨λαλα⟩ ̸= 0, happens, R-symmetry is spontaneously broken and the Konishi anomaly [30]
implies SUSY is also broken. Since this discussion is independent on whether U(1)A is broken
or not, we consider the case that U(1)A is broken and R-symmetry is unbroken as next step.
In this case R3 anomaly matching requires at least three massless fermion fields. The simplest
solution is three fermions with R charges (17, 4,−1). Such a complicated spectrum already
seems implausible. Even if those fermions are realized at low energy, spontaneously broken
U(1)A suggests that SUSY is spontaneously broken following the first part of this discussion.
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Chapter 2

Application of Seiberg duality to
chiral symmetry breaking

The chiral symmetry is dynamically broken in QCD which confines the quarks into hadrons at
low energy. We consider the low energy description of QCD. In supersymmetric gauge theory
we obtain the low energy descriptions through the duality called as Seiberg duality [2]. We
adopt the characteristic features of Seiberg duality to construct low energy effective model
of QCD.

2.1 Magnetic linear sigma model

Seiberg duality relates infrared limits of two supersymmetric gauge theories. The gauge
theory describing magnetic description has the different gauge group from original one. This
suggest us to consider that U(Nf ) gauge theory of HLS can be interpreted as magnetic
description of QCD. Therefore we construct U(Nf ) gauge theory. This model is Higgs model
of U(Nf ) gauge theory and describes Higgsing of the magnetic gauge group as well as chiral
symmetry breaking. (See the Section 2.5 for concrete relation our model and Seiberg duality.)

2.1.1 Lagrangian

We propose the following Lagrangian to describe the magnetic picture of QCD. It is a
U(Nf ) gauge theory, and the Lagrangian possesses the U(Nf )L × U(Nf )R chiral symmetry.
The vacuum expectation values (VEVs) of the Higgs fields, HL and HR, break the chiral
symmetry down to the diagonal subgroup, U(Nf )V , providing massless Nambu-Goldstone
bosons identified as pions and η. The η meson (or η′ in the three-flavor language) can obtain
a mass through a term which breaks axial U(1) symmetry explicitly such as det(HLHR)
although we ignore it in this paper. The VEVs of the Higgs fields give masses to U(Nf )
gauge bosons. We identify these massive gauge bosons as the ρ and the ω mesons∗. The

∗In the three-flavor language, one should include K∗(892) and ϕ(1020) in the vector mesons.
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Lagrangian is given by

L = −1

4
F (ω)
µν F

(ω)µν − 1

4
F (ρ)a
µν F (ρ)µνa

+
f2π
2
Tr
[
|DµHL|2 + |DµHR|2

]
−V (HL, HR). (2.1)

The first and the second terms represent the kinetic terms of the U(1) and the SU(Nf ) parts
of the U(Nf ) gauge bosons: ωµ and ρaµ, respectively. The Higgs fields HL and HR are Nf×Nf

matrices which transform as

HL → gLHLg
−1
H , HR → gHHRg

−1
R , (2.2)

under the U(Nf )L, the gauged U(Nf ), and the U(Nf )R group elements, gL, gH , and gR,
respectively. The covariant derivatives are, therefore, given by

DµHL = ∂µHL + ig2HLρ
a
µT

a + ig1QωµHL, (2.3)

DµHR = ∂µHR − ig2ρ
a
µT

aHR − ig1QωµHR. (2.4)

Here, we normalized the SU(Nf ) generators in the fundamental representation, T a, and the
U(1) charge, Q, such that

Tr
(
T aT b

)
=

1

2
δab, (2.5)

and

Q =

√
1

2Nf
. (2.6)

The most general potential terms consistent with the symmetries are given by

V (HL,HR) = f4π

[
λ0 − λA
8Nf

(
Tr(HLH

†
L) + Tr(H†

RHR)− 2Nf

)2
+
λA
8

{
Tr
[
(H†

LHL +HRH
†
R)

2
]
− 4

(
Tr(HLH

†
L) + Tr(H†

RHR)
)}

+
λ′ − λ′′

8Nf

(
Tr(HLH

†
L)− Tr(H†

RHR)
)2

+
λ′′

8
Tr
[
(H†

LHL −HRH
†
R)

2
] ]
, (2.7)
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where we assumed the parity invariance under HL ↔ HR. This potential stabilizes HL and
HR at

⟨HL⟩ = ⟨HR⟩ = 1. (2.8)

At the vacuum, 4N2
f degrees of freedom in HL and HR break up to N2

f massless Nambu-

Goldstone bosons, N2
f longitudinal modes of the gauge bosons, N2

f massive scalar particles,

and N2
f massive pseudoscalar particles. The decay constant of the Nambu-Goldstone particles

is given by fπ at tree level. The gauge group is completely broken and the unbroken global
symmetry is vectorial U(Nf )V .

The physical modes at the vacuum can be classified by the representations of U(Nf )V ,
the spin and the parity. The masses of the physical modes are given by

singlet Nambu-Goldstone boson (η): mη = 0, (2.9)

adjoint Nambu-Goldstone boson (π): mπ = 0, (2.10)

singlet vector (ω): m2
ω = g21f

2
π , (2.11)

adjoint vector (ρ): m2
ρ = g22f

2
π , (2.12)

singlet scalar (f0): m2
S = 2λ0f

2
π , (2.13)

adjoint scalar (a0): m2
A = 2λAf

2
π , (2.14)

singlet pseudoscalar: m2
PS = 2λ′f2π , (2.15)

adjoint pseudoscalar: m2
PA = 2λ′′f2π , (2.16)

at tree level. Terms with λ′ and λ′′ are not very important in the following discussion†.

Hereafter, we take

g1 = g2 ≡ g, (2.17)

as the ρ and ω mesons have similar masses.

† The pseudoscalar particles are, in fact, CP even, and thus they are exotic states which are absent in the
hadron spectrum. One should take large λ′ and λ′′ to make the exotic states heavy so that the model can be
a low-energy effective theory of QCD. We thank M. Harada, V.A. Miransky, and K. Yamawaki for discussion
on this point.
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2.1.2 Vector mesons and pions

When we integrate out the massive scalar and pseudoscalar mesons, the model reduces to
a non-linear sigma model of Ref. [6]. The matching at tree level gives a = 1, where a is a
parameter in the low-energy Lagrangian:

L ∋ (1− a)f2π
4

Tr
[
|∂µ(ULUR)|2

]
. (2.18)

The unitary matrices UL and UR are fields to describe the Nambu-Goldstone modes including
the ones eaten by the gauge bosons. The transformation properties of UL and UR under the
gauge and flavor groups are the same as HL and HR, respectively. From the low energy data,
the preferred value of a is estimated to be a ∼ 2 with an error of 15% [31]. Although there is
a factor of two difference from the prediction, this discrepancy can be explained by including
quantum corrections and/or higher dimensional operators. As discussed in Ref. [31], the
quantum correction makes the Lagrangian parameter a(Λ) approaches to unity when we take
Λ to be large, such as a(Λ) ≃ 1.33 ± 0.28 for Λ = 4πfπ ∼ 1 GeV. Moreover, the quantum
corrections from the scalar loops give positive contributions to the gauge boson masses, that
further reduces the a(Λ) parameter. Therefore, one can think of the Lagrangian in Eq. (2.1)
as the one defined at a high energy scale such as the mass scale of the scalar mesons.

However, the large quantum corrections result in predictions which depend on the choice
of input physical quantities when we work at tree level, although the differences should be
canceled after including quantum corrections. In this case, one should choose a set of physical
quantities which gives small enough coupling constants so that the use of the perturbative
expansion is valid and the tree-level results are reliable.

The Lagrangian has four parameters relevant for the discussion: g, fπ, λ0, and λA. The
λ0 and λA parameters can be obtained from the scalar masses as we discuss later. The gauge
coupling constant g and the fπ parameter can be estimated from two of physical quantities.
The well-measured physical quantities which can be used as input parameters are [31]:

gρ = (340 MeV)2, gρππ = 6.0, Fπ = 92 MeV, mρ = 770 MeV, (2.19)

where gρ and gρππ are the decay constant and the coupling to two pions of the ρ meson
measured by ρ→ e+e− and ρ→ ππ decays, respectively, and Fπ is the decay constant of the
pion. The relations to the Lagrangian parameters at tree level are given by

gρ = gf2π , gρππ =
g

2
, Fπ = fπ, mρ = gfπ. (2.20)

Among them, the pair to give the smallest gauge coupling is gρ and mρ such as

g =
m2
ρ

gρ
= 5.0, fπ =

gρ
mρ

= 150 MeV. (2.21)

The value g = 5.0 means that the loop expansion parameter, g2Nf/(4π)
2, is of order 30%

whereas other choices of input quantities give 90 − 210% for Nf = 2. Therefore, the choice
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above is unique to make a quantitative prediction. Indeed, the values in Eq. (2.21) are close
to the ones evaluated at one-loop level. In Ref. [31], the parameters at a scale Λ ∼ 1 GeV is
obtained to be g(Λ) ∼ 3.3−4.2, fπ(Λ) ∼ 130−150 MeV, and a(Λ) ∼ 1.0−1.5, which reproduce
all the physical quantities in Eq. (2.19). We use the values of g and fπ in Eq. (2.21) in the
following discussion. However, we should bear in mind that there are theoretical uncertainties
at the level of a factor of two in the results obtained at the classical level.

2.1.3 Scalar mesons

In the hadron spectrum, there are light scalar mesons, such as σ, κ, f0(980) and a0(980),
which have not been understood as qq̄ states in the quark model since they are anomalously
light. We propose to identify them as the Higgs bosons in this linear sigma model. We do
not consider heavier scalar mesons as candidates since otherwise the formulas in Eqs. (2.13)
and (2.14) indicate that the coupling constants are large and the perturbation theory would
not be applicable.

By taking the masses of f0(980) and a0(980) as input quantities
‡, i.e.,

mS = mA = 980 MeV, (2.22)

Eqs. (2.13) and (2.14) give the coupling constants λ0 and λA as√
λ0 =

√
λA = 4.6, (2.23)

at tree level, where fπ in Eq. (2.21) is used. We use these values of coupling constants for
later calculations.

2.2 Vortex strings

Since the model has a spontaneously broken gauged U(1) factor, there is a vortex string as a
classical field configuration. The string carries a quantized magnetic flux. Below we construct
a solution with a unit flux, which will be identified as the confining string.

There have been similar approaches to the confinement in QCD. The Ginzburg-Landau
models (the magnetic Higgs models) are constructed from phenomenological approaches [19,
32, 33] or based on the QCD Lagrangian [34, 35] through the abelian projection [36], and
the stable vortex configurations are identified as the confining string. In supersymmetric
theories, there have been numbers of discussion on the vortex configurations [20, 21, 37, 38,
39, 40, 41, 42]. In particular, the non-abelian string [20, 21], which we discuss shortly, has
been extensively studied as a candidate of the confining string.

Our model combines Higgsing of the magnetic gauge group and chiral symmetry breaking.
As discussed in the previous section, the model parameters are fixed by physical quantities
such as masses and couplings of hadrons. Therefore, the properties of the strings such as the
string tension can be evaluated quantitatively. Below, we explicitly construct a classical field
configuration of the vortex string.

‡Since σ and κ are quite broad resonances, we do not use their masses as inputs.
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2.2.1 Non-abelian vortex solutions

In this model, there are string configurations called the non-abelian vortices which carry the
minimal magnetic flux. By defining the following gauge field,

Aijµ =
√
2
(
Qωµδij + T aijρ

a
µ

)
, (2.24)

there is a vortex configuration made of, e.g., the i = j = 1 component rather than the overall
U(1) gauge field ωµ. Compared to the string solution made of ωµ, this non-abelian string
carries only 1/Nf of the magnetic flux and thus it is stable.

In constructing the vortex configurations, we follow the formalism and numerical methods
of Ref. [43], where the potential between a monopole and an anti-monopole is evaluated
numerically in the abelian-Higgs model. Classical field configurations are constructed by
numerically solving field equations while imposing the gauge field to behave as the Dirac
monopoles [44] as approaching to their locations.

We consider a non-abelian vortex solution, where the magnetic flux is sourced by a Dirac-
monopole and a Dirac-antimonopole configurations of the Aijµ gauge field with i = j =
1, representing non-abelian monopole configurations. These monopole and anti-monopole
are not present as physical states in the model of Eq. (2.1), and we introduce them as
field configurations with an infinite energy, i.e., static quarks§. The object we construct
here, therefore, corresponds to a bound state of heavy quarks such as the charmonium and
the bottomonium. In order to describe light mesons, the light quarks should be present
somewhere in the whole framework. We discuss a possible framework in Section 2.5.

In the cylindrical coordinate, (ρ, φ, z), where the monopole and the antimonopole located
on the z-axis at z = ±R/2, we denote (AD)

ij
µ as the configuration to describe the monopole-

antimonopole system. They are given by

(AD)
ij
0 = 0, (2.25)

Aij
D = 0, except for i = j = 1, (2.26)

and

A11
D = aDφ̂ = −Nflux√

2g

1

ρ

[
z −R/2

[ρ2 + (z −R/2)2]1/2
− z +R/2

[ρ2 + (z +R/2)2]1/2

]
φ̂. (2.27)

The number of the flux, Nflux, is quantized as Nflux ∈ Z by the Dirac quantization condi-
tion [44]. Equivalently, the magnetic charge of the monopole is quantized as

qm =
4πNflux√

2g
. (2.28)

§In U(N) gauge theories with Higgs fields in the adjoint representation, there are monopoles as solitonic
objects which are identified as junctions of vortices [45, 46] rather than the endpoints. The monopoles we are
considering should not be confused with such configurations.
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The gauge field is well-defined everywhere except for the interval −R/2 ≤ z ≤ R/2 on the
z-axis. The Dirac quantization condition ensures that the interval is covered in a different
gauge. For constructing a vortex configuration, the following ansatz are taken:

Aijµ = Aiµδ
ij , Aiµ = (AD)

ii
µ + aiµ, (2.29)

ai0 = 0, ai = ai(ρ, z)φ̂, (2.30)

(HL)ij = (HR)ij = ϕi(ρ, z)δij , ϕi = ϕ∗i . (2.31)

With the ansatz, the Lagrangian is reduced to

L = −1

4

∑
i

F iµνF iµν

+f2π
∑
i

(∂µϕi)
2 +

f2π
2
g2
∑
i

ϕ2i (A
i
µ)

2

− λ0
2Nf

f4π

(∑
i

ϕ2i −Nf

)2

− λA
2Nf

f4π

Nf

∑
i

ϕ4i −

(∑
i

ϕ2i

)2
 , (2.32)

and the field equations are obtained as

∇2ϕi −
g2

2
(ai + aDδ

i1)2ϕi =
λ0
2Nf

∑
j

ϕ2j −Nf

ϕi +
λA
2Nf

Nfϕ
2
i −

∑
j

ϕ2j

ϕi,(2.33)

(
∇2 − 1

ρ2

)
ai =

g2

2
(ai + aDδ

i1)ϕ2i , (2.34)

where we take the unit of

√
2fπ = 1. (2.35)

For i ̸= 1, ai = 0 is the solution.
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The potential energy between the monopole and the anti-monopole is given by

V (R) = −
2πN2

flux

g2R

+

∫
d3x

−g2
4
ϕ21(a

1 + aD)a
1 − λ0

8Nf

(∑
i

ϕ2i

)2

−N2
f


− λA
8Nf

Nf

∑
i

ϕ4i −

(∑
i

ϕ2i

)2
 . (2.36)

The first term comes from the magnetic Coulomb potential, VCoulomb = −q2mag/4πR. The
second term is the contribution from the non-trivial field configurations, and gives the linear
potential between a monopole and an antimonopole for a large R. The self-energies of the
Dirac monopoles are subtracted, and thus this expression provides a finite quantity.

For λ0 = λA, which is the case as in Eq. (2.23), the problem simplifies to the case of the
abelian string. The field equations gives

ϕi = 1, for i ̸= 1, (2.37)

as solutions and the equations for ϕ1 and a1 becomes

∇2ϕ1 −
g2

2
(a1 + aD)

2ϕ1 =
λ0
2

(
ϕ21 − 1

)
ϕ1, (2.38)

(
∇2 − 1

ρ2

)
a1 =

g2

2
(a1 + aD)ϕ

2
1. (2.39)

The potential energy is in this case given by

V (R) = −
2πN2

flux

g2R
+

∫
d3x

[
−g

2

4
ϕ21(a

1 + aD)a
1 − λ0

8

(
ϕ41 − 1

)]
. (2.40)

The Nf dependence disappears from the potential energy.

2.2.2 Numerical results

We numerically solve Eqs. (2.38) and (2.39) by following the procedure explained in Ref. [43].
The partial differential equations are solved by using the Gauss-Seidel method. The obtained
field configurations are used to evaluate the potential energy in Eq. (2.40).

In the unit of Eq. (2.35), the potential energy V (R) times the gauge boson mass mρ can
be obtained as a function ofmρR. In this normalization, we have a single parameter κ defined
by

κ =
mS√
2mρ

=

√
λ0
g

=

√
λA
g

. (2.41)
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Figure 2.1: Potential energy of the monopole-antimonopole system for κ = 0.1, 0.9, 1.7 and
2.5. The fittings with the Cornell potential are superimposed (dashed lines).

This corresponds to the Ginzburg-Landau parameter of superconductors. The numerical
results are shown in Fig. 2.1, where the potential energies for Nflux = 1 are drawn with four
choices of parameters, κ = 0.1, 0.9, 1.7, and 2.5. We see a linear potential in a large R
region. By fitting the slope of the linear regime, one can extract the string tension σ̂ in
the unit of Eq. (2.35). We show in Fig. 2.2 the tension σ̂ as a function of κ. These results
are all consistent with Ref. [43], except that the unit of the flux is different due to the non-
abelian feature of the vortex. For κ = 1/

√
2, the field equations reduce to a set of first order

differential equations whose solutions are known as the BPS state. In this case, the tension
is simply given by σ̂ = π, which we have confirmed with an accuracy of 0.1− 0.2 percent.

2.3 Comparison to QCD data

Now we compare the numerical results with data from experimental measurements. We
identify the non-abelian Dirac monopoles with the minimal magnetic charge, Nflux = 1, as
static quarks, since otherwise the string with Nflux = 1 is stable and such a stable string is
absent in QCD. The potential between a quark and an antiquark with a distance R can be
parametrized by the following form:

V (R) = −A
R

+ σR. (2.42)

This potential, called the Cornell potential, well fits the quarkonium spectrum with param-
eters:

A ∼ 0.25− 0.5,
√
σ ∼ 430 MeV. (2.43)
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Figure 2.2: The string tension σ̂ in the unit of 2f2π as a function of the Ginzburg-Landau
parameter κ.

A similar value of the string tension σ is obtained from the Regge trajectories of the hadron
spectrum. The lattice simulations also reproduce the shape of the potential with A ∼ 0.25−
0.4 [47, 48, 49] and

√
σ/mρ ∼ 0.50−0.55 [50]. In perturbative QCD, at tree level, the Coulomb

part V ∼ −A/R is obtained from the one-gluon exchange between quarks. At a higher loop
level, the shape of the potential approaches to the form in Eq. (2.42) [51]. Computations at
three-loop level have been performed recently in Refs. [52, 53], and it is reported that the
result is in good agreement with lattice simulations up to a distance scale R ≲ 0.25 fm [52].
See, for example, Ref. [54] for a review of the static QCD potential.

The Cornell potential also well fits the numerically obtained potential in the previous
section. We superimpose the fittings with the Cornell potential in Fig. 2.1 as dashed lines.

2.3.1 Coulomb potential

In the electric picture, i.e., in QCD, the Coulomb part V ∼ −A/R is obtained with

A =
N2
c − 1

2Nc

g2s
4π
, (2.44)

where the strong gauge coupling gs depends on R through renormalization.

By duality, in the magnetic picture, the Coulomb term is accounted by a magnetic
Coulomb force between monopoles. By using the magnetic charge in Eq. (2.28) withNflux = 1,
the coefficient is given by

A =
q2m
4π

=
2π

g2
. (2.45)
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This corresponds to the first term in Eq. (2.40). Using the value of g in Eq. (2.21), we obtain

A = 0.25. (2.46)

The value is consistent with Eq. (2.43). This is already an interesting non-trivial test of the
hypothesis that the vector mesons are the magnetic gauge fields.

Note here that the Coulomb term in Eq. (2.40) arises from a solution of the classical field
equations with boundary conditions given by the Dirac monopoles. Although the vacuum
is in a Higgs phase, the Coulomb force dominates when the distance R is small compared
to the inverse of the gauge boson mass. In the world-sheet theory of the string, it has been
known that the Coulomb force can be reproduced as the Lüscher term which stems from
the boundary conditions of the string world sheet [55]. Interestingly, the Lüscher term gives
A = π/12 ∼ 0.26 which is pretty close to the above estimation.

2.3.2 Linear potential

As we have seen already, the linear potential is obtained as in Fig. 2.1. The normalized string
tension σ̂ is shown in Fig. 2.2 as a function of κ. From Eqs. (2.21), (2.23) and (2.41), the κ
parameter is given by

κ = 0.90. (2.47)

With this value, we obtain from Fig. 2.2,

σ̂ = 3.5. (2.48)

By using fπ in Eq. (2.21) to recover the mass dimension, we obtain

√
σ = 400 MeV. (2.49)

This is close to
√
σ in Eq. (2.43). The prediction is not very sensitive to κ. For example,

κ = 0.6− 1.2 gives
√
σ = 360− 420 MeV. Although we expect a large theoretical uncertainty

from quantum corrections, it is interesting to note that the estimated string tension is in the
right ballpark. The hypothesis that the ρ and ω mesons as magnetic gauge bosons and light
scalar mesons as the Higgs bosons is found to be consistent with the experimental data.

It is important to notice that there is no dependence on Nf in the field equations (2.38),
(2.39) or in the expression of the QCD potential (2.40). It is essential to have this property
that the string is non-abelian. The dimensionless quantity

√
σ/mρ is, in this case, predicted

to be Nf independent, which is consistent with the results from the lattice QCD [50].

2.4 QCD phase transition

At a finite temperature, QCD phase transition takes place. The lattice simulations support
that deconfinement and chiral symmetry restoration happen at similar temperatures. The
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chiral transition temperature has been computed in lattice simulations, and found to be
Tc ∼ 150− 160 MeV [56, 57] for physical quark masses.

A simple estimate of the transition temperature is possible in the magnetic model in
Eq. (2.1). The deconfinement and the restoration of the chiral symmetry both correspond
to the phase transition to the vacuum with HL = HR = 0, which is stabilized by thermal
masses at a finite temperature. When we define the transition temperature Tc to be the one
at which the Higgs fields become non-tachyonic at the origin, the temperature is obtained to
be [58]

Tc =

√
8

ηNf
fπ, (2.50)

where the factor η is a dimensionless quantity given by

η = 1 +
2m2

ρ

m2
S

+
2m2

PS +m2
S

3m2
S

, (2.51)

at the lowest level of perturbation. Each term in the η parameter represents the contribution
to the thermal masses of the Higgs fields from different particles. The first term, the unity,
is the contribution from the scalar mesons. One should add up all the particles which obtain
masses from the VEVs of HL and HR. The estimation of η is quite non-trivial since there
are particles which we did not consider, such as nucleons, and also the summation should be
weighted by the abundance in the thermal bath, which may be affected by their large thermal
masses, i.e., there may be large higher order corrections.

By putting fπ in Eq. (2.21), we obtain

Tc =


170 MeV ×

(η
3

)−1/2
, (Nf = 2),

140 MeV ×
(η
3

)−1/2
, (Nf = 3).

(2.52)

The value η ∼ 3 seems to give temperatures consistent with ones from lattice simulations. It
is interesting that η ∼ 3 is obtained from Eq. (2.51) when we take mPS around the cut-off
scale, Λ ∼ 1 GeV.

The formula in Eq. (2.50) predicts that the transition temperature is inversely propor-
tional to

√
Nf . This is numerically consistent with the flavor dependence of Tc studied in

Ref. [50] for two and three flavors in the chiral limit. There, Tc is obtained to be 173±8 MeV
and 154± 8 MeV for two and three flavors, respectively. A simulation with a larger number
of Nf should be able to test this prediction.

2.5 Non-supersymmetric duality from the Seiberg duality

The assumption in the whole framework is the electric-magnetic duality between the SU(Nc)
gauge theory with Nf massless quarks and U(Nf ) gauge theory with bosonic Higgs fields.
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SU(Nc) SU(Nf )L SU(Nf )R U(1)B SU(Nc)V U(1)B′ U(1)R

Q Nc Nf 1 1 1 0 (Nf −Nc)/Nf

Q Nc 1 Nf −1 1 0 (Nf −Nc)/Nf

Q′ Nc 1 1 0 Nc 1 1

Q
′

Nc 1 1 0 Nc −1 1

Table 2.1: Quantum numbers in the electric picture.

The replacement of Nc in the gauge group with Nf is familiar in supersymmetric gauge
theories. For example, the Seiberg duality in the N = 1 supersymmetric theories replaces
SU(Nc) gauge group by SU(Nf − Nc) in the magnetic picture. We explain here a possible
connection between the Lagrangian in Eq. (2.1) and the Seiberg duality, which is discussed in
Ref. [12]. We extend the discussion of Ref. [12] regarding the vortex string and interpretations
of constituent quarks.

It is obvious that the non-supersymmetric QCD can be obtained from supersymmetric
QCD’s by adding masses to superpartners and send them to infinity. What is non-trivial is if
a vacuum in the theory with small masses of superpartners is continuously connected to the
non-supersymmetric theory when we send the masses to large values. Such a continuous path
may or may not exist depending on the space of parameters defined by a supersymmetric
theory to start with. Recently, it is found in Ref. [12] that there is an explicit model which
reduces to QCD in a limit of parameters and has a vacuum with the same structure as the
low energy QCD in a region of parameters where the Seiberg duality can be used. By hoping
that the region extends to the QCD limit, one can study non-perturbative features of QCD,
such as strings, at the classical level in the dual picture.

The proposed mother theory is N = 1 supersymmetric QCD with Nc colors and Nf +Nc

flavors. By giving supersymmetric masses to the extra Nc flavors and soft supersymmetry
breaking masses for gauginos and scalar quarks, one obtains non-supersymmetric QCD with
Nc colors andNf flavors. The global symmetries and quantum numbers are listed in Table 2.1,
where SU(Nc) is the gauge group. The U(1)B′ symmetry is absent in the actual QCD, and will
be spontaneously broken in the vacuum we discuss later. In order to avoid the appearance of
the unwanted Nambu-Goldstone mode associated with this breaking, we gauge U(1)B′ . The
SU(Nc)V group is also an artificially enhanced symmetry, and thus we gauge it. Since the
added gauge fields only interact with extra flavors, the limit of large mass parameters still
gives the non-supersymmetric QCD we wanted.

The magnetic picture of the mother theory is an SU(Nf ) gauge theory withNf+Nc flavors
and meson fields. The particle content and the quantum numbers are listed in Table 2.2. It
was found in Ref. [12] that there can be a stable vacuum outside the moduli space by the
help of the soft supersymmetry breaking terms. The vacuum is at ⟨q⟩ = ⟨q̄⟩ ̸= 0, where
SU(Nf )×SU(Nf )L×SU(Nf )R is spontaneously broken down to a single vectorial SU(Nf )V
symmetry, that is the isospin symmetry. The symmetry breaking provides massless pions
and simultaneously gives masses to the SU(Nf )×U(1)B′ gauge fields. Those massive gauge
fields can be identified as the vector mesons, ρ and ω.
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SU(Nf ) SU(Nf )L SU(Nf )R U(1)B SU(Nc)V U(1)B′ U(1)R

q Nf Nf 1 0 1 Nc/Nf Nc/Nf

q Nf 1 Nf 0 1 −Nc/Nf Nc/Nf

Φ 1 Nf Nf 0 1 0 2(Nf −Nc)/Nf

q′ Nf 1 1 1 Nc −1 +Nc/Nf 0

q′ Nf 1 1 −1 Nc 1−Nc/Nf 0

Y 1 1 1 0 1 + Adj. 0 2

Z 1 1 Nf −1 Nc 1 (2Nf −Nc)/Nf

Z 1 Nf 1 1 Nc −1 (2Nf −Nc)/Nf

Table 2.2: Quantum numbers in the magnetic picture.

Although the deformation with massive Nc flavors provides us with a QCD-like vacuum,
there are several unsatisfactory features as noted in Ref. [12]. Here we discuss those issues
and consider a possible interpretation. In the above discussion, it sounds somewhat strange
that the U(1)B′ gauge field is identified as the ω meson which is in the same nonet as the
ρ meson, whereas the U(1)B′ seems to have a completely different origin from the SU(Nf )
magnetic gauge group. Second, in the particle content in Table 2.2, there are fields which
have U(1)B charges ±1, i.e., “quarks.” These degrees of freedom do not match the picture of
confining since they look like free quarks. Finally, there is a vortex string associated with the
spontaneous breaking of U(1)B′ , which we would like to identify as the QCD string. However,
since the stability of the string is ensured by topology, it is stable even in the presence of the
massless quarks. The real QCD string should be unstable since a pair creation of the quarks
can break the string.

A possible interpretation is emerged from the consideration of the origin of U(1)B′ in the
magnetic picture. As one can notice from the quantum numbers, U(1)B′ in the electric and
magnetic pictures look different. In particular, the gauged global symmetry in the electric
picture is U(Nc) ≃ (SU(Nc) × U(1))/ZNc whereas one cannot find a U(Nc) gauge group in
the magnetic picture. This leads us to consider a possibility that there is an additional U(1)
factor as a part of the magnetic gauge group. The actual magnetic gauge group is U(Nf ),
and it is broken by a VEV of a field with the quantum number of Q′NcqNf so that U(1)B′ in
the magnetic picture is an admixture of two U(1)’s. Namely, the duality of the gauge group
goes through an intermediate step:

SU(Nc)× U(Nc) (electric) → U(Nf )× U(Nc) (magnetic)

→ SU(Nf )× SU(Nc)V × U(1)B′ (magnetic). (2.53)

Under this assumption, when we send the gauge coupling of U(1)(⊂ U(Nc)) in the electric
picture to be a large value, the gauge boson of the U(1)B′ factor in the magnetic picture is
mostly the one from the U(Nf ) magnetic gauge group. The identification of the ω meson
becomes reasonable since the origin is now the same as the ρ meson.

Since U(1)B′ is spontaneously broken by ⟨q⟩ = ⟨q̄⟩ ̸= 0, there is a stable vortex string
which can be explicitly constructed as a classical field configuration in the magnetic picture.
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(electric charges)/e (magnetic charges)/(2π/e)

q1 1 0

q̄1 −1 0

q′1 1− 1/Nc 1

q̄′1 −1 + 1/Nc −1

q′I ̸=1 −1/Nc 1

q̄′I ̸=1 1/Nc −1

Z 1/Nc −1

Z̄ −1/Nc 1

Table 2.3: Electric and magnetic charges under a U(1) factor in SU(Nf )× U(1)B′ .

The duality steps (2.53) imply that there is another string in the magnetic picture: one
associated with U(Nf ) and another with U(Nc). However, if we go back to the electric
picture, there is only a single U(1) factor in U(Nc), which can only give a single kind of
string. This sounds like a mismatch of two descriptions.

We propose here that the U(Nf ) string, made of q, q̄, ρ, and ω, is in fact unstable since
the “quarks” can attach to the endpoints, and thus that is the one which should be identified
as the QCD string. The U(Nc) string is stable, but should decouple in the QCD limit. As
mentioned already, there are “quarks” in the magnetic picture, q′, q̄′, Z and Z̄. They are
natural candidates of the “quarks” which attach to the U(Nf ) string. In turn, if they are the
degrees of freedom at the string endpoints, a linear potential prevents them to be in the one-
particle states. Therefore, the “quarks” disappear from the spectrum. This interpretation
seems to give resolutions to all the unsatisfactory features raised before: the nature of ω, free
quarks, and the stable string.

For this interpretation to be possible, q′, q̄′, Z and Z̄ should carry magnetic charges of
U(Nf ) in addition to the quantum numbers listed in Table 2.2. Since we assume the electric-
magnetic duality between the SU(Nc) and the U(Nf ) gauge groups, it is equivalent to say
that q′, q̄′, Z and Z̄ should be colored under SU(Nc), i.e., Z and Z̄ are the quarks (the
non-abelian monopoles in the magnetic picture) and q′ and q̄′ are non-abelian dyons. It is
interesting to notice that they indeed have Nc degrees of freedom.

In the SU(Nf ) × U(1)B′ magnetic gauge group, there is a U(1) factor which rotates a
particular component of qI and q̄I , where I is the index of the SU(Nf ) gauge group. The
vortex string associated with such a U(1) factor is called the non-abelian string and the
one with the minimal magnetic flux is stable. Therefore, the “quarks” should attach to
this string. When we take q1 is the one which rotates under the U(1) factor and normalize
the charge of it as unity, the charges of other charged fields are listed in the left column
of Table 2.3. By assuming that q and q̄ have no magnetic charges, the Dirac-Schwinger-
Zwanziger condition [59, 60] allows the magnetic charges listed in the right column of Table 2.3
as the minimal magnetic charges divided by (2π/e) with e being the gauge coupling constant.
Interestingly, they agree with the “color charge” of SU(Nc)V up to a normalization, which
may be indicating that a part of SU(Nc)V in the magnetic picture descends from the
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electric gauge group, SU(Nc). For dynamical fields with both electric and magnetic quantum
numbers, we loose the standard Lagrangian description of the model. However, since the
sector of q, q̄ (and Φ) is all singlet under SU(Nc)V and is decoupled from the colored sector,
there can be a Lagrangian to describe it, and we assume that is the model in Eq. (2.1).

It is amusing to see that many ingredients to describe the hadron world are present in this
model, such as the vector mesons, the pions, the light scalar mesons, the QCD string, and
the constituent quarks. This is somewhat surprising since the Seiberg duality is supposed
to describe only massless degrees of freedom. The non-trivial success of the model may be
indicating that the addition of Nc massive quarks is a right direction to fully connect the
electric and magnetic pictures of N = 1 supersymmetric QCD.
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Chapter 3

The Weinberg sum rules for
dynamical SUSY breaking

In previous chapter we discuss the dynamical chiral symmetry breaking and construct the
effective model of QCD as the magnetic description. In this chapter we consider the dynamical
SUSY breaking, the other interesting example of dynamical symmetry breaking. In particular,
we derive the Weinberg sum rules among particles in the dynamical sector.

3.1 Weinberg sum rules

In this section, we explain the procedure of deriving sum rules rather in detail. The starting
point is the symmetry transformation of current correlator∗ as

Πµν(x− y) ≡

⟨
δQ [jµ1 (x)j

ν
2 ( y)]

⟩
, (3.1)

where δQ implies the symmetry transformation corresponding with spontaneous broken sym-
metry. This current correlator should vanish if the symmetry is unbroken.†

We use the momentum space in later discussions and we simply describe Πµν(k) as the
Fourier transformation of Πµν(x− y). We extract the Lorentz structure and define the scalar
part of this correlator as

Πµν(k) = kµkνΠ1(k
2)− k2ηµν Π2(k

2), (3.2)

where Π1(k
2) and Π2(k

2) are only dependent on k2 since they are Lorentz scalar.

We extend the function Π1(s) to a complex plane; it has a branch cut on the real and
positive value of s. By the Cauchy integral theorem, we obtain the following identity:

0 =

∫
CA

ds snΠ1(s) +

∫
CB

ds snΠ1(s), (3.3)

∗We define ⟨· · · ⟩ by the path integral, and thus they are Lorentz covariant.
†In original Weinberg sum rules, we use axial part of chiral symmetry transformation as δQ and vector and

axial vector currents as jµ1 and jµ2 respectively.
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Re(s)

Im(s)

s0

CB

O

CA

Figure 3.1: Contour of the integral.

where n is an integer. The paths CA and CB are shown in Fig. 3.1 where s0 is an arbitrary
real and positive number.

The Weinberg sum rules can be obtained by using the operator product expansion (OPE)
for the second integral. We here consider an asymptotically free theory where the OPE at a
UV scale can be done perturbatively. Let O be the lowest dimensional operator whose VEV
breaks symmetry we consider, and d be the mass dimension (defined by the classical scaling
in the UV theory) of O. If we determine dΠ as the dimension of Π1, it can be expanded as

Π1(s) ≃
cO⟨O⟩

(−s)(d−dΠ)/2
+ · · · , (3.4)

where · · · are higher order terms in the 1/(−s) expansion and cO is a dimensionless coefficient.
Here (d − dΠ)/2 should be an integer since it can be obtained by a calculation of Feynman
diagrams. If (d − dΠ)/2 is not an integer, such an operator either does not contribute or
should be supplied by some dimensionful parameter in the Lagrangian. The second integral
in Eq. (3.3) vanishes for n < (d− dΠ)/2− 1.

On the other hand, the function Π1(s) for the real and positive s can be expressed in
terms of a spectral function as follows:

Π1(s) = −
∫ ∞

0
dσ2

ρ(σ2)

s− σ2 + iϵ
+∆(s), (3.5)

where ∆(s) represents contact terms which are regular everywhere. By using the expression
in Eq. (3.5), the first integral in Eq. (3.3) reduces to

2πi

∫ s0

0
ds snρ(s) (3.6)

31



for n ≥ 0. For n < 0, the integral depends on ∆(s).

In asymptotically free theories, the use of the OPE is justified when (−s) is sufficiently
large. Therefore, the quantity (3.6) should asymptotes to zero for s0 → ∞ if n is within the
window:

0 ≤ n <
d− dΠ

2
− 1. (3.7)

In this window, we obtain,∫ ∞

0
ds snρ(s) = 0, (3.8)

for each integer value of n satisfied the condition (3.7). Approximating the spectrum function,
ρ(s), as the sum of low energy effective modes, we obtain the sum rules which relates among
the physical quantities of such low energy effective modes.

To obtain concrete image of this derivation, we explain the derivation of the sum rules in
QCD as example. In QCD case, the current correlator is

Πµν abc
QCD (x− y) ≡

⟨
δaQA

[
jµbV (x) jνcA (y)

] ⟩
, (3.9)

where δQA
implies the transformation of axial part of chiral symmetry, jµV and jµA are vector

and axial vector currents respectively, and a, b, and c, denote the flavors indices. From the
current algebra, we easily derive the following formula,

Πµν abc
QCD (x− y) = ifabd

⟨
jµdA (x) jνcA (y)

⟩
+ ifacd

⟨
jµbV (x) jνdV (y)

⟩
, (3.10)

where fabc is structure constant of flavor symmetry group and each current correlators
proportional to δdc and δbd respectively. Extracting Lorentz and group structure we obtain
kµkν part of this current correlator as,

ΠQCD1(k
2) = ΠAA(k

2)−ΠV V (k
2), (3.11)

where the ΠAA and ΠV V correspond with first term and second term of Eq. (3.10) respectively
and negative sign of second term reflects the antisymmetry property of structure constant,
facb = −fabc. The mass dimension of Eq. (3.11) is zero (i.e. dΠ = 0). The lowest dimension
operator appeared in the OPE of Eq. (3.11) is (q̄q)2 whose dimension is six (i.e. d = 6).
Therefore we obtain two sum rules as∫ ∞

0
ds (ρAA(s)− ρV V (s)) = 0, (3.12)∫ ∞

0
ds s (ρAA(s)− ρV V (s)) = 0, (3.13)

where ρAA(s) and ρV V (s) are spectrum functions corresponding with ΠAA(s) and ΠV V (s)
respectively. As final step we approximate those spectrum functions as sum of the low energy
modes as following:

ρAA(s) = f2πδ(s) + f2a1δ(s−m2
a1), (3.14)

ρV V (s) = f2ρ δ(s−m2
ρ). (3.15)
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Using this approximate formula of spectrum functions, we obtain the Weinberg sum rules,

f2π − f2ρ + f2a1 ≃ 0, (3.16)

m2
ρf

2
ρ −m2

a1f
2
a1 ≃ 0. (3.17)

3.2 Supercurrent and sum rules

In this section we derive the sum rule for physical quantities in the low energy effective theory
of dynamical SUSY breaking using the algebra of the supercurrent multiplet. Same analysis
can be applied to the General Gauge Mediation (GGM) [61] formalism which describe the
soft SUSY breaking terms as the current correlators. The sum rules for GGM are discussed
in Appendix. A.

3.2.1 Supercurrent and correlators

In a wide class of supersymmetric field theories, one can define a real supermultiplet called
the supercurrent (Jµ) [62] (See [63] for a recent discussion). It is composed of the SUSY
current (Sµα), the symmetric energy momentum tensor (Tµν), the R-current (jµ), and a
scalar operator x. The θ and θ̄ expansion of supercurrent are as following:

Jµ(x, θ, θ̄) =jµ + iθ

(
Sµ +

i√
2
σµψ̄

)
− iθ̄

(
S̄µ +

i√
2
σ̄µψ

)
+
i

2
θθ∂µx

† − i

2
θθ∂µx+ θσν θ̄

[
2Tµν −

2

3
Tρ

ρηµν −
1

2
ϵµνρσ∂

ρjσ
]

+ iθθ

[
− i

2
∂νSµσ

ν +
1

2
√
2
∂νψ̄σ̄νσµ

]
θ̄

− iθθθ

[
i

2
σν∂ν S̄µ +

1

2
√
2
σµσ̄ν∂

νψ

]
+ θθθθ

[
−1

2
∂µ∂

νjν +
1

4
∂2jµ

]
.

(3.18)

The R-current defined in this way is not conserved unless the theory is conformal. The
transformation laws of those component fields under SUSY are given by

δQjµ = −iη
(
Sµ −

1

3
σµσ̄

νSν

)
, (3.19)

δQx = −2

3
iησµS̄µ, (3.20)

δQx
† = 0, (3.21)

δQSµα = 2(σµνη)α∂
νx†, (3.22)

δQS̄
α̇
µ = i(σ̄νη)α̇

[
2Tµν + i∂νjµ − iηµν∂ · j − 1

2
ϵµνρσ∂

ρjσ
]
, (3.23)

δQT
µν = −1

2
[ησρµ∂ρS

ν + ησρν∂ρS
µ] . (3.24)
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Correlators R-charge Dim. of O

C1, C6, C7 0 d0

C2, C3, C5, C8 2 d2

C4 4 d4

Table 3.1: R-charges associated with each correlator. d0, d2 and d4 denote the dimension
of the lowest-dimension SUSY breaking operator which contribute to the OPE of correlators
with R = 0, 2 and 4.

By using the above component fields, we define the following set of current correlators:

Cµνρσ1 (x, y) ≡

⟨
δαQ
[
S̄µα̇(x)T ρσ(y)

]⟩
(σν)αα̇, (3.25)

Cµνρσκ2 (x, y) ≡

⟨
δαQ
[
Sµγ (x)T

ρσ
]⟩

(σνκ) γα , (3.26)

Cµν3 (x, y) ≡

⟨
δαQ

[
S̄µβ̇(x)x†(y)

]⟩
(σν)αβ̇, (3.27)

Cµνκ4 (x, y) ≡

⟨
δαQ

[
Sµγ (x)x

†(y)
]⟩

(σνκ) γα , (3.28)

Cµν5 (x, y) ≡

⟨
δαQ

[
S̄µβ̇(x)x(y)

]⟩
(σν)αβ̇, (3.29)

Cµνκ6 (x, y) ≡

⟨
δαQ
[
Sµγ (x)x(y)

]⟩
(σνκ) γα , (3.30)

Cµνρ7 (x, y) ≡

⟨
δαQ

[
S̄µβ̇(x)jρ(y)

]⟩
(σν)αβ̇, (3.31)

Cµνρκ8 (x, y) ≡

⟨
δαQ
[
Sµγ (x)j

ρ(y)
]⟩

(σνκ) γα . (3.32)

If SUSY is unbroken, all of them are vanishing.

Since it will become important when we derive sum rules, let us here discuss R-charges
associated with the above correlators. The R-symmetry plays a crucial role for SUSY
breaking [64], and in most cases, it is assumed that UV theories of SUSY breaking models
are R-symmetric. Therefore, in the present study, we assume that UV theories, from which
OPE of the correlators are calculated, have R-symmetry. The R-charges associated with
each correlator are uniquely fixed since the components of the supercurrent have R-charges
determined from the SUSY algebra. Those are summarized in Table 3.1, and operators
that appear in the OPE of each correlator should have the same R-charges as corresponding
correlators. If the R-symmetry is not broken spontaneously, correlators with non-zero R-
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charges should vanish identically, and only correlators with zero R-charge, namely C1, C6

and C7, would provide non-trivial sum rules. Meanwhile, if the R-symmetry is spontaneously
broken, correlators with non-zero R-charges are also non-vanishing, and further sum rules
can be derived. For later convenience, we introduce d0, d2 and d4 to denote the dimension
of the lowest-dimension SUSY breaking operator which contribute to the OPE of correlators
with R = 0, 2 and 4. (See Table 3.1.) The number of sum rules we can derive from each
correlator depends on values of d0,2,4 as we will discuss in detail later.

3.2.2 Sum rules in effective theories

An explicit form of sum rules can be derived by approximating the spectral function by one-
particle states of hadrons. Such an approximation is valid when there is a weakly coupled
description of hadrons at low energy. We assume that there is such an effective description.
As hadronic degrees of freedom, we introduce fields with spins from 0 to 2 as follows:

• ϕ (massive or massless spin 0 (scalar)),

• π (massive or massless spin 0 (pseudoscalar)),

• λ (the Goldstino, spin 1/2, massless),

• χ (massive spin 1/2 (Majorana)),

• vµ (massive spin 1 (real)),

• ψµ (massive spin 3/2),

• hµν (massive spin 2).

Except for λ, there can exist multiple particles with the same spin and parity. In the following,
we suppress the indices associated with such multiple particles. The sum rules we obtain
below should be understood as the one with summations of these indices.

One particle parts of the supercurrent multiplet can be parametrized as follows:

Sµα = if4σµλ̄− 2f2f ′σµν∂νλ− 2mψfψσ
µνψν − 2fχσ

µν∂νχ+ · · · , (3.33)

S̄µα̇ = if4σ̄µλ− 2f2f ′∗σ̄µν∂ν λ̄− 2mψf
∗
ψσ̄

µνψ̄ν − 2f∗χσ̄
µν∂νχ̄+ · · · , (3.34)

Tµν = −1

2
m2

Pm
2
hhµν −

fϕ
2
(ηµν2− ∂µ∂ν)ϕ+ · · · , (3.35)

x = c2ϕϕ+ ic2ππ + · · · , (3.36)

jµ = mvfvv
µ + fπ∂

µπ + · · · , (3.37)
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where · · · are terms which are not linear in fields. The normalization of the fields are
such that the propagators are given in Appendix B. We have implicitly assumed the CP
invariance, i.e., the absence of the mixing between ϕ and π, for simplicity. By using the
above parametrizations and the propagators in Appendix B, one can explicitly calculate the
correlators Eqs. (3.25)-(3.32) as a sum over the contributions from hadrons.

Following the same procedure in Section 3.1, one can derive the sum rules from C1 − C8

using the effective theory. For example, we obtain

|f ′|2 + |fχ|2 +
2

3
|fψ|2 = f2ϕ +

8

3
m2

P (3.38)

from the correlator C1. This rule applies to the models with d0 = 3 and d0 = 4. To derive this
rule, we use two approximations; one is the tree level approximation in the effective theory and
the other is the perturbative calculation of the OPE for the correlator. The effective theory
should have a UV cut-off, Λeff , below which the picture of the hadron exchange (tree-level
approximation) is justified. On the other hand, the OPE is a good expansion at a sufficiently
short distance, (−s) > ΛOPE, where ΛOPE is a typical scale where the UV description breaks
down. Therefore, the above sum rule gives a good approximation if Λeff ≫ ΛOPE and if
one takes s0 in Fig. 3.1 within the window, ΛOPE < s0 < Λeff . In the case of QCD, this
condition, Λeff > ΛOPE, seems to be marginally satisfied, therefore the Weinberg’s sum rules
are satisfied in the real world to a good accuracy. The hadron summation in the sum rules
should be taken while masses exceed ΛOPE [65, 66].

Repeating the same discussion for the rest of the correlators, C2 − C8, we obtain sum
rules:

• Boson sum rule (d0 = 3 and 4)

f2ϕ +
8

3
m2

P = f2π + f2v , (3.39)

• Scalar sum rule (d2 = 4)

fϕc
2
ϕ = 0, fπc

2
π = 0, (3.40)

• Fermion sum rule (d2 = 4)

f2f ′ = mψf
2
ψ = −3

4
mχf

2
χ. (3.41)

The correlator C4 does not lead any sum rule for d4 ≤ 4. For d2 > 4 and d4 > 4, there can
be more sum rules. However, we do not try to derive those in this paper since we are not
aware of such models.
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3.2.3 Improvement of currents and sum rules

The entries in the sum rules, such as f ′, fχ, fϕ, and fπ, depend on the definition of the currents
in the UV theory. In deriving the sum rules, we have defined the currents as components of
the supercurrent multiplet, Jµ. Moreover, we have implicitly assumed that the current does
not contain parameters with negative mass dimensions, otherwise the dimension of O can be
arbitrarily small.

If such a supercurrent is uniquely defined, there is no ambiguity for f ’s. If it is not uniquely
defined, the sum rules should hold for any choice of the supercurrents. The supercurrent Jµ

has in general a freedom of the improvement,

Jµ → Jµ − ∂µ(Ω + Ω̄), (3.42)

where Ω is a chiral superfield. Therefore, the improvement is possible when there is a gauge-
invariant chiral superfield with a mass dimension less than or equal to two in the UV theory.

For example, if there is a chiral operatorM with dimension two and R-charge zero, such as
a meson operator,M can be the operator Ω. In the same way as the currents, we parametrize
the one-particle parts of the operator M by low energy variables as

m = − i√
2

(
Fϕ√
2
ϕ− iFπ√

2
π

)
+ · · · , (3.43)

ψMα = − i√
2

(
F ′λα + Fχχα

)
+ · · · , (3.44)

FM = −i(C∗2
ϕ ϕ− iC∗2

π π) + · · · , (3.45)

where

M(y, θ) = m(y) +
√
2θψM (y) + θθFM (y). (3.46)

With these parametrizations, the improvement in Eq. (3.42) with Ω = cM , with c a real
dimensionless parameter, shifts the decay constants as

f ′ → f ′ + cF ′, (3.47)

fχ → fχ + cFχ, (3.48)

fϕ → fϕ + cFϕ, (3.49)

fπ → fπ + cFπ, (3.50)

c2ϕ → c2ϕ + cC2
ϕ, (3.51)

c2π → c2π + cC2
π. (3.52)

The constants f , fv, fψ, and mP are unchanged by the improvement.

When d0 ≥ 3, sum rules in Eqs. (3.38) and (3.39) should hold for any choice of c.
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Therefore, we obtain the following relations:

|F ′|2 + |Fχ|2 = F 2
ϕ , (3.53)

Re[f ′∗F ′] + Re[f∗χFχ] = fϕFϕ, (3.54)

F 2
ϕ = F 2

π , (3.55)

fϕFϕ = fπFπ, (3.56)

in addition to Eqs. (3.38) and (3.39). As a trivial example, the effective theory described by
a single chiral superfield,

M ∝ ϕ+ iπ +
√
2θ(λ or χ) + θθF, (3.57)

satisfies the sum rules in Eqs. (3.53)–(3.56).

3.3 UV models and sum rules

In this section, we consider the explicit models of dynamical SUSY breaking and discuss which
sum rules in Eqs. (3.38)–(3.41) apply to them. Here, we classify those models by whether
R-symmetry is spontaneously broken, and by dimensions of the SUSY breaking operators.

3.3.1 Models with unbroken R-symmetry

We first discuss the models without spontaneous R-symmetry breaking. In this case, the
correlators with non-vanishing R-charges identically vanish, and thus only Eqs. (3.38) and
(3.39) can apply. Since R-symmetry is not broken, f ′ = 0 in this case. In most models,
d0 = 4 (except for the model with non-vanishing D-term for a U(1) factor), and therefore
both sum rules apply.

A famous example is the O’Raifeartaigh model [22].‡ However, in this case, the sum rules
do not give new information since one can explicitly derive the low energy models. Examples
of dynamical SUSY breaking models are the IYIT model [23, 24] and the ISS model [28] where
the ISS model has unbroken discrete R-symmetry. Both of the examples have calculable IR
descriptions which reduces to the O’Raifeartaigh models.

3.3.2 Models with spontaneous R-symmetry breaking (d2 ≤ 3)

When R-symmetry and SUSY are both broken by an operator with R = 2 and dimension
less than four, those models predict the sum rules in (3.38) and (3.39).

Examples are incalculable models such as chiral gauge theories in Ref. [16, 17]. There are
also possibilities that the incalculable Kähler potential can produce a non-trivial R-symmetry
breaking vacuum in the vector-like theories such as in [25, 26, 27], although there are known
effective descriptions in these cases.

‡There are also the O’Raifeartaigh models with broken R-symmetry [67].
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In models of Ref. [16, 17], it is suggested that the gaugino condensation, which has
dimension three, breaks both SUSY and the R-symmetry through the Konishi anomaly [30].
In the vector-like models in Ref. [25, 26, 27], a dimension-three operator, δQ̄α̇(ψ̄

α̇
SS), is the

one which breaks both SUSY and R-symmetry, where ψS and S are the fermionic and the
bosonic components of a gauge singlet chiral superfield.

3.3.3 Models with spontaneous R-symmetry breaking (d2 ≥ 4)

Possibly some gauge theory without a matter field can be of this type, although there is no
known example. In this case, all the sum rules in Eqs. (3.38)–(3.41) can be derived.

Since R-symmetry is spontaneously broken, one can say fπ ̸= 0. This implies that the
left-hand side of Eq. (3.39) is non-vanishing and therefore the left-hand side of Eq. (3.38)
is also non-vanishing. Together with Eq. (3.41), mψf

2
ψ is non-vanishing (unless there is a

cancellation among same-spin fermions). Therefore, this type of model generally involves
massive spin-3/2 field.

If one finds that the sum rules in Eqs. (3.40) and (3.41) apply in some hadronic models
of SUSY breaking such as the dual gravity constructions [68, 69, 70], it may be suggesting
that the microscopic description is in this category.
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Chapter 4

Summary and discussion

In this article we discuss the techniques of dynamical symmetry breaking. The interesting
examples of dynamical symmetry breaking are the chiral symmetry breaking in QCD and
dynamical SUSY breaking. The quite different approaches are adopted to analyze those
dynamical symmetry breaking. For analysis of chiral symmetry breaking, Weinberg derived
powerful non-perturbative result called as Weinberg sum rules [1]. For analysis of dynamical
symmetry breaking, we often use the Seiberg duality [2], the electric-magnetic duality of
supersymmetric gauge theories, since the dynamical symmetry breaking are considered in
the context that supersymmetric gauge theories are strongly coupled. We exchange those
analyzing techniques each other, i.e. we use the idea of Seiberg duality to construct effective
model containing chiral symmetry breaking and derive the sum rules for dynamical SUSY
breaking.

Since Seiberg duality relates the gauge theory with different gauge symmetries, we con-
sider the gauge theories with non-SU(Nc) gauge symmetry and interpret that gauge theory as
magnetic description of QCD. It is known that the higgsing U(Nf ) gauge theory well describes
the vector mesons and pions which are the lightest hadrons appeared as a consequence of
the color confinement in QCD. Therefore we construct higgsing U(Nf ) gauge theories as the
magnetic description of QCD and examine whether this interpretation works well or not.

Our effective model contains the vector mesons and Nambu-Goldstone bosons as well as
the scalar particles. Those particles can be interpreted as the hadrons realized in nature. For
example the magnetic gauge bosons are interpreted as the vector mesons and scalar particles
are the scalar mesons, i.e. f0 and a0 corresponding with flavor singlet and adjoint scalar
respectively. It is the most interesting point of interpretation of such U(Nf ) gauge theory as
magnetic description of QCD that the string solution as a solitonic object of U(Nf ) gauge
theory can be identified as the confinement string since such vortex strings carry magnetic
charge of our model and the magnetic charge of our model can be interpreted as the color
charge in original electric description of QCD. To examine this identification we compare the
energy of vortex string and the potential energy between the static quark and antiquark. Our
model reproduces the qualitative feature of the potential energy, although our analysis is at
tree level. Therefore our model and interpretation work well at least qualitative level.

We also consider the other interesting dynamical symmetry breaking, the dynamical SUSY
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breaking. To approach what happen in low energy description of dynamical SUSY breaking
models, we derive the sum rules, which have been derived for chiral symmetry breaking in
QCD, for dynamical SUSY breaking models. The sum rules involve massive fields with spin
3/2 and 2. It is interesting to note here that there is an analogy of this situation in QCD.

The Nambu-Goldstone bosons (pions) associated with the chiral symmetry breaking are
described non-linear sigma model which has UV cut off scale. The cut-off scale can be pushed
higher by including massive hadrons. The simplest possibility is to promote the non-linear
sigma model to a linear-sigma one by introducing a scalar field (which is usually called the
sigma meson). The sum rules for chiral symmetry breaking require the existence of the spin-1
hadrons instead of massive scalar particle. Indeed, a vector meson (the rho meson) appeared
as the next lightest in actual hadronic world. The HLS model [6] contains the vector meson
(the rho meson) and well describes its interactions and mass.

In SUSY breaking case, the low-energy effective Lagrangian is formulated by Volkov and
Akulov in Ref. [71], where the Nambu-Goldstone fermion, the Goldstino, is introduced as
non-linearly transforming field under SUSY. The simplest possibility for the next lightest
mode is the superpartner of the Goldstino, formulating the low-energy effective model with
a chiral supermultiplet. This is analogous to the linear sigma model realization of the chiral
symmetry case. As in QCD, it is worth considering an alternative realization, namely the
SUSY breaking model equivalent of the HLS realization. Such a realization is achieved by
introducing the massive spin-2 field, as discussed in Ref. [72].

Another realization of the massive higher spin states in SUSY gauge theories is related
to the gauge/gravity correspondence. For example, in the Holographic QCD model [73,
74, 75, 76], the HLS naturally emerges and the rho meson appears as a “Kaluza-Klein
(KK)” excitation mode of the five-dimensional gauge field in the holographic dual. In the
context of the gauge/gravity duality, the possibility of the dynamical SUSY breaking has
been discussed [68, 69, 70]. If the gravity dual of the dynamical SUSY breaking model is
successfully constructed, the Goldstino should be identified with a normalizable zero mode of
the KK modes of the bulk gravitino [77]. Furthermore, massive spin-3/2 and massive spin-2
modes also appear from gravitino and graviton in the dual supergravity. In this sense, our
effective theory with the hidden local SUSY can be related to the dual supergravity.
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Appendix A

Direct gauge mediation and sum
rules

In this section, by using the language of the general gauge mediation [61], we derive sum
rules which are related to the current correlators in the hidden sector. Then, with those sum
rules, we show that the sfermion mass squared can be expressed in terms of masses of the
spin 0, 1/2 and 1 particles in the SUSY breaking sector.

A.1 Current multiplet and correlators

We introduce the current superfield J = J (x, θ, θ̄). It is defined as a real linear superfield
which satisfies the current conservation conditions, D̄2J = D2J = 0. In components, it can
be expressed as

J = J + iθj − iθ̄j̄ + θσµθ̄jµ −
1

2
θθθ̄σ̄µ∂µj +

1

2
θ̄θ̄θσµ∂µj̄ −

1

4
θθθ̄θ̄2J. (A.1)

Transformation laws of these component fields under SUSY are given by

δQJ = −iηj, (A.2)

δQjα = 0, (A.3)

δQj̄
α̇ = i(σ̄µη)α̇(jµ + i∂µJ), (A.4)

δQjµ = −η∂µj. (A.5)

Here, η is a parameter of the SUSY transformation, and we defined δQO = −ηαδαQO.

Now, we consider the following current correlators∗:

Dµν
1 (x, y) ≡

⟨
δαQ
[
j̄α̇(x)jµ(y)

] ⟩
(σν)αα̇, (A.6)

Dµ
2 (x, y) ≡

⟨
δαQ
[
j̄α̇(x)J(y)

] ⟩
(σµ)αα̇. (A.7)

∗We define ⟨· · · ⟩ by the path integral, and thus they are Lorentz covariant.
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These D’s should vanish if SUSY is unbroken. For later convenience, we rewrite Eqs. (A.6)
and (A.7) in terms of the Fourier transformed functions, C̃’s, introduced in Ref. [61]:

C̃0(k
2) =

∫
d4x

i(2π)4

⟨
J(x)J(y)

⟩
eik·(x−y), (A.8)

−(σ̄µ)
α̇αkµC̃1/2(k

2) =

∫
d4x

i(2π)4

⟨
jα(x)j̄α̇(y)

⟩
eik·(x−y), (A.9)

−(k2ηµν − kµkν)C̃1(k
2) =

∫
d4x

i(2π)4

⟨
jµ(x)jν(y)

⟩
eik·(x−y), (A.10)

ϵαβMB̃1/2(k
2) =

∫
d4x

i(2π)4

⟨
jα(x)jβ(y)

⟩
eik·(x−y), (A.11)

where M is a characteristic mass scale of the theory. Using those C̃’s, we can write down the
kµkν part (kµ part) of D1 (D2) as follows:

Dµν
1 |kµkν = −2i

∫
d4k

i(2π)4
kµkν

(
C̃1(k

2)− C̃1/2(k
2)
)
e−ik·(x−y), (A.12)

Dµ
2 |kµ = −2i

∫
d4k

i(2π)4
kµ
(
C̃0(k

2)− C̃1/2(k
2)
)
e−ik·(x−y). (A.13)

A.2 Sum rules

In this section, we derive the sum rules through the currents correlators (A.6) and (A.7). We
define,

ΠD1(s) ≡ C̃1(s)− C̃1/2(s), (A.14)

ΠD2(s) ≡ C̃0(s)− C̃1/2(s), (A.15)

as Π1(k
2) in the deriving procedure in Section. 3.1. The mass dimension of both functions

are zero. Therefore we take dΠ = 0 and obtain the window of Eq. (3.7) as,

0 ≤ n <
d

2
− 1. (A.16)

In general d ≤ 4 since Tµµ can always be the SUSY breaking operator.

From d ≤ 4, such n can only be zero. For d = 3 or 4 the sum rules we obtained from D1

and D2 are∫ ∞

0
ds
(
ρ1(s)− ρ1/2(s)

)
= 0, (A.17)∫ ∞

0
ds
(
ρ0(s)− ρ1/2(s)

)
= 0, (A.18)

where

C̃a(s) = −
∫ ∞

0
dσ2

ρa(σ
2)

s− σ2 + iϵ
. (a = 0, 1/2, 1) (A.19)

No sum rule for B̃1/2 is obtained from other correlators.
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A.3 Low energy models and sum rules

Let us assume that the SUSY breaking model is a confining theory and its low-energy physics
is well described by the lowest modes à la Weinberg [1]:

ρa(s) = f2aδ(s−m2
a). (A.20)

In this case, the sum rules Eqs. (A.17) and (A.18) suggest

f20 = f21/2 = f21 ≡ f2h . (A.21)

It states that the decay constants are the same even though the masses can split.

By using the formula of the general gauge mediation [61], the scalar masses via gauge
mediation are given by

m2
s = g4c2

∫
d4k

i(2π)4
1

k2

(
3C̃1(k

2)− 4C̃1/2(k
2) + C̃0(k

2)
)

=
g4c2f

2
h

(4π)2
log

m2
0m

6
1

m8
1/2

. (A.22)

Here, m0, m1/2, m1 are masses of the particles with spin 0, 1/2, and 1 in the hidden sector,
respectively, and c2 is the quadratic Casimir invariant. A finite result is obtained due to
the sum rules. (Similar to the π+ − π0 mass splitting by QED. See [78].) Interestingly, in
Ref. [79], the same expression for the sfermion mass squared was derived in a model with
gauge messengers.

From Eqs. (A.20) and (A.21), the gaugino masses can also be calculated as

mλ =
g2f2h
m1/2

. (A.23)

In summary, by using the sum rules, one can express the sfermion and gaugino masses by
hadron masses in the hidden sector.
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Appendix B

Propagators

⟨λα(x)λ̄β̇(y)⟩ =
1

f4
(σρ)αβ̇

∫
d4k

i(2π)4
kρ

−k2 − iϵ
e−ik·(x−y). (B.1)

⟨χα(x)χ̄β̇(y)⟩ = (σρ)αβ̇

∫
d4k

i(2π)4
kρ

m2
χ − k2 − iϵ

e−ik·(x−y). (B.2)

⟨χα(x)χβ(y)⟩ = δβα

∫
d4k

i(2π)4
mχ

m2
χ − k2 − iϵ

e−ik·(x−y). (B.3)

⟨ψµα(x)ψ̄νβ̇(y)⟩ =
(
PL⟨Ψµ(x)Ψ̄ν(y)⟩PR

)
αβ̇
. (B.4)

⟨ψµα(x)ψβν (y)⟩ =
(
PL⟨Ψµ(x)Ψ̄ν(y)⟩PL

) β
α
. (B.5)

⟨Ψµ(x)Ψ̄ν(y)⟩ =
∫

d4k

i(2π)4
Pµν(k)

m2
ψ − k2 − iϵ

e−ik·(x−y). (B.6)

Pµν = −

(
ηµν −

kµkν
m2
ψ

)
(/k +mψ)−

1

3

(
γµ +

kµ
mψ

)
(/k −mψ)

(
γν +

kν
mψ

)
. (B.7)

⟨hµν(x)hρσ(y)⟩ = 2

m2
P

∫
d4k

i(2π)4
Bµν;ρσ

m2
h − k2 − iϵ

e−ik·(x−y). (B.8)
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Bµν;ρσ =

(
ηµρ −

kµkρ
m2
h

)(
ηνσ −

kνkσ
m2
h

)
+

(
ηµσ −

kµkσ
m2
h

)(
ηνρ −

kνkρ
m2
h

)
−2

3

(
ηµν −

kµkν
m2
h

)(
ηρσ −

kρkσ
m2
h

)
. (B.9)

⟨ϕ(x)ϕ(y)⟩ =
∫

d4k

i(2π)4
1

m2
ϕ − k2 − iϵ

e−ik·(x−y). (B.10)

⟨π(x)π(y)⟩ =
∫

d4k

i(2π)4
1

m2
π − k2 − iϵ

e−ik·(x−y). (B.11)

⟨vµ(x)vν(y)⟩ =
∫

d4k

i(2π)4
ηµν − kµkν/m2

v

k2 −m2
v + iϵ

e−ik·(x−y). (B.12)
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