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Preview of This Thesis 

This doctor thesis entitled “Synthesis and Properties of Push-Pull Type Dipyrrins 

and Subporphyrazines” was finished in the Department of Chemistry, Graduate School 

of Science, Tohoku University under the supervision of Prof. Dr. Nagao Kobayashi. 

This thesis described the design, synthesis, properties and theoretical calculations of a 

series of push-pull type chromophores, including push-pull type dipyrrins, 

subporphyrazines and porphyrazines.  Some of measurements were finished in the 

research and analytical center for giant molecules in Tohoku University. 
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1.1 Background of Phthalocyanine Chemistry 

An unidentified blue compound, which is now known to be metal-free 

phthalocyanine, was first reported in 1907.[1] In 1927, Swiss researchers accidentally 

synthesized copper phthalocyanine, copper naphthalocyanine, and copper 

octamethylphthalocyanine in an attempted conversion of o-dibromobenzene into 

phthalonitrile and further reacted with CuCl.[2]  All these scientists were focused on 

the enormous stability of these complexes but did not further characterize these blue 

complexes.  In the same year, copper phthalocyanine was also discovered at Scottish 

Dyes company and finally used as the commercial dyes or pigments.[3]  Although 

phthalocyanine analogues have been investigated over 100 years, but the research 

interests covers all fields of phthalocyanine chemistry and application are still growing.  

It is because of phthalocyanine analogues preformed good properties in various high-

tech fields,[4] including solar cells,[5] molecular electronics and photonics,[6] nonlinear 

optics,[7] photodynamic therapy (PDT),[8] and also electrocatalysis.[9]  The compounds 

are stable and have relatively low reactivity due to their heteroaromatic-systems, and 

have been reported to have low toxicity.[10]  Currently, there is interest in 

phthalocyanines in various diverse topics ranging from fundamental theory to industrial 

-system can absorb and emit strongly in the red/near-infrared 

(NIR) due to the relatively high molar extinction of the lowest energy π→π* band 

(usually referred to as the Q band), which is considerably more intense than the 

corresponding bands in the spectra of porphyrins and tetraazaporphyrins.[11] 

One of the most interesting in this research filed is the spectroscopic 

investigations of phthalocyanine analogues.  For example, most of free-base or 

metallo-phthalocyanines is that complexes that have the lowest lying absorption band 

(referred to as the Q band) in the 650~680 nm region.[12]  Complexes with a Q band at 

the longer wavelength regions are usually preferred, because of chromophores with 

longer wavelength absorptions have great potential applications in various high-tech 

fields.  Since the red-shift of the Q band reflects a decrease in the HOMO-LUMO gap, 
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and hence is often associated with a decrease in the first oxidation potential.  There 

has been a strong focus on the design and synthesis of new highly stable phthalocyanine 

complexes with different electronic structures.[13]  Although the phthalocyanine Q 

band can be shifted to longer wavelength through fused-ring-expansion with benzene 

rings to form naphthalocyanine (Nc)[14] and then anthracocyanine (Ac),[15] the marked 

destabilization of HOMO level makes these compounds unstable and in the absence of 

peripheral substituents there are also issues with solubility.  In addition to design new 

phthalocyanine analogues with large substituents effect will be attracted. 

 

 

Figure 1-1 UV-vis absorption spectra of free base meso-tetraphenylporphyrin (up, 

pink) and free base beta,beta-diphenylphthalocyanine (bottom, green). 

 

1.2 Brief Introduction of Push-Pull Chromophores  

Push-pull chromophores, with strong electron donating substituents connected by 

conjugated molecules to strong electron withdrawing substituents, have been 

investigated for decades.[16] Nevertheless, interest in such systems is still growing, in 

view of their promising optoelectronic properties, such as large second[17] and third-
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order nonlinear optical (NLO) effects,[18] and their potential for application as advanced 

functional materials in molecular devices.[19]  The guidelines for evaluating and tuning 

the HOMO-LUMO gap in strong push-pull chromophores will be provided. Whereas 

chromophore design, synthesis, and UV/vis measurements took place at different 

groups, especially the researches in ETH by dirich, the research of push-pull 

chromophores are mainly focused on the spectroscopic properties, electrochemical 

properties and the determination of nonlinear optical properties were performed in the 

various references.[20] 

Chromophores with push- and pull-substituents generally exhibit the main 

absorption bands at the longer wavelength region relative to the chromophores without 

push- and pull-substituents.  It is because of introduction of electron donating (push-) 

substituents will destabilized both the HOMO orbitals and the LUMO orbitals, 

especially the HOMO orbitals will be destabilized.  In addition to introduce electron 

withdrawing (pull-) substituents to the porphyrinic chromophores, both the HOMO 

orbitals and the LUMO orbitals will be stabilized, especially the LUMO orbitals will 

be stabilized.  The decrease of the gap between the HOMOs and the LUMOs can be 

attributed to the introduction both electron donating (push-) substituents and electron 

withdrawing (pull-) substituents. 

 

Figure 1-2 Concept of push-pull effect. 

 

 

LUMO
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In 2014, F. Diederich reported a series of push-pull chromophores with various 

substituents.  Considering cyano units have strong electron withdrawing abilities, and 

the red-shift of main absorption bands can be explained as the increase of the electron 

donating (push-) abilities of aryl-substituents.[21]  Similar research have been well 

done by the same group and these push-pull chomorphores illustrated that control the 

main absorption bands can be achieved by introducing substituents which have a large 

perturbation on the electronic structures in a simple manner.[22] 

 

Figure 1-3 Molecular structures and absorption spectra of push-pull chromophores. 

 

In the case of porphyrinic chromophores, the push-pull strategies are still 

effective in order to control the main absorptions.  Considering the substituents which 

directly connected to the chromophores have a large effect on the electronic structures, 

introduction of push-pull substituents to the beta-positions of porphyrinic 

chromophores have a large effect on the control of the electronic sturctures of 

porphyrinic chromophores.  It is well-known that nitro-substituent has strong 

electron-withdrawing effect, from the previous literatures, control the main absorption 

of push-pull type porphyrinic chromophores can be achieved not only the increase of 

the electron donating abilities of push-substituents (Figure 1-4, up), but also increase 

the number of the electron donating substituents (Figure 1-5, bottom).[23] 
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Figure 1-4 absorption spectra (left) and molecular structures (right) of push-pull 

chromophores. 

 

The first example of the control of porphyrinoid chromophore symmetry 

based on the positional isomerism of peripheral push-pull substituents has been 

achieved by preparing tetraazaporphyrins (TAPs) with C4h, D2h, C2v, and Cs symmetry 

due to the asymmetric arrangement of peripheral push-pull substituents, tert-

butylamino and cyano groups, respectively.  In addition to consider the large 

perturbation from push-pull substituents to the porphyrinic chromophores, the different 

spectroscopic properties were observed for all geometric isomers based on the 

asymmetric arrangement of push- and pull-substituents.[24] 

 

 

 

Push substituents

Pull substituents
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D4h 

C4h    D2h 

C2v    Cs 

Figure 1-5 Molecular structure and chromophore symmetry of regular porphyrazine 

and push-pull type porphyrazines. 

 

Thus, control the main absorption bands of chromophore can be successfully 

achieved by introduction of push-pull substituents in a simple manner.  Design, 

synthesis, spectroscopic investigations of new push-pull chromophores may interesting 

for us, and this doctor thesis will be focused on the design, synthesis, spectroscopic 

properties investigations, theoretical calculations of new push-pull chromophores. 

 

 

1.3 Basic theory of this study 

1.3.1 UV-vis absorption 

Absorption spectroscopy [25] refers to spectroscopic techniques that measure the 

absorption of radiation, as a function of frequency or wavelength, due to its interaction 
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with a sample. The Beer–Lambert law relates the attenuation of light to the properties 

of the material through which the light is traveling. The law is commonly applied to 

chemical analysis measurements and used in understanding attenuation in physical 

optics, for photons, neutrons or rarefied gases. In mathematical physics, this law arises 

as a solution of the BGK equation. The transmissivity (ability to transmit) is expressed 

in terms of an absorbance which is defined as: 

or   

 

Considering push-pull substituents have large perturbation on the electronic 

structures, the UV-vis spectra will give direct evidence of the change of the electronic 

structures before and after introduction of push-pull substituents. Generally, the red-

shift of the main absorption band on the UV-vis spectra is an evidence to consider the 

influence of push-pull effect. 

 

1.3.2 MCD Theory 

Magnetic Cicular Dichlorism (MCD) technique is based on the wavelength 

dependent absorption of circularly polarized light to form excited electronic states. The 

UV–vis absorption and MCD spectra of a molecular complex contain the same set of 

spectral bands, but the band morphologies are different due to the effect of the applied 

magnetic field and the use of a differential absorbance intensity scale from the CD 

spectrometer used for the measurements.[26] 

 

1.3.2.1 Faraday A term 

A derivative-shaped band, the so-called Faraday A term of either positive sign 

(positive lobe to higher energy of the crossover point) or negative sign (positive lobe to 

lower energy of the crossover point) appears when the excited states are degenerate, 

associated with absorption peaks. Thus, Faraday A terms are generally predicted only 

when the molecule possesses at least a three-fold axis of symmetry 
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Figure 1-5 The spectral sharp of Faraday A1 term on the MCD spectra. 

 

1.3.2.2 Faraday B term and persudo Faraday A term 

Faraday B terms, i.e. Gaussian-shaped bands of either positive or negative 

sign, are observed when an excited state is mixed with nearby transitions by the 

magnetic field, and have integral-type envelopes near the relevant absorption peaks. 

Interacting B terms give spectral envelopes of opposite sign. 

Therefore, in the case of D2h or metal-free porphyrinoids, the two B terms 

lying under the two absorption components indicate that these are the symmetry-split x 

and y polarized transitions. When the energy splitting of the x and y polarized 

transitions is small, the observed MCD curve appears like a Faraday A term (this is 

called a pseudo-A term). However, the difference from the A term is that the negative 

and positive envelope positions are close to the two absorption peaks. 

 

Figure 1-6 The spectral sharp of Faraday B0 and pseudo A1 term on the MCD spectra. 
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1.3.2.3 Faraday C term 

Faraday C terms appear when the ground state is orbitally degenerate. Its 

shape is close to that of the Faraday B term, but its intensity is inversely proportional 

to the absolute temperature.  Thus C terms have often been observed in organic 

radicals and metal complexes. Temperature dependence of the spectral intensities arises 

from the change in Boltzmann distribution across the split orbital components of the 

degenerate ground state. 

 

Figure 1-6 The spectral sharp of Faraday C0 term on the MCD spectra. 
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1.4 Overview of This Thesis 

From the previous reported literatures, push-pull effect can be more 

significant for small conjugated molecules. When push-pull effect is significant, even 

chromophore symmetry can be controlled.  Porphyrinic chromophores with novel 

electronic structure may have potential applications in various high-tech fields.  All of 

these advantages promote us design, synthesis new push-pull chromophores, and 

investigations on their electronic structures by spectroscopy and theoretical calculations. 

In the chapter II, the synthesis, properties and theoretical calculations of 

push-pull type dipyrins will be described.  Dipyrrins with push- and pull-substituents 

can be easily synthesized from pyrrole and related aryl-aldehyde.  Control of the 

spectroscopic properties of push-pull type dipyrrins can be achieved by modification of 

push-substituents, and the push-pull dipyrrins with expanded molecular structure 

exhibit red-shift of the main absorption band. 

    

 

In the chapter III, the synthesis, properties and theoretical calculations of 

push-pull type subporphyrazine will be described.  Push-pull type subporphyrazine 

can be easily synthesized from aryl-tricyanoethylene and boron(III)trichloride, and the 

spectroscopic properties can be controlled by push-pull effect. The significant red-shift 

of the main absorption bands arising from both destabilization of the HOMO orbitals 

and stabilizations of the LUMO orbitals by push-pull substituents. Based on the 

asymmetry arrangement of push- and pull-substituents and bowl shaped molecular 

structures of subporphyrazine, both diastereomers and enantiomers were observed and 

successfully separated.   
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In the chapter IV, the synthesis of properties of push-pull type porphyrazine 

will be described. Push-pull type porphyrazine can be synthesized from 

tricyanoethylene in 1-butanol and the electronic structure was studied by spectroscopic 

analysis.  Introduction of push-pull substituents to the porphyrazine causes the 

significant red-shift of the main absorption bands of porphyrazines, and the broad range 

of the absorptions covered all visible region. 

  

In the chapter V, the conclusion of design, synthesis, properties and 

theoretical calculations of push-pull type porphyrinic chromophores will be described.  

Considering small chromophores with red-shift and broad range of the main absorption 

bands are being required in the field of the photo-energy conversion, such as solar cell , 

the simple modifications of optical properties of dipyrrins, subporphyrazines and 

porphyrazines reveralled in this doctor thesis is useful for the design of fuctional 

molecules based on conjugated system of porphyrinic chromophores. 
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2.1 Introduction 

2.1.1 Chemistry of dipyrrins 

    Dipyrromethane is a key intermediate in the porphyrin synthesis and is easily 

synthesized from an acid-catalyzed reaction of pyrrole and aryl-aldehydes, and also 

possibly synthesized from Grignard reagent or InCl3 catalyzed reactions.[1] 

 

Scheme 2.1 Synthesis of meso-aryl-dipyrromethanes and porphyrins. 

         

Development of reliable methods for the preparation of dipyrrins by oxidation of 

dipyrromethanes has became one of the most important advances in dipyrrin chemistry 

recently.[2]  But the dipyrrin is frequently utilized as a mono-valence bi-coordinated 

ligand having less academic attractions of itself as a functional chromophore molecule. 

meso-Aryl dipyrrin generally exhibits broad and featureless absorption in the higher-

energy visible region at around 400 nm, which can be, however, tunable by introduction 

of substituents at appropriate positions to perturb its electronic structure. 

 

Scheme 2.2. Synthesis of aryl-dipyrrin. 

 

2.1.2 Chemistry of boron(III)-dipyrrins (BODIPYs). 

Research on the dipyrrin chemistry is mainly focus on the boron-[3] or metallo- 

coordinated[4] dipyrrins (BODIPYs), a structural analogue of the boron-porphyrins, 

have been the focus of considerable research interest over the last three decades and the 

synthesis of BODIPY dyes was firstly described by Treibs and Kreuzer in 1968.[5]  

Studies on this boron coordinated BODIPYs subsequently started to be used 
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extensively as laser dyes, fluorescent stains and labels in fluorescence imaging, and as 

indicator dyes in sensor applications.[6]  A simple BODIPY derivative, 1,3,5,7-

tetramethyl-meso-phenyl-BODIPY (Figure 2-1) exhibits the narrow spectral bands and 

the mirror imaged emission band.  In addition to investigate the spectroscopic changes 

based on the structural modification of BODIPY derivatives, introduction of various 

functional substituents which containing different electron-donating abilities may cause 

the different shift of the main absorption bands (Figure 2-2).[7] 

 

Figure 2-1 Absorption (solid line), fluorescence (dashed line) spectra and 

TDDFT calculation of BODIPY. 

 

Figure 2-2 Structural modification and spectroscopic data of α-substituted BODIPYs. 

 

2.1.3 Chemistry of Metallo-Dipyrrins 

On the other hand, dipyrromethenes or dipyrrins can also be applied as useful 

ligands, Surprisingly, whereas many dpm based metal complexes have been reported 

for the construction of heterometallic architectures[8] as well as for their catalytic 

activity,[9] luminescent species have been much less investigated, in spite of the early 
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report by Falk and Neufingerl in 1979 on the photophysical properties of a Zn-dipyrrin 

complexes, and the fine determination of the molecular sturcure of Ni(II)-dipyrrin 

complexes.[10] 

      

Figure 2-3 meso-phenyl Ni(II)-dipyrrin X-ray crystal structure. 

 

Both boron(III)dipyrrin and metallo-dipyrrins have wide range of potential 

applications in various fields. This result lead chemists produced new dipyrrrin 

analogues with different electronic structures.  My research will focused on the design, 

synthesis, structural characterizations, spectroscopic properties studies, theoretical 

calculations of new dipyrrin derivatives have different electronic sturctures. 
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2.2 Propose of This Research 

The boron-dipyrrin (BODIPY) and metallo-dipyrrin chemistry have been well 

progressed in the past decades, but studies on the chemistry of dipyrrins as 

chromophores have not been investigated in detailed.  Considering introduction of 

electron donating (push-) and electron withdrawing (pull-) substituents have large 

contribution on the decrease of the gap between the HOMOs and the LUMOs, we 

would like to introduce electron donating (push-) and electron withdrawing (pull-) 

substituents to the dipyrrin core which can be easily synthesized from pyrrole and aryl-

aldehyde.  The studies on the electronic structure of these new push-pull dipyrrin 

derivatives by spectroscopic investigations and theoretical calculation will give useful 

information to in-depth understand the relationship between the observed spectroscopic 

properties and effect of push-pull substituents. 

 

 

  

Push-Pull Dipyrrin

Push substituents

Pull substituents
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2.3 Experimental Section 

2.3.1 Chemicals and Instruments 

Electronic absorption spectra were recorded on a JASCO V-570 

spectrophotometer.  1H NMR and 1H-1H COSY spectra were recorded on a Bruker 

AVANCE III 500 spectrometer (operating at 500.13 MHz) or JEOL ECA-600 

spectrometer (operating at 594.17 MHz) using residual solvents as an internal 

references for 1H ( = 2.05 ppm for acetone-d6, 5.32 ppm for CD2Cl2, and 7.26 ppm 

for CDCl3).  High-resolution mass spectra were recorded on a Bruker Daltonics Apex-

III spectrometer or a Bruker Daltonics solariX 9.4T spectrometer.  Preparative 

separations were performed by silica gel column chromatography (Merck Kieselegel 

60H) and a recycling preparative GPC-HPLC (JAI LC-9210) with preparative 

JAIGEL-2H and 2.5H columns.  All reagents and solvents were of commercial 

reagent grade and were used without further purification except where noted. 

 

2.3.2 Crystallographic Data Collection and Structure Refinement 

Crystallographic data collection and structure refinement: Suitable crystals for X-

ray analysis were obtained from slow diffusion of hexane into an ethylacetate solution 

of 3e.  Data collection was carried out at –173(2) ºC on a Bruker APEXII CCD 

diffractometer with MoKa radiation (λ = 0.71073 Å).  The structure was solved by a 

direct method (SHLEXS-971) and refined using a full-matrix least squares technique 

(SHELXL-97).[11]  Yadokari-XG[12] software was used as a GUI for SHELXL-97.  

Solvent molecules were severely disordered and as we were unable to model them 

satisfactorily, the structure of 3e was refined without the effect of the solvent molecules 

by using the PLATON SQUEEZE technique.[13] 
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2.3.3 Computational Methods 

Computational methods: The Gaussian 09[14] software package4 was used to carry 

out DFT and TDDFT calculations using the B3LYP functional and 6-31G(d) basis sets.  

Structural optimization was performed on model compounds of 2a, 2d, 3a, 3d and 

meso-phenyl dipyrrin 4. 

 

2.3.4 Synthesis of Push-Pull Type Dipyrrins 

Scheme 2.3 Synthesis of push-pull type diyprrins. 

 

General synthetic procedure was shown in Scheme 2-1. To a mixture of 

arylaldehyde (1 mmol) and freshly distilled pyrrole (0.5 mL) was added trifluoroacetic 

 resultant mixture was stirred at room temperature for 30 min under 

N2.  After removing the unreacted pyrrole, the residue was purified on silica-gel 

column using chloroform as an eluent to provide meso-aryl-substituted dipyrromethane 

1 in about 20–25% yields.  Then 1 was dissolved in pyridine (2 mL), and 

tetracyanoethylene (64 mg, 0.5 mmol, 2.0 eq) was added.  The resultant mixture was 

heated at 60 ºC for 15 min under air to provide 3 and in the case of 1c and 1d, 2c and 

2d were also successfully isolated.  2 and 3 were purified by silica gel column 

chromatography and recycling GPC-HPLC.  3 was finally obtained in a pure form by 

recrystallization from ethylacetate and hexane. 
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Synthesis of 1a. To a mixture of benzaldehyde (1 mmol) and freshly distilled pyrrole 

(0.5 mL) was added trifluoroacetic acid (TFA, 50 L).  The resultant mixture was 

stirred at room temperature for 30 min under N2.  After removing the unreacted 

pyrrole, the residue was purified by silica gel column using chloroform as an eluent to 

provide meso-aryl-substituted dipyrromethane 1 in about 20–25% yields.   

 

Synthesis of 2 and 3. Then 1 was dissolved in pyridine (2 mL), and tetracyanoethylene 

(64 mg, 0.5 mmol, 2.0 eq) was added.  The resultant mixture was heated at 60 ºC for 

30 min under air to provide 3, and in the case of 2a and 2d, 3a and 3d were also obtained.  

2 and 3 were purified by silica gel column chromatography and recycling GPC-HPLC.  

3 was finally obtained in a pure compound by recrystallization from ethyl acetate and 

hexane. 

 

Synthesis of 2c: 2c was obtained from the reaction mixture in the synthesis of 3c.  

Purification by silica gel column chromatography using CHCl3 as an eluent provided 

2c, which was further purified by recycling GPC-HPLC (CHCl3, detection at 540 nm).  

2c was obtained in 14% yield (7.7 mg).  HR-ESI-FT-ICR-MS (m/z): 365.3303 (calcd 

for C20H9N6O2 = 365.3305 [M––H]); 1H NMR (CD2Cl2, 500 MHz, 298 K):  = 9.92 (br 

s, 1H; NH), 8.02 (d, 1H; J = 7.1 Hz; phenyl), 7.64 (dd, 1H, J1 = 7.1 Hz, J2 = 8.1 Hz; 

phenyl), 7.54 (d, 1H, J = 8.1 Hz; phenyl), 7.32-7.30 (m, 2H; phenyl and pyrrole -CH), 

7.23 (br s, 1H; pyrrole -CH), 6.94 (br s, 1H; pyrrole -CH), 6.39 (d, 1H, J = 3.5 Hz; 

pyrrole -CH), 6.36 ppm (d, 1H, J = 3.5 Hz; pyrrole -CH); UV/vis (CH3Cl): max [nm] 

( M-1cm-1) = 531 (25000). 

 

Synthesis of 2d: 2d was obtained from the reaction mixture in the synthesis of 3d. 

Purification by silica gel column chromatography using CHCl3 as an eluent provided 

2d, which was further purified by recycling GPC-HPLC (CHCl3, detection at 655 nm).  

2d was obtained in 15% yield (5.1 mg).  HR-ESI-FT-ICR-MS (m/z): 363.1362 (calcd 
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for C22H15N6 = 363.1363 [M––H]); 1H NMR (CDCl3, 600 MHz, 298 K):  = 7.73 (br s, 

1H; pyrrole -CH), 7.56 (d, 2H; J = 7.2 Hz, phenyl), 7.11 (d, 1H, J = 4.2 Hz; pyrrole 

-CH), 7.06 (d, 1H, J = 4.2 Hz; pyrrole -CH), 6.96 (d, 1H, J = 4.2 Hz; pyrrole -CH), 

6.81 (d, 2H, J = 7.2 Hz; phenyl), 6.59 (d, 1H; J = 4.2 Hz, pyrrole -CH), 3.16 ppm (s, 

6H; -NMe2).  UV/vis (CHCl3): max [nm] () = 339 (16400), 398 (5880), 655 (39700). 

 

Synthesis of 3a: Column chromatography was preformed by silica gel column (ethyl 

acetate/CHCl3 = 1:1).  3a was obtained as a blue solid in 10% yield (5.8 mg).  HR-

ESI-FT-ICR-MS (m/z): 384.1001 (calcd for C23H10N7 = 384.1003 [M––H] –); 1H NMR 

(acetone-d6, 500 MHz, 298 K):  = 12.50 (br s, 1H; NH), 12.10 (br s, 1H; NH), 7.52-

7.48 (m, 5H; phenyl), 6.99 (br s, 1H; pyrrole -CH), 6.87 (d, 1H, J = 4.5 Hz; pyrrole 

-CH), 6.77 (br s, 1H; pyrrole -CH), 6.33 ppm (d, 1H, J = 4.5 Hz; pyrrole -CH); 

UV/vis (MeOH): max [nm] ( / M-1cm-1) = 405 (31800), 644 (16600). 

 

Synthesis of 3b: Column chromatography was preformed by silica gel column (ethyl 

acetate/CHCl3 = 1:1).  3b was obtained as a blue solid in 8.7% yield (5.4 mg).  HR-

ESI-FT-ICR-MS (m/z): 414.1106 (calcd for C24H12N7O = 414.1108 [M––H]); 1H NMR 

(acetone-d6, 500 MHz, 298 K):  =12.49 (br s, 1H; NH), 12.09 (br s, 1H; NH), 7.39 (d, 

2H, J = 8.5 Hz; phenyl), 7.06 (d, 2H, J = 8.5 Hz; phenyl), 6.99 (br s, 1H; pyrrole -

CH), 6.92 (br s, 1H; pyrrole -CH), 6.76 (br s, 1H; pyrrole -CH), 6.37 (br s, 1H; 

pyrrole -CH), 3.89 ppm (s, 3H; -OMe); UV/vis (MeOH): max [nm] () = 415 (36500), 

647 (17800). 

 

Synthesis of 3c: Column chromatography was preformed by silica gel column (ethyl 

acetate/CHCl3 = 1:1).  3c was obtained as a blue solid in 15% yield (9.9 mg).  HR-

ESI-FT-ICR-MS (m/z): 429.0851 (calcd for C23H9NO2 = 429.0854 [M––H]); 1H NMR 

(acetone-d6, 500 MHz, 298 K):  =12.38 (br s, 1H; NH), 11.93 (br s, 1H; N-H), 8.17 (d, 

1H, J = 7.5 Hz; phenyl), 7.88 (dd, J1 = J2 = 7.5 Hz, 1H; phenyl), 7.80 (dd, J1 = J2 = 7.5 
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Hz, 1H; phenyl), 7.64 (d, 1H, J = 7.5 Hz; phenyl), 6.95 (br s, 1H; pyrrole -CH), 6.77 

(br s, 2H; pyrrole -CH), 6.13 ppm (d, 1H, J = 4.0 Hz; pyrrole -CH); UV/vis (MeOH): 

max [nm] () = 403 (28900), 641 (18400). 

 

Synthesis of 3d: Column chromatography was preformed by silica gel column (ethyl 

acetate/CHCl3 = 1:1).  3d was obtained as a blue-violet solid in 2.7% yield (1.7 mg).  

HR-ESI-FT-ICR-MS (m/z): 427.1422 (calcd for C25H15N8 = 427.1425 [M––H]); 1H 

NMR (acetone-d6, 500 MHz, 298 K):  = 12.52 (br s, 1H; NH), 12.11 (br s, 1H; NH), 

7.30 (d, 2H, J = 8.5 Hz; phenyl), 6.99 (br s, 2H; pyrrole -CH), 6.84 (d, 2H, J = 8.5 Hz; 

phenyl), 6.73 (br s, 1H; pyrrole -CH), 6.45 (br s, 1H; pyrrole -CH), 3.05 ppm (s, 6H; 

-NMe2); UV/vis (MeOH): max [nm] () = 403 (29600), 477 (19600), 655 (18900). 

 

Synthesis of 3e: Column chromatography was preformed by silica gel column (ethyl 

acetate/CHCl3 = 1:1).  3e was obtained as a green solid in 7.3% yield (4.8 mg).  HR-

ESI-FT-ICR-MS (m/z): 434.1157 (calcd for C27H12N7 = 434.1159 [M––H]); 1H NMR 

(acetone-d6, 500 MHz, 298 K):  = 12.50 (br s, 1H; NH), 12.04 (br s, 1H; N-H), 8.05 

(d, 1H, J = 8.0 Hz; naphthyl), 8.00 (d, 1H, J = 8.0 Hz; naphthyl), 7.73 (d, 1H, J = 8.0 

Hz; naphthyl), 7.63 (dd, 1H, J1 = J2 = 8.0 Hz; naphthyl), 7.56-7.51 (m, 2H; naphthyl), 

7.44 (dd, 1H, J1 = J2 = 8.0 Hz; naphthyl), 6.88 (br s, 1H; pyrrole -CH), 6.72 ppm (br 

s, 1H; pyrrole -CH), 6.58 (d, 1H, J = 4.5 Hz; pyrrole -CH), 5.93 ppm (d, 1H, J = 4.5 

Hz; pyrrole -CH); UV/vis (MeOH): max [nm] () = 405 (30000), 641 (19700). 

 

Synthesis of 3f: Column chromatography was preformed by silica gel column (ethyl 

acetate/CHCl3 = 1:1).  3f was obtained as a green solid in 6.0% yield (4.4 mg).  HR-

ESI-FT-ICR-MS (m/z): 484.1314 (calcd for C31H14N7 = 484.1316 [M––H]); 1H NMR 

(acetone-d6, 500 MHz, 298 K):  = 12.59 (br s, 1H; N-H), 12.10 (br s, 1H; N-H), 8.73 

(s, 1H, anthryl), 8.16 (d, 2H, J = 8.5 Hz; anthryl), 7.85 (d, 2H, J = 7.5 Hz; anthryl), 7.52 

(d, 2H, J = 7.5 Hz; anthryl), 7.45 (d, 2H, J = 7.5 Hz; anthryl), 6.82 (br s, 1H; pyrrole -
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CH), 6.67 (br s, 1H; pyrrole -CH), 6.23 (d, 1H, J = 5.0 Hz; pyrrole -CH), 5.65 ppm 

(d, 1H, J = 5.0 Hz; pyrrole -CH); UV/vis (MeOH): max [nm] () = 405 (29600), 642 

(15500). 

 

2.4 Results and Discussions 

2.4.1 1H NMR 

1H NMR spectra of 3e in acetone-d6 reveals four protons at  = 6.88, 6.72, 6.58, 

5.93 ppm from -positions of pyrrole rings, and seven protons from napthyl-rings 

indicate the two electron-withdrawing substituents were introduced at a-positions of 

pyrrole rings with a low molecular symmetry. In the case of 1H NMR spectra of 2d in 

CDCl3, four protons from phenyl rings, and five protons from pyrrole rings indicate the 

mono-substituted molecular structure.  In addition to confirm the proton signal at  = 

7.73 ppm of 2d by H-H COSY measurement and it can be assigned as the alfa-proton 

of pyrrole which was not appeared in the case of 3e. 

 

 

Figure 2-5 1H NMR spectra of 3e in acetone-d6 
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Figure 2-6 1H NMR spectra of 2d in CDCl3 

 

 

 

2.4.2 Crystal structure for 3e 

The suitable crystal was obtained by slow difssion a 3e ethylacetate solution into 

hexane at toom temperature and structure of 3e was finally explicitly elucidated by X-

ray analysis on single crystals, the view of the crystal structure was shown in Figure 2-

7 and the crystal data was summarized in the Table 2-1. Both of the pyrrole rings in 3e 

possess N-H hydrogen atoms, which cause an inverted arrangement of the pyrrole rings 

with respect to those of dipyrrins due to the repulsion between the NH atoms. The 

pyrrole rings are slightly tilted to each other with a dihedral angle of 25º, whereas the 

tricyanovinyl unit and the dicyanomethylene unit are almost co-planar with the 

neighboring pyrrole rings. A double bond nature of dicyanomethylene unit was 

observed from the bonding distances of 1.380(7)Å, and the expanded -conjugated 

system through the tricyanovinyl unit was also inferred from the rather short C-C 

bonding distance of 1.410(6) Å between the -carbon atom of the pyrrole ring and the 

tricyanovinyl carbon atom. 
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Table 2-1: Crystallographic data for 3e: 

Empirical formula         C27H13N7 

Formula Weight           385.12 

Crystal system            monoclinic 

Lattice parameter          a = 39.777(12) Å, b = 11.229(3) Å, c = 14.209(4) Å;  

                        β = 108.523(4)°, V = 6017.76(300) Å3,  

Space group              C2/c 

Z value                  Z = 8;  

Residuals: R; Rw          R = 0.0980; Rw = 0.334 

 

Figure 2-7. Crystal structure of 3e, top view (top) and side view (bottom). The thermal 

elipsolids are scaled to the 50% probability level. Solvent molecules were omitted for 

clarity. 
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2.4.3 Spectroscopic Properties 

The UV-vis absorption spectra of a-tricyanovinyl substituted 2c and 2d exhibited 

rather intense and sharp absorption in the lower-energy region at 531 for 2c, and 655 

nm for 2d. Compared with the regular meso-phenyl-substituted dipyrrin 4 as a reference 

compound (Figure 2-8), the significant red-shift from 4 to 2c (about 99 nm) and 2d 

(about 223 nm) was observed. Considering meso-o-nitrophenyl substituent has the 

minor perturbation on the electronic structure of 2c, the strong pull-substituent 

tricyanovinyl unit at the -position has a large effect on the red-shift of the main 

absorption band.  In addition to consider the further red-shift in the case of 2d, the 

meso-N,N-dimethylaminophenyl substituent has a strong electron donating ability 

which significantly destabilized the HOMO orbitals. 

The expanded dipyrrin 3 exhibited significantly different absorption spectra 

compared with that of 2 and regular dipyrrin 4, two intense bands at around 400 and 

640 nm (Figure 2-9). Similar absorption spectra of a series of 3 indicate a small effect 

of the meso-substituent on the electronic structures of 3 due to the moderately tilted 

arrangement of the meso-substituents from the dipyrrin moiety (ca. 64º for 3e in the 

crystal structure).  In the case of 3d, strong electron donating substituent meso-N,N-

dimethylaminophenyl was introduced, an extra absorption at 477 nm was exceptionally 

observed and the absorption spectra covered all visible region. 
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Figure 2-8 UV-vis absorption spectra of 2c (blue), 2d (red) and 4 (black) in CHCl3 

 

 

Figure 2-9 UV-vis absorption spectra of 3 in MeOH 
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2.4.4 Absorption Spectra in Various Solvents 

To investigate the solvent effect on the photophysical behavior of these push-pull 

type dipyrrin analogues, we also measured their absorption spectra in various solvents 

from THF, ethylacetate and MeOH (Figure 2-11~14).  In contrast with these small 

conjugated molecules with push-pull substituents, the solvent effect is not very 

dramatic indicating that CT effects for these molecules are small. 

 

Figure 2-10. UV-Vis spectra of 3a in various solvents. 
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Figure 2-11. UV-Vis spectra of 3b in various solvents. 

 

 

Figure 2-12. UV-Vis spectra of 3e in various solvents. 
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Figure 2-13. UV-Vis spectra of 3f in various solvents. 

 

 

2.5 Theoretical Calculations 

Structural optimization using 2a (the o-nitrophenyl ring was replace by phenyl 

ring for simplicity due to the meso-o-nitrophenyl has a mirror effect on the electronic 

structures of 2a, 2d, 3a, 3d, and regular meso-phenyl-dipyrrin 4 as theoretical models 

was performed based on the DFT method at the B3LYP/6-31G(d) level, while time-

dependent (TD) DFT calculations were also carried out at the same level. 

The TDDFT calculation on 2a revealed major contribution of the HOMO-to-

LUMO transition to the lowest energy band. In addition to the similar distribution 

patterns of MO coefficients of the HOMO and LUMO of 2a on the dipyrrin moiety 

with respect to those of 4, these MOs are also delocalized onto the tricyanovinyl unit 

(Figure 2-14). The energy levels of both orbitals of 2a are stabilized relative to those 

of 4, the extent of which is more significant for the LUMO. The observed red-shift of 

the main absorption of 2c from 4 can, therefore, be attributed to the smaller HOMO-
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LUMO gap (2.61 eV for 2a and 3.27 eV for 4) due to the pull-effect of the tricyanovinyl 

substituent. In contrast to the essentially similar MO distribution patterns of 2a to those 

of 4, the frontier orbitals of 2d are significantly perturbed by the electron-rich meso-

substituent; the HOMO of 2d with large MO coefficients on the meso-N,N-

dimethylaminophenyl substituent lies at 5.70 eV, which is significantly destabilized 

relative to that of 2a, whereas the energy levels and distribution patterns of the HOMO–

1 and LUMO are very similar to those of the HOMO and LUMO of 2a, respectively. 

TDDFT calculations on 2d disclosed major contribution of intramolecular charge 

transfer transition from the HOMO to the LUMO. The observed red-shift of 2d from 

2c can, therefore, be ascribed to synergetic effects of the push (N,N-

dimethylaminophenyl) and pull (tricyanovinyl) substituents. 

 

 

Figure 2-14. MO diagrams of regular meso-phenyl dipyrrin 4, push-pull dipyrrin 2a 

(middle) and 2d (right). 
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Based on the TDDFT calculations, the absorption spectra of 3 (Figure 2-15) 

are mainly composed of transitions between the frontier orbitals including the HOMO–

1, HOMO, LUMO, and LUMO+1; the observed two characteristic bands of 3 at 640 

and 400 nm mainly comprise a transition from the HOMO to the LUMO and transitions 

from the HOMO to the LUMO+1 and the HOMO–1 to the LUMO, respectively (Table 

1). These frontier orbitals are delocalized on the entire molecules (Figure 2-15), which 

is in agreement with the expanded conjugation as inferred from the crystal structure of 

3e. Due to the expanded conjugation, the density distribution patterns of the frontier 

orbitals of 3 appear to be different from those of regular meso-aryl substituted 

dipyrromethene as exemplified by 4 in Figure 2-14.  In the case of 3d bearing an 

strong electron-donating N,N-dimethylphenyl group at the meso-position, the HOMO 

is largely perturbed, and the HOMO and HOMO–1 of 3d originate from a linear 

combination of the MOs of 3 and the N,N-dimethylphenyl substituent. The allowed 

transitions from these orbitals to the LUMO result in two split bands at 748 and 536 nm 

based on the TDDFT calculations (Table 2-3). This result reproduces the observed two 

absorption bands of 3f at 656 and 476 nm. 
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Figure 2-15 MO diagrams of push-pull dipyrrin 3a (left) and 3d (right). 
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Table 2-3: Selected transition energies and wave functions of 3a, 3d, 2a and 2d 

calculated based on the TDDFT (B3LYP/6-31G(d)) method. 

No. Energy 

(nm) 

f Wavefunction[b] 

3a 563.55 0.9261 0.695 | L ← H > -0.145 | L+1 ← H > +... 

458.18 0.3378 0.584 | L+1 ← H > -0.358 | L ← H-1 > +0.176 | L ← 

H > +... 

316.91 0.1025 0.494 | L+1 ← H-1 > -0.429 | L ← H-4 > -0.214 | L 

← H-6 > +... 

3d 747.97 0.1898 0.657 | L ← H > -0.243 | L ← H-1 > + 0.176 | L+1 

← H > +... 

535.70 0.5181 0.632 | L ← H-1 > -0.243 | L+1 ← H > + 0.195 | L 

← H > +... 

484.09 0.6896 0.636 | L+1 ← H > +0.210 | L ← H > +0.207 | L ← 

H-1 > -0.114 | L ← H-2 > +... 

2a 477.48 0.4627 0.706 | L ← H > -0.118 | H ← L > +... 

398.54 0.1108 0.650 | L ← H-2 > -0.255 | L+2 ← H > +... 

2d 477.81 0.5831 0.676 | L ← H-1 > +0.154 | L ← H-1 > +0.101 | L+1 

← H > -0.105 | L ← H > -0.103 | H-1 ← L >+... 

402.01 0.1315 0.687| L+1 ← H > -0.119 | L ← H-1 > +... 
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Figure 2-16 Selected transitions and UV-vis spetra of 3a. 

 

 

 
Figure 2-17 Selected transitions and UV-vis spetra of 3d. 
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Figure 2-18 Selected transitions and UV-vis spetra of 2a. 

 

 
Figure 2-19 Selected transitions and UV-vis spetra of 2d. 
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2.6 Protonation Behavior Studies. 

1a-1e showed similar spectral changes upon addition of TFA to a MeOH solution 

(Figure 2-23~Figure 2-26).  The amount amount of acid, at which was necessary to 

reach the equilibrium was found to increase with increasing the electron donating 

abilities of meso-substituents (20 eq., 40 eq., 40 eq., 60 eq., 8 eq. for 1a-1e, respectively).  

As a result of adding the acid, the peak around 640 nm was decreased and a new 

absorption band appeared around 580 nm.  Figure 2-21, 2-22 and 2-23 show the 

spectral changes of 1b, 1c and 1e upon addition of TFA in MeOH. 

 

 

 

Scheme 2.3 A plausible of mechanism of protonation behavior of push-pull dipyrrins. 
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Figure 2-21. Spectral changes of 1b upon addition of TFA in MeOH. 

 

Figure 2-22. Spectral changes of 1d upon addition of TFA in MeOH. 
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Figure 2-23. Spectral changes of 1e upon addition of TFA in MeOH. 

 

 

Further investigation was made in order to understand the mechanism of the 

protonation process.  The protonated species of Pro-1b can also be generated from 1b 

by addition of acid.  1b was dissolved in the MeOH and TFA (40 eq.) was added, and 

the mixture was stirred at room temperature for about 30 min.  After removing the 

solvent under vacuum, the protonated 1b (1b-Pro) is also stable, can be purified by 

silica gel column chromatography. 

    1H NMR spectra of 1b-Pro (Figure 2-24) were recorded in acetone-d6, at room 

temperature.  Comparing the 1H NMR spectrum of 1b-Pro with 1b, the signals 

appeared at lower field and N-H proton appeared at the higher field. The integration 

values of the 1b N-H proton are 0.35 and 0.65, which was increased to 1.00 and 1.05 

in 1b-pro.  It was indicated that the protonation probably took place at the pyrrole 

nitrogen atom.  The crystal structure of 1b exhibits an almost planar structure and 

when the pyrrole nitrogen atom is completely protonated, the distortion probably 

appears at the meso-position.  In addition to changing the conjugation of the 

compound, the main absorption band shifted to the shorter wavelength.  The 1H NMR 

spectra of 1b-Pro can also be successfully recorded in CDCl3 (Figure 2-25).  The 
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peaks of pyrrole and naphthalene exhibit a large change.  The N-H proton shows the 

signals at δ = 10.6 and 11.1 ppm in acetone-d6, and at δ = 9.30 and 7.80 ppm in CDCl3 

confirmed by addition of D2O. 

 

Figure 2-24. 1H NMR spectra of 1b (top) and 1b-Pro (bottom) in acetone-d6. 
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Figure 2-25. 1H NMR spectra of 1b-Pro (top) and D2O exchanged (bottom) in CDCl3. 

 

2.7 A Plausible mechanism of dipyrrin synthesis 

 

Scheme 2-4 A plausible of mechanism of push-pull dipyrrin synthesis. 
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2.8 Summary 

In this chapter, push-pull type dipyrrins were successfully obtained via facile 

synthesis for the first time. α-Tricyanovinyl-α-dicyanovinyl-dipyrrins 3 with expanded 

dipyrrin molecular structure, exhibits the marked red-shift and broad range of 

absorption, which tails beyond 640 nm.  3d also exhibits an additional band at 476 nm, 

resulting in absorption in the whole visible region. α-Tricyanovinyl- dipyrrins 2 exhibit 

the red-shift of main absorption band, which was further enhanced by the push-

substituent at the meso-position. 
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Synthesis, Properties and Theoretical Calculations of Push-

Pull Type Subporphyrazines 

 

 

 

 

 

 

 

 

 

 

 

 

 

Published article: 

X. Liang, S. Shimizu and N. Kobayashi. Chem. Commun., 2014, 50, 13781-13784. 



 56 

3.1 Introduction 

3.1.1 Chemistry of Subphyrazines 

    Subporphyrazines (SubPzs), a contracted congener of porphyrazines (Pzs) and 

removal of three benzene rings from subpthalocyanines (SubPcs) which comprising 

three isoindole units bridged by imino-nitrogen atoms, show great potential as 

functional chromophores due to their strong fluorescence and strong yellow-green 

absorptions.[1]  As far as we concerned, peripheral substituents which directly attached 

to the macrocyclic core has a greater effect on the electronic structures, and various β-

aryl substituted subporphyrazines have been reported to study the effect of substituents 

on the electronic structures.[2]  The small 14π conjugated molecular structures of 

SubPzs limit their main absorption bands are all at yellow-green light region only with 

an exceptional β,β’-sp3 hybrid subchlorin analogue as the only one example which has 

thermal main absorption band at longer wavelength region.[3]  Although the synthesis 

and properties of subporphyrazine analogues have been reported by Hanack, Torres and 

Kobayashi the chemistry of SubPzs was lack due the difficulties in the synthesis and 

the poor stabilities.[4] 

Figure 3-1. Molecular structure of porphyrazine (Pz, left), subporphyrazine (SubPz, 

middle) and subphthalocyanine (SubPc, right). 

 

Dicyanoethylene was used as the key-precursor for subporphyrazine synthesis, 

after reacted with BCl3, the 14π conjugated subporphyrazine can be isolated as the 

chloro axial chloro-substituted aromatic compound.  Kobayashi and co-workers 

published the research results combined the synthesis, spectroscopic properties and 

theoretical calculation of subporphyrazine in 2006.[4]  This new derivative exhibits the 
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main absorption band (Q-band) at around 500 nm and nearly degenerated excited states.  

Due to the limit of the synthetic method, the difficulities in the isolation and poor 

stability, the chemistry of subporphyrazine was still lack compared with 

subphthalocyanines and porphyrazines.  

   

Figure 3-2. Synthetic procedure (left) and absorption spectra of β,β’-hexethyl 

subporphyrazine 

 

In order to obtain the new subporphyrazines derivatives, which exhibit novel 

spectroscopic properties, in 2005, Torres reported the synthesis and characterizations 

of a new series of subporphyrazine derivatives bearing thioalkyl chains.  

Spectroscopic investigation reveals the changes of the optical properties of these 

macrocycles which was induced by the formal replacement of all isoindole rings in the 

SubPc framework by pyrrole moieties and the main absorption band was shifted to the 

longer wavelength region, at 559 nm.  Considering the macrocycle was strongly 

coupled to their peripheral substitutents, which is of great interest for further 

applications of these types of systems to areas like, for example, nonlinear optics. 
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Figure 3-3 Synthetic procedure of SubPzs (left), and the UV/Vis spectra of SubPc 

(right, dashed line), SubPz 4a (thick line), and SubPz 4d (thin line) 

 

Recently, A. Osuka and T. Torres succeeded in the post-modification of the 

peripheral substituents with aryl groups using Pd-catalyzed copper(I) thiophene-2-

carboxylate (CuTC)-mediated coupling of boronic acids with heteroaromatic thioethers.  

The introduced aryl substituents exert notable perturbations on the optical and 

electronic properties of the SubPz core, making these modifications a promising tool to 

tune SubPzs.  With the increasing of the post-coupled aryl-substituents, the 1st 

reduction potential was decreased with great linear correlation on the Hammett plot of 

first reduction potentials of SubPzs. 
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Figure 3-4 Synthetic procedure of SubPzs (left), and the UV/Vis spectra of SubPc 

(right, dashed line), SubPz 4a (thick line), and SubPz 4d (thin line) 

 

3.1.2 Disateromers and Enantiomers of Subphthalocyanine 

Following the first suggestion of inherent molecular chirality in asymmetrically 

substituted subphthalocyanines by Torres and co-workers in 2000, which the 

constitutional isomers of chloro-(2,9,16(17)triodosubphthalocianato)-boron(III) have 

been separated by column chromatography on silica gel. Furthermore, the enantiomers 

of each of these C1- and C3-regioisomers have been resolved by HPLC on a chiral 

analytical column.  The diatromers of subphthalocyanines can be easily characterized 

by 1HNMR spectra and C1 symmetry isomer exhibits splitted HNMR signals at the 

aromatic region.[5] 



 60 

 

Figure 2-5 1HNMR spectra of C3 (up) and C1 (bottom) symmetry isomers of β-

iodine substituted subphthalocyanine 

 

The research interests about chiral subpthalocyanine chemistry is still growing 

after Torres’s first paper, but it has not been possible to link the CD signs and intensities 

to their absolute structures due to its poor solubility.  In 2011, the separation and 

characterization of all of the diastereomers and enantiomers of 1,2-

subnaphthalocyanine was succeeded as the first example in the chemistry of inherently 

chiral subphthalocyanine by S. Shimizu and N. Kobayashi.  After characterized by 1H 

NMR and X-ray crystallized analysis, negative CD signs in the Q-band region are 

indicative of a molecular structure where the naphthalene moieties are arranged 

clockwise, while the positive CD signs in that region indicate an anticlockwise 

arrangement.[6] 
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Figure 2-6 Absorption and circular dichlorism (CD) spectra of chiral 

subphthalocyanines. 
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3.2 Propose of This Research 

Subporphyrazine (SubPz), a contracted analogue of tetraazaporphyrin (TAP) 

or in other words the meso-nitrogen-substituted congener of subporphyrin, has become 

an attractive class of chromophore molecules because of its intense Q band absorption 

and fluorescence in the visible region.  Considering introduction of electron donating 

(push-) and electron withdrawing (pull-) substituents have large contribution on the 

decrease of the gap between the HOMOs and the LUMOs, and push-pull type dipyrrins 

have been succeeded.  Introduction of push-pull substituents to the subporphyrazines 

will test the push-pull effect based on the subporphyrazine chromophores.  Based on 

the asymmetric arrangement of push-pull substituents and the bowl shaped molecular 

structure, both diasteromers and enantiomers will also be observed.  The studies on 

the electronic structure of these new push-pull subporphyrazine derivatives by 

spectroscopic investigations and theoretical calculation will give useful information to 

in-depth understand the relationship between the observed spectroscopic properties and 

effect of push-pull substituents. 

 

  

Push substituents

Pull substituents

Push-Pull

Subporphyrazine
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3.3 Synthesis 

3.3.1 Chemicals and instruments 

Electronic absorption spectra were recorded on a JASCO V-570 

spectrophotometer.  Circular dichroism (CD) and magnetic circular dichroism (MCD) 

spectra were recorded on a JASCO J-725 spectrodichrometer equipped with a JASCO 

electromagnet, which produces magnetic fields of up to 1.03 T (1 T = 1 tesla) with both 

parallel and antiparallel fields.  The magnitudes were expressed in terms of molar 

ellipticity ([]/deg dm3 mol–1cm–1) and molar ellipticity per tesla ([]M/deg dm3 mol–

1cm–1T–1), respectively.  Fluorescence spectra were measured on a Hitachi F-4500 

spectrofluorimeter.  Absolute fluorescence quantum yields were measured on a 

Hamamatsu Photonics C9920-03G calibrated integrating sphere system. 

1H NMR spectra were recorded on a Bruker AVANCE 500 spectrometer (operating 

at 500.13 MHz) using the residual solvent as an internal reference for 1H ( = 7.26 ppm 

for CDCl3,  = 5.32 ppm for CD2Cl2 and  = 2.09 ppm for toluene-d8).  High resolution 

mass spectra were recorded on a Bruker Daltonics solariX 9.4T spectrometer.  

Preparative separations were performed by silica gel column chromatography (Merck 

Kieselegel 60H) and recycling preparative GPC-HPLC (JAI LC-9201 with preparative 

JAIGEL-2H, 2.5H, and 3.0H columns).  Separation of all the enantiomers was carried 

out by high-performance liquid chromatography (HPLC) with a preparative 

CHIRALPAK IA column by monitoring the absorbance at 580 nm. CV measurements 

were recorded with a Hokuto Denko HZ5000 potentiostat under nitrogen atmosphere 

in o-dichlorobenzene (o-DCB) solutions with 0.1 M of tetrabutylammonium 

perchlorate (TBAP) as a supporting electrolyte. Measurements were made with a glassy 

carbon electrode (area = 0.07 cm2), an Ag/AgCl reference electrode, and a Pt wire 

counter electrode. The concentration of the solution was fixed at 1.0 mM and the sweep 

rates were set to 100 mV/s. The ferrocenium/ferrocene (Fc+/Fc) couple was used as an 

internal standard.  All chemical reagents and solvents were of commercial reagent 

grade and were used without further purification except where noted. 
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3.3.2 Crystallographic Data Collection and Structure Refinement 

    Data collection was carried out at –173(2) ºC on a Bruker APEXII CCD 

diffractometer with Mo K radiation ( = 0.71073 Å) for 2c. The structure was solved 

by a direct method (SHELXS-97)[7] and refined using a full-matrix least squares 

technique (SHELXL-97). CCDC-1015544 contain the supplementary crystallographic 

data for 2c and the data can be obtained free of charge from the Cambridge 

Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. 

 

3.3.3 Computational methods 

The Gaussian 09 software package[8] was used to carry out DFT and TDDFT 

calculations using the B3LYP functional and 6-31G(d) basis sets.  Structural 

optimization was performed on model compounds of 2a, 2b, 2c, 3c, and unsubstituted 

subporphyrazine 4 as a reference compound. 

 

3.3.4 Synthesis of 1,1,2-tricyano-2’-arylethylene 

 

Scheme 3-1. Synthesis of aryl-tricyanoethylene and push-pull subporphyrazines. 

http://www.ccdc.cam.ac.uk/data_request/cif
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Scheme 3-2. Synthesis of aryl-tricyanoethylene 1a, 1b and 1c. 

 

Synthesis of 1a-2:  A 5 mL water solution of NaOH (16 mg, 0.4 mmol, 0.04 equiv.) 

was added to a 30 mL methanol solution of p-anisaldehyde 1a-1 (13.6 g, 0.1 mol) and 

malononitrile (7.92 g, 0.12 mol, 1.2 equiv.).  The resulting mixture was stirred at RT 

for 0.5 h and the solid compounds were collected after filtration.  Further purification 

was by silica gel column chromatography (CHCl3) afford the compound 1,1’-dicyano-

2’-methoxylethylene 1a-2 in yield 88% (16.2 g).  1H NMR (500 MHz, CDCl3, 298K): 

δ = 7.91 (d, 2H, phenyl; J = 8.8 Hz), 7.65 (s, 1H, ethylene), 7.01 (d, 2H, phenyl; J = 9.0 

Hz), 3.92 (s, 3H, -OMe). 

 

Synthesis of 1a-3:  KCN (1.02 g, 15.5 mmol, 1.03 equiv.) was dissolved in 20 mL 

water, stirred and heated at 60oC. After the KCN was completely dissolved in the water, 

a 20 mL EtOH solution of 1,1'-dicyano-2-p-methoxylphenylethylene 1a-2 (2.76 g, 15.0 

mmol) was slowly added and continuously stirred at 60oC for 15 min.  After cooling 

to room temperature, a solution of acetic acid/water (2 mL in 10 mL water) was added. 

After removal of solvent, the reaction mixture was dried under vaccum. Further 

purification was carried out by column chromatography (eluent: CHCl3:MeOH = 10:1) 

to afford a white compound.1,1’,2-Tricyano-2’-methoxylphenylethane 1a-3 in 65% 

yield (2.06 g).  1H NMR (500 MHz, CDCl3, 298K): δ = 7.42 (d, 2H, phenyl; J = 8.8 

Hz), 7.01 (d, 2H, phenyl; J = 8.8 Hz), 4.40 (d, 1H, ethylene; J = 6.0 Hz), 4.18 (d, 1H, 

ethylene; J = 6.0 Hz), 3.85 (s, 3H, -OMe). 
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Synthesis of 1a:  2,3-Dichloro-5,6-dicyano-p-benzoquinone (DDQ; 2.3 g 10.0 mmol, 

2.0 equiv.) was added to a 50 mL CHCl3 solution of 1,1’,2-tricyano-2’-

methoxyphenylethane 1a-3 (1.06 g, 5.0 mmol).  The resulting mixture was stirred at 

room temperature for 2h under air.  After removal of the solvent, the mixture was 

firstly purified through alumina gel column chromatrography (eluent: CHCl3) and 

further purified by silica gel column chromatography (eluent: CHCl3) to give the yellow 

solid compound 1,1’,2-tricyano-2’-methoxyl-phenylethylene 1a in 95% yield (0.99 g).  

1H NMR (500 MHz, CDCl3, 298K): δ = 8.10 (d, 2H, phenyl; J = 9.2 Hz), 7.08 (d, 2H, 

phenyl; J = 9.2 Hz), 3.96 (s, 3H, -OMe). 

 

Synthesis of 1b-2: A 5 mL water solution of NaOH (16 mg, 0.4 mmol, 0.04 equiv.) was 

added to a 30 mL methanol mixture of p-tolyaldehyde 1b-1 (12.0 g, 10 mmol) and 

malononitrile (7.92g, 12 mmol, 1.2 equiv.).  The resulting mixture was stirred at RT 

for 0.5 h and the solid compounds were collected after filtration. Further purification 

was by silica gel column chromatography (CHCl3) afford the light yellow compound 

1,1'-dicyano-2-tolyethylene 1b-2 in 86% yield (14.4 g).  1H NMR (500 MHz, CDCl3, 

298K): δ = 7.81 (d, 2H, phenyl; J = 8.3 Hz), 7.72 (s, H, ethylene), 7.34 (d, 2H, phenyl; 

J = 8.2 Hz), 2.45 (s, 1H, -CH3). 

 

Synthesis of 1b-3:  KCN (1.02 g, 15.5 mmol) was dissolved in 20 mL water, stirred 

and heated at 60oC. After the KCN was completely dissolved in the water, a 20 mL 

EtOH solution of 1,1'-dicyano-2-tolyethylene 1b-2 in EtOH (2.52 g, 15 mmol) was 

added, and continuously stirred at 60oC for 15 min. After cooling to room temperature, 

a solution of acetic acid/water (2 mL in 10 mL water) was added. The solid-state 

compound was removed and the organic solution evaporated under vacuum. Further 

purification was carried out by column chromatography (eluent: CHCl3:MeOH = 10:1) 

to afford a white solid state compound 1,1’,2-tricyano-2’-tolylethane 1b-3 in 62% yield 
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(1.81 g). 1H NMR (CDCl3, 298K): δ = 7.38 (d, 2H, phenyl; J = 8.2 Hz), 7.32 (d, 2H, 

phenyl; J = 8.2 Hz), 4.41 (d, 1H, ethylene; J = 6.0 Hz), 4.20 (d, 1H, ethylene; J = 6.0 

Hz), 2.41 (s, 3H, -CH3). 

 

Synthesis of 1b:  2,3-Dichloro-5,6-dicyano-p-benzoquinone (DDQ; 2.3 g 10.0 mmol, 

2.0 equiv.) was added to a 50 mL CHCl3 solution of 1,1’,2-tricyano-2’-tolyethane 1b-3 

(0.98 g, 5.0 mmol).  The resulting mixture was stirred at room temperature for 2h 

under air.  After removal of the solvent, the mixture was firstly purified through 

alumina gel column chromatrography (eluent: CHCl3) and further purified by silica gel 

column chromatography (eluent: CHCl3) to give the yellow solid state compound 

1,1’,2-tricyano-2’-tolyethylene 1b in 92% yield (0.89 g)  1H NMR (500 MHz, CDCl3, 

298K): δ = 7.95 (d, 2H, phenyl; J = 8.5 Hz), 7.41 (d, 2H, phenyl; J = 8.5 Hz), 2.50 (s, 

3H, -CH3). 

 

Synthesis of 1c-2:  A 5 mL water solution of NaOH (16 mg, 0.4 mmol, 0.04 equiv.) 

was added to a 30 mL methanol mixture of p-trifluoromethylbenzaldehyde 1c-1 (17.4 

g, 10 mmol) and malononitrile (7.92g, 12 mmol, 1.2 equiv.).  The resulting mixture 

was stirred at RT for 0.5 h and the solid state compounds were collected after filtration. 

Further purification was by silica gel column chromatography (CHCl3) afford the white 

solid state compound 1,1’-dicyano-2-p-trifluoromethylphenylethylene 1c-2 in 80% 

yield (17.7 g).  1H NMR (500 MHz, CDCl3, 298K): δ = 8.01 (d, 2H, phenyl; J = 8.8 

Hz), 7.84 (s, 1H, ethylene), 7.81 (d, 2H, phenyl; J = 8.4 Hz). 

 

Synthesis of 1c-3: KCN (1.02 g, 15.5 mmol) was dissolved in 20 mL water, stirred and 

heated at 60oC. After the KCN was completely dissolved in the water, a 20 mL EtOH 

solution of 1,1'-dicyano-2-p-trifluoromethylphenyethylene 1c-2 (3.4 g, 15 mmol) was 

added, and continuously stirred at 60oC for 15 min. After cooling to room temperature, 

a solution of acetic acid/water (2 mL in 10 mL water) was added. The solid-state 
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compound was removed and the organic solution evaporated under vacuum. Further 

purification was carried out by column chromatography (eluent: CHCl3:MeOH = 10:1) 

to afford a white compound 1,1’,2-tricyano-2’-p-trifluoromethyl- phenylethane 1c-3 in 

yield 42% (1.57 g). 1H NMR (CDCl3, 298K): δ = 7.82 (d, 2H, phenyl; J = 8.2 Hz), 7.68 

(d, 2H, phenyl; J = 8.2 Hz), 4.53 (d, 1H, ethylene; J = 5.7 Hz), 4.31 (d, 1H, ethylene; J 

= 5.7 Hz). 

 

Synthesis of 1c:  2,3-Dichloro-5,6-dicyano-p-benzoquinone (DDQ; 2.3 g 10.0 mmol, 

2.0 equiv.) was added to a 50 mL CHCl3 solution of 1,1’,2-tricyano-2’-p-

trifluoromethylphenylethane 1b-3 (1.25 g, 5.0 mmol).  The resulting mixture was 

stirred at room temperature for 2h under air.  After removal of the solvent, the mixture 

was firstly purified through alumina gel column chromatrography (eluent: CHCl3) and 

further purified by silica gel column chromatography (eluent: CHCl3) to give the white 

solid state compound 1,1’,2-tricyano-2’-p-trifluorophenylethylene 1c in 75% yield 

(0.93 g). 1H NMR (CDCl3, 298K): δ = 8.10 (d, 2H, phenyl; J = 8.5 Hz), 7.90 (d, 2H, 

phenyl; J = 8.5 Hz). 
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3.3.5 Synthesis and isolation of β-aryl-β’-cyano subporphyrazine 

 

Scheme 3-3 Synthesis of push-pull subporphyrazines 

 

Synthesis of 2a: Boron trichloride (1.0 M p-xylene solution, 0.35 mL, 0.35 equiv.) was 

added to 1,1,2-tricyano-2-p-methoxyphenylethylene 1a (209 mg, 1.0 mmol) at room 

temperature.  The resulting mixture was gradually heated at 140 ºC, and the 

temperature maintained for 45 min.  After removal of the solvent, the reaction mixture 

was purified by silica gel column chromatography (eluent: toluene:ethylacetate = 10:1) 

and bio-beads (Sx-1) column (eluent: CHCl3).  Recrystallization from toluene and 

hexane provided compound 2a in 3.3% yield (7.40 mg).  1H NMR (500 MHz, CDCl3): 

 = 8.88 (d, J = 9.1 Hz, 6H), 7.24 (d, J = 9.1 Hz, 6H), 4.00 ppm (s, 9H; -OMe); UV/vis 

(toluene): max [nm] () = 633 (42300), 435 (17300 M-1 cm-1); HR-MALDI-TOF-MS: 

m/z = 673.1547 (Calcd. for C36H21BClN9O3 [M
+], 673.1544). 
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Synthesis of 2b: Boron trichloride (1.0 M p-xylene solution, 0.35 mL, 0.35 equiv.) was 

added to 1,1,2-tricyano-2-p-tolylethylene 1b (193 mg, 1.0 mmol) at room temperature.  

The resulting mixture was gradually heated at 140 ºC, and the temperature maintained 

for 45 min.  After removal of solvents under vacuum, the reaction mixture was 

purified by silica gel column chromatography (eluent: toluene:ethylacetate = 10:1), 

GPC-HPLC (eluent: CHCl3).  Recrystallization from toluene and hexane provided 

compound 2b in 5.6% yield (11.7 mg).  1H NMR (500 MHz, CDCl3):  = 8.71 (d, J = 

8.3Hz, 6H), 7.55 (d, J = 8.1 Hz, 6H), 2.63 ppm (s, 9H; -CH3); UV/vis (toluene): max 

[nm] () = 594 (41200), 419 (15400 M-1 cm-1); HR-MALDI-TOF-MS: m/z = 625.1705 

(Calcd. for C36H21BClN9 [M
–], 625.1707). 

 

Synthesis of 2c: Boron trichloride (1.0 M p-xylene solution, 0.35 mL, 0.35 equiv.) was 

added to 1,1’,2-tricyano-2-p-trifloromethylphenyl-ethylene 1c (193 mg, 1.0 mmol) at 

room temperature.  The resulting mixture was gradually heated at 140 ºC, and the 

temperature maintained for 45 min. After removal of solvents under vacuum, the crude 

mixture was purified by silica gel column chromatography (eluent: toluene:ethylacetate 

= 8:1) and bio-beads (Sx-1) column (eluent: toluene).  Recrystallization from toluene 

and hexane provided compound 2c in 7.2% yield (18.9 mg).  1H NMR (500 MHz, 

toluene-d8):  = 8.68 (d, J = 8.2Hz, 6H), 7.39 ppm (d, J = 8.3Hz, 6H); UV/vis (toluene): 

max [nm] () = 571 (41200), 390 (14900 M-1 cm-1); HR-MALDI-TOF-MS: m/z = 

787.0857 (Calcd. for C36H12BClF9N9 [M
–], 787.0859). 

 

Synthesis of 3a:  The subporphyrazine 3a was isolated from the reaction mixture of 

the synthesis of 2a, and the reaction mixture was purified by silica gel column 

chromatography (eluent: toluene:ethylacetate = 10:1) and bio-beads (Sx-1) column 

(eluent: CHCl3).  Recrystallization from toluene and hexane provided the target 

compound in a 0.2% yield (0.45 mg).  1H NMR (500 MHz, CD2Cl2):  = 8.91 (d, J = 

9.0 Hz, 2H); 8.78 (d, J =9.0Hz, 2H), 8.71 (d, J = 9.0Hz, 2H), 7.30 (d, J = 9.1Hz, 2H), 
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7.23 (d, J = 9.1Hz, 2H), 7.20 (d, J = 9.1 Hz, 2H), 4.01 (s, 3H; -OMe), 3.98 (s, 3H; -

OMe), 3.96 ppm (s, 3H; -OMe); UV/vis (toluene): max [nm] () = 629 (41000), 499 

(27100), 435 (22700 M-1 cm-1); HR-MALDI-TOF-MS: m/z = 673.1553 (Calcd. for 

C36H21BClN9O3 [M
–], 673.1555). 

 

Synthesis of 2d:  The subporphyrazine 3a was isolated from the reaction mixture of 

the synthesis of 2a, and the reaction mixture was purified by silica gel column 

chromatography (eluent: toluene:ethylacetate = 10:1) and bio-beads (Sx-1) column 

(eluent: CHCl3). 
1H NMR (500 MHz, CD2Cl2):  = 8.29 (dd, J1 = 1.7 Hz, J1 = 7.7 Hz 

3H); 7.77 (m, 3H), 7.36 (d, J = 9.0Hz, 2H), 7.30 (d, J = 9.1Hz, 2H), 7.23 (d, J = 9.1Hz, 

2H), 3.96 ppm (s, 3H; -OMe); UV/vis (toluene): max [nm] () = 582 (39000 M-1 cm-1); 

HR-MALDI-TOF-MS: m/z = 673.1548 (Calcd. for C36H21BClN9O3 [M
–], 673.1545). 

 

Synthesis of 3d:  The subporphyrazine 3a was isolated from the reaction mixture of 

the synthesis of 2a, and the reaction mixture was purified by silica gel column 

chromatography (eluent: toluene:ethylacetate = 10:1) and bio-beads (Sx-1) column 

(eluent: CHCl3). 
1H NMR (500 MHz, CD2Cl2):  = 8.91 (d, J = 9.0 Hz, 2H); 8.78 (d, J 

=9.0Hz, 2H), 8.71 (d, J = 9.0Hz, 2H), 7.30 (d, J = 9.1Hz, 2H), 7.23 (d, J = 9.1Hz, 2H), 

7.20 (d, J = 9.1 Hz, 2H), 4.01 (s, 3H; -OMe), 3.98 (s, 3H; -OMe), 3.96 ppm (s, 3H; -

OMe); UV/vis (toluene): max [nm] () = 629 (41000), 499 (27100), 435 (22700 M-1 

cm-1); HR-MALDI-TOF-MS: m/z = 673.1553 (Calcd. for C36H21BClN9O3 [M–], 

673.1555). 

 

3.4.1 1HNMR Spectra of Push-Pull Type Subporphyrazines 

In the HNMR spectra, C3 symmetry 2a, 2b and 2c reveal similar proton NMR 

singals from phenyl substituents.  Two doublet peaks appeared at  = 8.88, 7.24 ppm 

and only one singlet peak at  = 4.00 ppm indicate the C3 symmetry molecular structure 

of 2c. 
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Figure 3-7. 1H NMR spectra of 2a in CDCl3. 

 

 

Figure 3-8. 1H NMR spectra of 2b in CDCl3. 

 

 

Figure 3-9. 1H NMR spectra of 2c in toluene-d8. 
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Figure 3-10 1H NMR spectra of 3a in CD2Cl2. 

 

 

Figure 3-11 1H NMR spectra of 2d in CD2Cl2. 

 

 

Figure 3-12 1H NMR spectra of 2d in CD2Cl2. 
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3.4.2 X-ray Crystal Structure of SubPz 2c 

Suitable crystals were obtained from slowly diffusion hexane into a toluene 

solution with a racemic mixture of 2c. The crystal structure of 2c exhibited C3 

symmetric arrangement of cyano and p-trifluoromethylphenyl substituents at the β-

positions.  Since subporphyrazine have a bowl-shaped molecular structure which 

clearly shown in the side view of the crystal structure.  The racemic mixtures of both 

enantiomers with clockwise and anticlockwise arrangement of these substituents were 

also confirmed by X-ray crystal analysis. 
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Figure 3-13 X-ray crystal structure of 1a, top view (up) and side view (bottom). The 

thermal elipsolids are scaled to the 50% probability level.  Hydrogen atoms and 

solvent molecules are omitted for clarity.  β-p-trifluoromethylphenyl and β-cyano 

units were omitted for clarity in the view side. 
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Figure 3-14. Crystal packing diagram of 2c. 
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3.4.3 Spectroscopic Properties 

3.4.3.1 Absorption and MCD spectra 

    The electronic absorption spectra of C3 symmetry 2c exhibits the main absorption 

band (Q-band) at 571 nm (Figure 3-15 (bottom)), the soret band appears at 320 nm 

while an extra band appeared at 390 nm.  2b and 2a with increased electron donating 

abilities of push-substituents, exhibit similar shaped, but red-shift of the main 

absorption bands and the extra bands at 594, 419 nm for 2b, and 633, 435 nm for 2a.  

A significant red-shift of the main absorptions was observed in all these push-pull type 

subporphyrazines compared with the regular one (72 nm for 2c, 95 nm for 2b, and 134 

nm for 2a).  Based on these results, we confirmed introduction of push-pull 

substituents to the subporphyrazine core is an effective strategy to control the red-shift 

of main absorptions.  The broad absorption observed between the Q band and Soret 

band in the absorption spectra of 2a–2c, is, therefore, considered to be composed of 

both intramolecular CT transitions from the HOMO-1 and HOMO-2 to the LUMO and 

p–p* transitions between the SubPz-centred HOMO-3 and LUMO. The peripherally 

aryl-substituted SubPzs also exhibit similar CT absorption in the similar region.[1] 

Based on the same molecular symmetry of C3, the MCD spectra of 2a, 2b 

and 2c exhibited similar spectral shape and red-shift of the spectral resonance with 

negative to positive envelops which can be assigned as Faraday A term, at 580, 608 and 

649 nm, respectively.[9]  These MCD spectral features of 2a, 2b and 2c in the Q band 

region indicate non-degenerate excited states.  These entire compounds exhibit the 

negative-to-positive sequence of the MCD signals in ascending energy infers a greater 

energy difference between the first and second HOMOs (ΔHOMO) than that of the 

LUMOs (ΔLUMOs).  Plots of position of the Q bands of the push-pull 

subporphyrazines versus Hammett p parameters was shown in Figure 3-16, the extent 

of the red-shift is proportional to the donor ability of the push-substituent, which is 

broadly supported by a linear correlation between the position of the Q band 

absorptions and the Hammett p parameters of the substituents of the aryl groups 
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Figure 3-15 Magnetic circular dichlorism (up) spectra and absorption spectra 

(bottom) of compound 2a (green) , 2b (red) and 2c (black).  

 

Figure 3-16 Plots of position of the Q bands of the push-pull subporphyrazines versus 

Hammett p parameters. 
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In the case of 3a, the C1 symmetric isomer for that of 2a, exhibits main absorption 

band at 626 nm and extended to the broader region of absorptions.  The assigned 

pseudo Faraday A term of 3a in the Q band region, broad shape at 643 nm, which is 

observed when two Faraday B terms lie close in energy, and the spectral feature of 3a 

explain of non-degenerate excited states due to the molecular symmetry lower than C3.  

The negative-to-positive sequence of the MCD signals of 2c in ascending energy infers 

a greater energy difference between the first and second HOMOs (ΔHOMO) than that 

of the LUMOs (ΔLUMOs). 

 

Figure 3-17 Magnetic circular dichlorism (up) spectra and absorption spectra 

(bottom) of compound 2a (green), 3a (blue). 

 

3.4.3.2 Fluorescence spectra 

    These push-pull type subporphyrazines can also be emitted in the solution state.  

2c exhibits the intense fluorescence at 591 nm with stokes’ shift of 649 cm-1, which is 

larger that the common subphthalocyanines and subporphyrazines.  Red-shift of the 

fluorescence peaks were observed for 2b and 2a with similar stokes shift and quantum 
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yield (705 cm-1, 0.16 for 2b and 692 cm-1, 0.16 for 2a). 3a exhibits the fluorescence 

band at 696 nm, which has a similar quantum yield 0.18 but a larger stokes’ shift, is 

1004 nm-1. 

 

 

Figure 3-18 Fluorescence spectra of compound 2c (purple), 2b (red), 2c (black), and 

and 3a (blue) in toluene. 

 

3.4.3.3 Spectroscopic properties of 2d and 3d 

The spectroscopic properties of 2d (Figure 3-19) including absorption, MCD 

and fluorescence spectra exhibits similar sharp, but blue-shift of the main absorption 

band at the shorter wavelength region.  The smaller perturbation from the push-o-

methoxylphenyl unit to the subporphyrazine core results the blue shift of the main 

absorption band at 582 nm. Based on the same molecular symmetry of C3, the MCD 

spectra of 2d exhibited similar spectral shape and red-shift of the spectral resonance 

with negative to positive envelops which can be assigned as Faraday A term, at 595 nm.  

This MCD spectral features of 2d in the Q band region indicate non-degenerate excited 

states.  These entire compounds exhibit the negative-to-positive sequence of the MCD 

signals in ascending energy infers a greater energy difference between the first and 
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second HOMOs (ΔHOMO) than that of the LUMOs (ΔLUMOs). 

 

Figure 3-19 Magnetic circular dichlorism (up) spectra, absorption spectra (bottom, 

solid line) fluorescence spectra (bottom, solid line) of 2a (green), 2d (red) in toluene. 

 

Similar blue shift of the main absorption band was also observed in the case of 3d, 

the C1 symmetric isomer for that of 2d, exhibits main absorption band at 577 nm and 

extended to the broader region of absorptions.  The assigned pseudo Faraday A term 

of 3d in the Q band region, broad shape at 593 nm, which is observed when two Faraday 

B terms lie close in energy, and the spectral feature of 3d explain of non-degenerate 

excited states due to the molecular symmetry lower than C3.  The negative-to-positive 

sequence of the MCD signals of 3d in ascending energy infers a greater energy 

difference between the first and second HOMOs (ΔHOMO) than that of the LUMOs 

(ΔLUMOs). 
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Figure 3-20 Magnetic circular dichlorism (up), absorption (bottom, solid line) 

fluorescence spectrums (bottom, dashed line) of 3a (blue), 3d (purple) in toluene. 

 

3.4.4 Chiral Separation and CD Spectra of 2b 

    Optical resolution of 2b was performed on an equipped with a chiral column using 

toluene to give us two main fractions (2bFr1 and 2bFr2) and the CD spectra was also 

measured in toluene.  In the CD spectra (Figure 3-21), the first fraction 2bFr1 

exhibits a negative-positive-negative-positive sign in the detection region from 750 nm 

to 300 nm, where the second fraction 2bFr2 exhibits a mirror-imaged positive and 

negative signs in the corresponding regions.  The molecular chirality is originally 

come from the clockwise or anti clockwise arrangement of push-pull substituents at 

β,β’-positions of bowl shape subpz moieties which can be regarded as a kind of  “bowl 

chirality”. 
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Figure 3-21 Cicular dichlorism (up) and absorption spectra (bottom) of enantiomers 

of 2b in toluene. 

          

 

3.5 Theoretical Calculations 

In order to in-depth understand the electronic structures of these subporphyrazines 

compounds, theoretical calculations were successfully carried out.  Structural 

optimization using 2a, 2b, 2c, 3a, and regular unsubstituted subporphyrazine 3 as the 

model compounds that were performed based on the DFT method at the B3LYP/63-

1G(d) level.  The time dependent (TD) DFT calculation was also carried out at the 

same level.  In the frontier MOs (Figure 3-22) of 2c and unsubstituted subPz 4, similar 

electron density distribution pattern were observed, and the delocalization of electron 

density on the exterior β-trifluoromethylphenyl and β-cyano substituents were also 

confirmed. The non-degenerated LUMO and LUMO+1 orbitals of 2c reproduced the 

observed Faraday A terms in the MCD spectra.  Compared with SubPz 4, the HOMO 

and the LUMO energy levels of 2c was stabilized by introduction of pull-substituent at 
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pyrrole β-position, but the decrease of the LUMO is more significant.  Whereas the 

HOMO-1 and HOMO-2 localize on the push–pull substituents.  This finally results a 

decreased energy gap between the HOMO-LUMO orbital for 2c, is -2.64 eV (-3.29 eV 

for 4) and further suggested the red-shift of the main absorption band was caused by 

the introduction of the pull-substituents. 

 

 

 

Figure 3-22 Partial MO diagrams of 2c (left) and non-substituted SubPz 4 (right). 
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In the frontier MOs of 2a, 2b and 2c (Figure 3-23), similar electron density 

distribution pattern and the delocalization of electron density on the exterior β-aryl and 

β-cyano substituents were confirmed.  The non-degenerated LUMO and LUMO+1 

orbitals of 2a, 2b and 2c were also reproduced the observed Faraday A terms in the 

MCD spectra.  With the increase of the electro donating ability of β-aryl (Push-) 

substituent, the HOMO and the LUMO energy levels were destabilized, and the 

destabilization of the LUMO is more significant.  The selected transitions of 2a, 2b 

and 2c were shown in Figure 3-24, the lowest energy transitions are mainly from  the 

HOMO orbitals to the LUMO and the LUMO+1 orbitals.  The significant red-shift of 

the  
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Figure 3-23 Partial MO diagrams of 2a (left), 2b (middle) and 2c (right).
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Figure 3-24 Selected transitions of 2a (bottom), 2b (middle) and 2c (top). 

 

 

The partial MO diagrams of C3 symmetry 2a and C1 symmetry 3a were shown in 

Figure 3-25, the LUMO and LUMO+1 orbitals of 3a were non-degenerated that 

reproduced pseudo-Faraday A term on the MCD spectra. The energy spilt of molecular 

orbitals HOMO-1 and HOMO-2 was only observed in the case of 3a.  All these 

difference is due to transitions between these non-degenerated orbitals extended the 

electronic absorptions across the broader region compared with 3a. 
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Figure 3-25 Partial MO diagrams of 2a (left), 3a (right). 
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Table 3-1 Selected transition energies and wave functions of 1a and 2a calculated by the TDDFT method (B3LYP/6-31G(d)). 

No. 
Energy 

[nm] 
f [a] Wave function[b] 

2a 

 

 

 

 

 

 

2b 

 

 

 

 

 

 

 

 

614 

614 

547 

547 

416 

416 

 

564 

564 

501 

501 

407 

407 

 

 

 

0.376 

0.376 

0.195 

0.195 

0.162 

0.162 

 

0.356 

0.356 

0.115 

0.115 

0.167 

0.167 

 

 

 

+ 0.629|L ← H> + 0.290|L+1 ← H> +… 

+ 0.629|L+1 ← H> + 0.290|L ← H> +… 

+ 0.472|L+1 ← H–2> + 0.472|L ← H–1> – 0.142|L ← H–2> + 0.142|L+1 ← H–1> +… 

+ 0.472|L+1 ← H–1> – 0.472|L ← H–2> – 0.142|L+1 ← H–2> – 0.142|L ← H–1> +… 

+ 0.606|L+1 ← H–3> + 0.280|L ← H–3> – 0.132|L ← H–9> +… 

+ 0.606|L ← H–3> – 0.280|L+1 ← H–3> + 0.132|L+1 ← H–9> +… 

 

+ 0.687|L ← H>  +… 

+ 0.687|L+1 ← H>  +… 

+ 0.357|L+1 ← H–2> – 0.357|L ← H–1> + 0.344|L ← H–2>  + 0.344|L+1 ← H–1> +… 

+ 0.357|L ← H–2> + 0.357|L+1 ← H–1> – 0.344|L+1 ← H–2> + 0.344|L ← H–1> +… 

+ 0.550|L+1 ← H–3> + 0.199|L+1 ← H–6>  – 0.168|L ← H–5> – 0.168|L+1 ← H–4>  

+ 0.148|L+1 ← H–5> – 0.148|L ← H–4>  – 0.130|L ← H–8>  – 0.122|L ← H–3> +… 

+ 0.550|L ← H–3> + 0.199|L ← H–6>  – 0.168|L+1 ← H–5> + 0.168|L ← H–4> – 

0.148|L ← H–5> – 0.148|L+1 ← H–4> + 0.130|L+1 ← H–8> + 0.122|L+1 ← H–3> +… 
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2c 

 

 

 

 

 

 

3a 

 

 

 

528 

528 

403 

403 

 

 

610 

594 

496 

423 

422 

0.341 

0.341 

0.190 

0.190 

 

 

0.223 

0.252 

0.283 

0.117 

0.229 

+ 0.677|L ← H> – 0.122|L+1 ← H–3> + 0.109|L+1 ← H> +… 

+ 0.677|L+1 ← H> + 0.122|L ← H–3> – 0.109|L ← H> +… 

+ 0.574|L+1 ← H–3> – 0.118|L ← H–9> – 0.127|L+1 ← H–9> – 0.219|L+1 ← H–6> +  

0.153|L+1 ← H–5> + 0.153|L ← H–4> – 0.114|L ← H–3> + 0.112|L ← H> +… 

+ 0.574|L ← H–3> –0.153|L ← H–5> + 0.153|L+1 ← H–4> – 0.127|L ← H–9> +  

0.118|L+1 ← H–9> – 0.219|L ← H–6> + 0.114|L+1 ← H–3> – 0.112|L+1 ← H> +… 

 

+ 0.521|L ← H> + 0.437|L+1 ← H> +… 

+ 0.535|L+1 ← H> – 0.445|L ← H> +… 

  + 0.657|L+1 ← H–2> – 0.206|L ← H–1> – 0.107|L ← H–3> +… 

+ 0.472|L+1 ← H–3> – 0.458|L ← H–3> – 0.125|L ← H–9> +… 

+ 0.487|L ← H–3> + 0.456|L+1 ← H–3> – 0.107|L ← H–9> + 0.107|L+1 ← H–9> +… 
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3.6 Electrochemistry 

Electrochemistry of the synthetic subporphyrazines were measured in o-

dichlorobenzene.  Due to the poor stability of push-pull porphyrazines in the solution 

state, the measurements were not proceeded well and CV curves of 2a, 2b and 2c were 

shown in Figure 3-26~3-28. 

 

Table 3-2. Electrochemical reduction potentials of 2a, 2b and 2c, E1/2
Red versus Fc/Fc+ 

(in V) for the SubPzs studied in this work. 

Sample name E1/2
Red1 E1/2

Red2 E1/2
Red3 

2a[a] -1.32 V -1.70 V -1.90 V 

2b[a] -1.27 V -1.66 V -1.80 V 

2c[b] -1.49 V - - 

[a] Irreversible process of the oxidation parts (potential corresponds to the peak 

potential). [b] The compound 3c decomposed soon during the measurement. 

 

Figure 3-26 Cyclic voltammetry data for 2a. Cyclic voltammograms were acquired 

from 1.0 mM solutions of analyte in 0.1M nBu4NClO4/o-DCB. Ferrocene was used as 

an internal standard and set to 0 V. 
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Figure 3-27 Cyclic voltammetry data for 2b. Cyclic voltammograms were acquired 

from 1.0 mM solutions of analyte in 0.1M nBu4NClO4/o-DCB. Ferrocene was used as 

an internal standard and set to 0 V. 

 

 

Figure 3-28 Cyclic voltammetry data for 2c. Cyclic voltammograms were acquired 

from 1.0 mM solutions of analyte in 0.1M nBu4NClO4/o-DCB. Ferrocene was used as 

an internal standard and set to 0 V. 
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3.7 Summary 

In this chapter, First examples of asymmetric push–pull SubPzs were 

successfully obtained via facile synthesis, and their diastereomers and enantiomers 

based on the arrangement of the peripheral substituents were also successfully 

separated.  Push-pull SubPz 2c with strong electron withdrawing pull substituents 

exhibits main absorption band at the longer wavelength region at 571 nm (496 nm for 

regular SubPz).  Further introduction of electron donating push-substituent to 

subporphyrazine 2a causes a further red-shift of the main absorption band, to 633 nm, 

due to the large perturbation of push-pull substituents.  The red-shift and broad range 

of the absorptions push-pull SubPzs can be controlled by electronic donating ability of 

peripheral push-substituents. 
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Chapter IV 

 

Synthesis and Properties of Push-Pull Type Porhyrazines 

  



 97 

4.1 Introduction 

Porphyrazine, the 18π aromatic compound which removal of four benzene 

rings from phthalocyanine (Pzs) which comprising for isoindole units bridged by 

imino-nitrogen atoms, the lower homologue of phthalocyanine.  The benzo-

abstraction of porphyrazine generally exhibits main absorption band at about 100 nm 

shorter wavelength region compared with regular phthalocyanine, at around 600 nm. In 

order to promote the chemistry of porphyrazine, control the spectroscopic properties of 

porphyrazine analogues are interesting, but structure modification of porphyrazines 

turned to be difficult.[1] 

In 2014, A series of tetraazaporphyrin phosphorus(V) complexes with control 

the electronic structures by substituents effect has been published by N. Kobayashi in 

2014.  The strong electron-withdrawing phosphorus(V) ion perturbs the electronic 

absorption properties of TAP, while the absorption properties of the phthalocyanine 

phosphorus(V) complexes resemble those of metallated Pcs.  Various peripheral 

substituents with different electron donating ablities can alter the position and intensity 

of the intense CT band lying between the Soret and Q bands.[2] 

   

Figure 4-1 Synthesis and absorption spectra of P(V)porphyrazine 

 

Considering introduction of electron donating (push-) and electron withdrawing 

(pull-) substituents have large contribution on the decrease of the gap between the 

HOMOs and the LUMOs, introduction of electron donating (push-) and electron 
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withdrawing (pull-) substituents to the porphyrazine core causes a significant red-shift 

of the main absorption band at 713 nm for C4h push-pull type porphyrazine.  As it is 

also described in the introduction part of this thesis, the control of porphyrinoid 

chromophore symmetry based on the positional isomerism of peripheral substituents 

has been achieved by preparing tetraazaporphyrins (TAPs) with C4h, D2h, C2v, and Cs 

symmetry due to the relative arrangement of peripheral tert-butylamino and cyano 

groups as push and pull substituents, respectively.[3] 

 

Figure 4-1 Molecular structure and spectroscopic data of regular Ni(II)porphyrazine 

and push-pull type Ni(II)porphyrazine. 

 

 

  

λmax = 577 nm λmax = 713 nm

Red-shift
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4.2 Propose of This Research 

Porphyrazine, an important conjugation decrease analogue derived from 

phthalocyanine, have been reported previously. The research interests on the design, 

synthesis, and investigations on the spectroscopic properties of porphyrazines are still 

growing.  It is because of the porphyrazine analogues generally exhibit larger 

substituents induced tunable electronic structure.  In addition to consider the 

introduction of electron donating (push-) and electron withdrawing (pull-) substituents 

have large contribution on the decrease of the gap between the HOMOs and the LUMOs, 

and research on the push-pull type diyprrins and subporphyrazines have been succeeded 

in this doctor thesis. In this chapter, the push-pull effect will be tested for porphyrazine 

analogues, and design, synthesis, properties will be described. 

 

 

  

Push substituents

Pull substituents

Push-Pull porphyrazine
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4.3 Experimental Section 

4.3.1 Chemicals and Instruments 

Electronic absorption spectra were recorded on a JASCO V-570 

spectrophotometer. 1H NMR spectra were recorded on a Bruker AVANCE 500 

spectrometer (operating at 500.13 MHz) using the residual solvent as an internal 

reference for 1H ( = 7.26 ppm for CDCl3,  = 5.32 ppm for CD2Cl2).  High resolution 

mass spectra were recorded on a Bruker Daltonics solariX 9.4T spectrometer.  

Preparative separations were performed by silica gel column chromatography (Merck 

Kieselegel 60H) and recycling preparative GPC-HPLC (JAI LC-9201 with preparative 

JAIGEL-2H, 2.5H, and 3.0H columns). All chemical reagents and solvents were of 

commercial reagent grade and were used without further purification except where 

noted. 

 

4.3.2 Synthesis of 1-α-C8H17-bithiophene-1,2,2-tricyanoethylene 

Regular porphyrazines generally exhibit the poor solubility similar like that of 

unsubstituted phthalocyanines, this is the limit of the synthesis and purification of 

porphyrazine analogues.  In addition to introduce electron-rich substituents like 

thiophene and its derivatives, rationally design and synthesis a new aryl-

tricyanoethylene as the key precursor of push-pull type porphyrazine synthesis. 

 

Scheme 4-1 Synthesis of 1-α-C8H17-bithiophene-1,2,2-tricyanoethylene 

 

246 mg bithiophene was dissolved in 10 mL dehydrous THF and 0.7 mL n-

BuLi solution was slowly added under N2 at -78oC.  The mixture was kept at -78oC 

for 30 min and moved to RT for 1h.  2 mL 1-bromooctane (over excess) was added at 

0oC and stirred at RT overnight, the target compound was isolated from silica gel 

column using hexane to give the target compound.  The freshly isolated n-C8H17-

bithiophene was mixed with 2.0 eq of TCNE in a DMF solution, stirred at room 
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temperature for 2 days with absence of light.  The mixture extracted from water and 

CHCl3, washed by brine and further purification passed silica gel column to give the 

target compound.  1H NMR (500 MHz, CDCl3):  = 7.96 (d, J = 5.0Hz, 1H), 7.36 (d, 

J = 5.0 Hz, 1H), 7.26 (d, J = 5.0Hz, 1H), 6.82 (d, J = 5.0 Hz, 1H), 2.84 (t, 2H), 1.70~1.66 

(m, 2H), 1.36~1.26 (m, 10H), 0.86 (t, 3H); UV/vis (CHCl3): max [nm] () = 527; 

MALDI-TOF-mass: m/z = 380.63 (Calcd. [M+H]+ = 380.54). 

 

4.3.3 Synthesis of push-pull type β-1-α-C8H17-bithiophene-β-cyano porphyrazine 

Magnesium powder (24 mg, 1.0 mmol) was added to 1.5 mL freshly distilled 

1-butanol, and a small piece of iodine was also added to clean the surface of magnesium.  

The mixture was stirred and heated at 150oC till the magnesium was completely 

dissolved in the 1-butanol, 1-α-C8H17-bithiophene-1,2,2-tricyanoethylene (190 mg, 0.5 

mmol, 0.125 eq) was added.  The mixture was heated again at 150oC for 3h longer 

with absence of light, after removal of solvent under vacuum, the black residue was 

obtained.  The purification passed silica gel column chromatography (CH2Cl2), Bio-

beads column (SX-1, CHCl3) and finally purified by GPC-HPLC (CHCl3). MALDI-

TOF-mass: m/z = 1542.46 (Calcd. [M-] = 1542.55); UV/vis (CHCl3): max [nm] () = 

755, 565, 340. 

 

Scheme 4-2 Synthesis of push-pull type β-1-α-C8H17-bithiophene-β-cyano  

porphyrazine 
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4.4 Results and Discussions 

4.4.1 Structural characterizations 

The key precursor 1-α-C8H17-bithiophene-1,2,2-tricyanoethylene was 

characterized by both MALDI-TOF-mass and 1HNMR spectra, but the measurement of 

push-pull porphyrazine was only succeeded in the case of MALDI-TOF-mass spectra 

measurement due to the difficulties in the purification. 

In the case of key precursor 1-α-C8H17-bithiophene-1,2,2-tricyanoethylene, 

MALDI-TOF-mass spectra exhibits target peak at the m/z = 380.63 (Calcd. [M+H]+ = 

380.54) indicates the target compound was obtained. 1HNMR spectra reveals for 

doublet peaks at  = 7.96, 7.36, 7.26, 6.82 ppm indicates the di-substituted molecular 

structure. 

 

Figure 4-3 1HNMR spectra of 1-α-C8H17-bithiophene-1,2,2-tricyanoethylene in 

CDCl3. 

 

On the other hand, the MALDI-TOF-mass spectra of β-1-α-C8H17-

bithiophene-β-cyano-porphyrazine 5 clearly revealed an intense anion peak at m/z = 

1542.46 (Calcd. [M-] = 1542.55) indicates the target compound was obtained.  

Although the research on this topic was not succeeded on the NMR measurement, but 

MS result is the specific evidence that target compound was obtained. 
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Figure 4-4 MALDI-TOF-mass spectra of push-pull porphyrazine. 

 

4.4.2 Spectroscopic properties 

The absorption spectra of key precursor 1-α-C8H17-bithiophene-1,2,2-

tricyanoethylene with strong electron withdrawing tricyanoethylene unit exhibits the 

red-shift of main absorption band at max = 527 nm compared with the regular bi-

thiophene derivatives without this strong electron withdrawing unit.[4] 

 

Figure 4-5 Absorption Spectra of 1-α-C8H17-bithiophene-1,2,2-tricyanoethylene. 
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    In addition to investigate the spectroscopic properties of push-pull porphyrazine 5 

by UV-vis absorption spectra, the main absorption band (Q-band) was appeared at 755 

nm, soret band appears at 340 nm and an additional band appears at 565 nm. Compared 

with the regular porphyrazine (max [nm] = 600), the significant red-shift of the main 

absorption band of push-pull type porphyrazine 5 (around 150 nm) can be explained as 

the large perturbation of push-pull substituents to the porphyrinic chromophores, and 

push-pull effect is one of the most effective strategies for the porphyrazine having main 

absorption band at the longer wavelength region. 

 

Figure 4-6 Absorption Spectra of push-pull porphyrazine. 
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4.5 Summary 

In this chapter, the synthesis, purification, structural characterization, 

spectroscopic investigations of both push-pull type β-1-α-C8H17-bithiophene-β-cyano 

porphyrazine 5 and its key precursor 1-α-C8H17-bithiophene-1,2,2-tricyanoethylene 

were described.  The significant red-shift of the main absorption band appeared at 755 

nm, and the broad range of the absorptions of push-pull porphyrazine 5 were observed.  

This result indicate the introduction of push-pull substituents to the porphyrazine core 

is an effective method for the red-shift of the main absorption band. 
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This doctor thesis is focused on the design, synthesis and properties studies 

of new small conjugated push-pull chromophores including push-pull type dipyrrins, 

subporphyrazines, and porphyrazines.  The electronic structures were studied by 

spectroscopy and further in-depth investigated by theoretical calculations.  The main 

summarization of this thesis will be described in the following. 

In the chapter II, push-pull type dipyrrins were successfully obtained via 

facile synthesis through dipyrromethane and tetracyanoethylene for the first time, and 

the electronic structures were studied by spectroscopic investigations and theoretical 

calculations. α-Tricyanovinyl-α-dicyanovinyl-dipyrrins 1 with expanded dipyrrin 

molecular structure, exhibits the marked red-shift and broad range of absorption, which 

tails beyond 640 nm.  1f with a strong electron donating substituent N,N-

dimethylaminophenyl unit at meso-position also exhibits an additional band at 476 nm, 

resulting the absorption band covered the whole visible region. α-Tricyanovinyl- 

dipyrrins 2 exhibit the size red-shift of main absorption band. 2f with a strong electron 

donating substituent N,N-dimethylaminophenyl unit at meso-position exhibits the 

significant red-shift of the main absorption band to 655 nm. 

In this chapter, First examples of asymmetric push–pull SubPzs were 

successfully obtained via facile synthesis by using aryl-tricyanoethylene as the key 

precursor Both diastereomers and enantiomers based on the asymmetric arrangement 

of the peripheral substituents were also successfully separated.  Push-pull SubPz 2c 

with strong electron withdrawing pull substituents exhibits main absorption band at the 

longer wavelength region at 571 nm (496 nm for regular SubPz).  Further introduction 

of electron donating push-substituent to subporphyrazine 2a causes a further red-shift 

of the main absorption band, to 633 nm, due to the large perturbation of push-pull 

substituents.  The red-shift and broad range of the absorptions push-pull SubPzs can 

be controlled by electronic donating ability of peripheral push-substituents. 

In this chapter, the synthesis, purification, structural characterization, 

spectroscopic investigations of both push-pull type β-1-α-C8H17-bithiophene-β-cyano 

porphyrazine 5 and its key precursor 1-α-C8H17-bithiophene-1,2,2-tricyanoethylene 

were described.  The significant red-shift of the main absorption band appeared at 755 
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nm, and the broad range of the absorptions of push-pull porphyrazine 5 were observed.  

This result indicate the introduction of push-pull substituents to the porphyrazine core 

is an effective method for the red-shift of the main absorption band. 

In summary, this doctor thesis described the synthesis, properties, theoretical 

calculations of a series of push-pull type porphyrinic chromophores, including push-

pull type dipyrrins, subporphyrazines and porphyrazines.  Electronic structures were 

studied by the spectroscopic investigations and theoretical calculations.  Considering 

small conjugated molecule with red-shift and broader range of the absorptions have 

potential applications in various fields, the chromophores studied in this thesis may 

offer useful information for future molecular design, electronic studies and even their 

applications in various high-tech fields. 
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