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Abstract 

 
 
 
Turbomachinery is widely used for exchanging mechanical energy and fluid energy 

continuously. It can be classified into several categories, i.e., fans, blowers, compressors, 
turbines, pumps, and water mills, according to the types of fluid media and directions of 
energy exchange. They are used in various situations in power plants, industrial machines, 
consumer products, etc. There is increasing social demand for minimizing energy 
consumption to reduce carbon dioxide emissions and suppress global warming. Therefore, the 
aerodynamic performance of turbomachinery, particularly aerodynamic efficiency, has to be 
improved as much as possible. A great deal of effort has been already made to improve the 
aerodynamic performance of turbomachinery used in power plants and industrial machines, 
where the amounts of energy consumption are relatively large. In contrast, there have been 
fewer efforts for turbomachinery used in consumer products. In these products, centrifugal 
configuration is often used because of its ability to provide higher pressure increases in a 
more compact body. 

One solution for improving the performance is the application of numerical design 
optimization methods. Design optimization methods for turbomachinery have been 
investigated since the 1990s. However, there are several problems to apply these existing 
methods to practical designs in industry, particularly to the designs of centrifugal 
turbomachinery used for consumer products. One problem is the short design turnaround 
time. As product life cycles are short and computational resources are limited, it is necessary 
to develop efficient design optimization methods capable of reducing the design lead time. 
Another problem arises from uncertainties in practical designs. Designers are often faced with 
uncertainties in design decisions and design conditions, which cannot be defined 
deterministically at the start of the designs. The uncertainty in design decisions is defined as 
freedom of choosing trade-off balance among multiple design objectives. The uncertainty in 
design conditions is defined as variance in products, such as dimensions and material 
properties. Practical design optimization methods have to be capable of handling these 
uncertainties. Another problem is concerned with how to reinforce the design knowledge of 
designers. Unlike academic applications, industrial designers must repeat and improve design 
routines. Therefore, it is necessary to develop knowledge-oriented design methods, with 
which designers can discover design insights such as important design parameters and design 
rules applicable to subsequent steps in the design process.   

Design exploration methods, which combine design optimization and data mining, have 
been used to facilitate knowledge-oriented design optimization. Thus, the objectives of this 
research include the proposal and development of practical design exploration methods for 
centrifugal turbomachinery configurations capable of resolving the problems described above. 
This research is composed of four stages of developments to achieve this final goal. 

In the first stage, single-objective design exploration methods were developed. An 
efficient method for three-dimensional shape parameterization of centrifugal turbomachinery 
was developed using a minimum set of non-uniform rational B-Spline curves. These curves 
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were assigned only to the enclosed boundaries of the blades consisting of the hub, shroud, 
leading edge, and trailing edge profiles. In other words, traditional multi-sectional definition 
of the blade profile was avoided and the number of design variables was reduced. An efficient 
single-objective global optimization method was developed by combining simulated 
annealing and artificial neural network. The neural network adaptively learned the simulation 
results collected by simulated annealing. The trained neural network, as an approximation 
model, periodically predicted a possible global optimum to shorten optimization lead time. 
Simulated annealing itself explored the design space independently of the neural network in 
case the neural network learning failed. This ensured a robust and fully automatic 
optimization. With these methods, the required design turnaround time was reduced, although 
the degree of reduction depended on the prediction accuracy of the neural network. As the 
first step of data mining, the global characteristics of the design space were analyzed using 
regression analysis. The analysis was attempted to extract useful information such as 
sensitivity and non-linearity of the design space. The design exploration methods developed 
in this stage were applied to the design problems of centrifugal impeller and diffuser for a 
vacuum cleaner. The optimized impeller had a unique S-shaped leading edge profile, which 
effectively controlled secondary flows and improved the flow uniformity at the impeller exit. 
The optimized diffuser had a unique bending trailing edge with a wedge-shaped gap, which 
generated a streamwise vortex and prevented boundary layer separation. The regression 
analysis revealed important design variables that were related to these unique shapes of the 
optima. 

In the second stage, multi-objective design exploration methods were developed. A 
multi-objective optimization approach was taken to handle the uncertainty in design 
decisions, i.e., the variety in trade-off balance among objective functions. A multi-objective 
genetic algorithm was employed with enhancements of convergence to widespread 
non-dominated solutions. It enabled the acquisition of multiple design candidates with 
different trade-off balance, from which the best design candidate can be chosen according to 
the requirement specified afterward. This method was applied to the design of a 
low-specific-speed centrifugal impeller with a vaned diffuser for a vacuum cleaner. The 
design objectives were set to improve both aerodynamic efficiency and aerodynamic stability. 
Computational fluid dynamics were conducted for a combined model of blade-to-blade 
regions of an impeller and a diffuser. A time-averaged and spatially distributed flow was 
modeled at the mixing plane to evaluate the flow uniformity, which affected aerodynamic 
stability. Seven non-dominated solutions were obtained, and the improvements in both design 
objectives were confirmed by experiments with a selected non-dominated solution. Data 
mining methods, namely decision tree analysis and rough set theory, were applied to extract 
quantitative design rules for improving each of the objective functions to the maximum limit. 
The obtained rules indicated that dimensions such as inlet blade angle, vane-less diffuser 
height, and blade load balance were important for the extreme designs, helping designers 
correlate important design variables with underlying flow physics. It was also clarified that 
decision tree analysis generally extracts a single rule of necessary condition, while rough set 
theory mines multiple rules of sufficient conditions. Decision tree analysis extracts a single 
but yet simple rule, while rough set theory extracts multiple but yet complicated rules. 

In the third stage, multi-objective robust design exploration (MORDE) methods were 
developed. The previously developed method was extended to a multi-objective robust 
optimization method to handle the uncertainty in design conditions, i.e., the variance in 
product's properties. Probabilistic representations of design parameters were introduced to the 
multi-objective genetic algorithm to model these variances. The parameter representation was 
generalized in such a way that it was compatible with that in the Taguchi method. Kriging 
models were adopted as approximation models to conduct large number of response 
calculation among design parameters swiftly. Data mining methods, namely Self-organizing 
maps and association rules, were used to clarify the design rules for achieving certain 
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trade-off balance among multiple objective functions. The combined use of the association 
rule with an aspiration vector, which specified the desired trade-off balance, was proposed to 
analyze multi-objective design space. The MORDE was applied to a centrifugal fan design 
problem of a washer-dryer. This design was aimed toward improving the means and standard 
deviations of the resultant statistical distributions of fan efficiency and turbulence noise level. 
The variances were assumed to exist in the fan's dimensions due to mass production. It was 
demonstrated that designers could obtain the best design candidate and quantitative rules that 
met with the required trade-off balance. It was also demonstrated that traditional non-robust 
optimal design as well as quality-weighted design such as the Taguchi method were 
simultaneously accomplished with the MORDE. It was clarified that association rule 
generally reveals multiple and quantitative design rules, while it is difficult to perform the 
same analysis with Self-organizing map. Association rules can be either necessary or 
sufficient conditions according to the control parameters for rule extraction. The design turn 
around time necessary for this fan design was only two weeks and was considered to be 
practical. Based on these investigations, it was concluded that practical design exploration 
methods were established with the MORDE, with which knowledge-oriented design 
optimization under the uncertainties became feasible within short design turnaround time.   

In the final stage, another practical design exploration method was further developed. 
Because design rules represent key structures in multi-objective design space, they were 
considered to be useful in determining the optimum setup of design variables. Therefore, a 
new rule-based multi-objective parameter design method was proposed. This method utilized 
a database of design rules obtained by the following data mining methods, namely analysis of 
variance, Self-organizing maps, decision tree analysis, rough set theory, and association rule. 
Comparative studies of these methods revealed the strengths and weaknesses of each method, 
and a systematic procedure was developed for applying these methods in a complementary 
way. Firstly, analysis of variance was applied to determine dominant main and interaction 
effects of design variables, which were used in the latter process of data mining. 
Self-organizing maps or alternative visualization methods were used to find qualitative 
low-order correlations, particularly trade-off relationships between objective functions. Then, 
design rule extraction methods were applied to obtain quantitative rule sets. Decision tree 
analysis could be applied to extract an easy-to-understand rule. However, decision tree 
analysis could be skipped because the rule could not distinguish main and interaction effects. 
Both rough set theory and association rule were applied to extract multiple design rules that 
distinguished main and interaction effects. While rules from rough set theory were only 
sufficient conditions, association rules could be either of sufficient or necessary conditions. 
However, rough set theory had an advantage in capability of automatic finding the minimum 
rule length, which had to be specified manually in the case of association rule. Therefore, the 
usage of association rule, after obtaining the proper rule length by rough set theory, was 
recommended. Once the design rule database was obtained, the proposed method first used 
predominant main effects of different design variables for optimizing different objective 
functions. Then, it used predominant interaction effects to resolve any remaining trade-off 
conflicts. The capability of this method was demonstrated using the same design optimization 
problem of a washer-dryer's fan. It was confirmed that this method was superior to the 
Taguchi method in its capability of performing multi-objective design. 

Based on the developments of design optimization and data mining methods described 
above, design exploration for centrifugal turbomachinery configurations has become practical 
for industrial applications. The methods were successfully applied to actual products of a 
vacuum cleaner and a washer-dryer in Hitachi Ltd., which suggested the methods' capabilities 
in real-world applications. 
  
  

iii 



iv 



Table of Contents 
 

 

Abstract ........................................................................................................................ⅰ 

Table of Contents..........................................................................................................ⅴ 

List of Figures...............................................................................................................ⅷ 

List of Tables.................................................................................................................ⅹ 

 

 

1. Introduction .............................................................................................................. 1 

 

1.1 Background and Previous Work ........................................................................ 1 

1.2 Research Objectives .......................................................................................... 6 

1.3 Organization of Thesis ....................................................................................... 7 

References................................................................................................................. 9 

 

2. Single-objective Design Exploration  

using Simulated Annealing, Neural Network, and Regression Analysis ............. 11 

 

2.1 Introduction ........................................................................................................11 

2.2 Shape Parameterization using Non-uniform Rational B-Spline Curves ............ 13 

2.3 Design Exploration Method ............................................................................... 15 

 2.3.1 Hybrid Algorithm of Simulated Annealing and Neural Network .......... 15 

2.3.2 Regression Analysis of Design Space .................................................... 21 

2.4 Design Optimization of Centrifugal Impeller .................................................... 23 

 2.4.1 Design Problem Definition .................................................................... 23 

 2.4.2 Results and Discussion .......................................................................... 24 

2.5 Design Optimization of Centrifugal Diffuser .................................................... 27 

 2.5.1 Design Problem Definition .................................................................... 27 

 2.5.2 Results and Discussion .......................................................................... 27 

2.6 Conclusion ......................................................................................................... 31 

References................................................................................................................ 32 

 

 

v 



3. Multi-objective Design Exploration  

using Multi-objective Genetic Algorithm, Decision Tree Analysis, and  

Rough Set Theory .................................................................................................... 33 

 

3.1 Introduction ........................................................................................................ 33 

3.2 Design Exploration Method .............................................................................. 37 

 3.2.1 Procedure of Design Exploration ........................................................... 37 

 3.2.2 Multi-objective Genetic Algorithm ........................................................ 38 

 3.2.3 Design Rule Mining with Decision Tree Analysis ................................. 42 

 3.2.4 Design Rule Mining with Rough Set Theory ......................................... 44 

3.3 Design Optimization of Centrifugal Impeller accompanied with Diffuser ....... 46 

 3.3.1 Shape Parameterization .......................................................................... 46 

 3.3.2 Computational Fluid Dynamics ............................................................. 48 

 3.3.3 Design Problem Definition .................................................................... 50 

3.4 Results and Discussion ...................................................................................... 52 

 3.4.1 Non-dominated Solutions ...................................................................... 52 

 3.4.2 Data Setup for Design Rule Mining ...................................................... 56 

 3.4.3 Design Rule from Decision Tree Analysis ............................................ 58 

 3.4.4 Design Rules from Rough Set Theory ................................................... 60 

3.5 Conclusion ......................................................................................................... 67 

References................................................................................................................ 69 

 

4. Multi-objective Robust Design Exploration  

using Kriging Model, Self-organizing Map, and Association Rule ...................... 71 

 

4.1 Introduction ....................................................................................................... 71 

4.2 Design Exploration Method ............................................................................... 74 

 4.2.1 Generalized Multi-objective Robust Design Framework ..................... 74 

 4.2.2 Kriging Model ...................................................................................... 77 

 4.2.3 Trade-off Rule Mining with Self-organizing Map and Association Rule  

.............. 80 

 4.2.4 Specification of Trade-off Balance with Aspiration Vector ................... 83 

4.3 Design Optimization of Centrifugal Fan with Dimensional Uncertainty........... 84 

 4.3.1 Shape Parameterization ......................................................................... 84 

 4.3.2 Design Problem Definition .................................................................... 86 

vi 



4.4 Results and Discussion ...................................................................................... 88 

 4.4.1 Visualization of Trade-off Patterns ....................................................... 88 

  4.4.2 Derivation of Quantitative Trade-off Control Rules ............................. 91 

4.5 Conclusion ......................................................................................................... 96 

References................................................................................................................ 98 

 

5. A New Design Method based on Cooperative Data Mining  

from Multi-objective Design Space ......................................................................... 101 

 

5.1 Introduction ....................................................................................................... 101 

5.2 Multi-objective Parameter Design Method ...................................................... 103 

 5.2.1 Parameter Design using Both Main and Interaction Effects ................. 103 

 5.2.2 Data Mining Process for Finding Design Rules ................................... 104 

 5.2.3 Analysis of Variance .............................................................................. 107 

5.3 Multi-objective Parameter Design of Centrifugal Fan ...................................... 108 

5.4 Results and Discussion ...................................................................................... 109 

5.5 Conclusion ........................................................................................................ 119 

References................................................................................................................. 120  

 

6. Concluding Remarks ............................................................................................... 121 

 

6.1 Conclusion of Chapter 2 ................................................................................... 121 

6.2 Conclusion of Chapter 3 ................................................................................... 122 

6.3 Conclusion of Chapter 4 ................................................................................... 122 

6.4 Conclusion of Chapter 5 ................................................................................... 123 

6.5 Conclusion of Thesis ....................................................................................... 124 

6.6 Future Work ..................................................................................................... 125 

 

Appendix A: Non-uniform Rational B-Spline Curve ............................................... 127 

Acknowledgements ...................................................................................................... 129 

 

vii 



List of Figures 
 

Figure 

 

1-1 Problems in practical design ........................................................................... 5 

1-2 Paradigm shift in engineering design ............................................................. 5 

 

2-1  Shape parameterization of an impeller .......................................................... 14 

2-2  Shape parameterization of a diffuser .............................................................. 14 

2-3  Hybrid optimization process ........................................................................... 16 

2-4  Architecture of neural network ....................................................................... 16 

2-5  Test function ................................................................................................... 20 

2-6  Comparison of optimization histories ............................................................ 21 

2-7  Example of design space ................................................................................. 22 

2-8  Definition of statistical indexes ....................................................................... 23 

2-9  History of the objective function (impeller) ................................................... 25 

2-10  Comparison of restricted streamlines ............................................................. 25 

2-11  Design space characteristics (impeller) .......................................................... 26 

2-12  History of the objective function (diffuser) .................................................... 28 

2-13  Comparison of pressure distributions ............................................................. 28 

2-14  Streamwise vortex ........................................................................................... 29 

2-15  Design space characteristics (diffuser) ........................................................... 30 

 

3-1  Motor blower for vacuum cleaner .................................................................. 35 

3-2  Flowchart of design exploration ..................................................................... 37 

3-3  Flowchart of genetic algorithm ....................................................................... 41 

3-4  Pareto-ranking method (example of two objective function space) ............... 41 

3-5 Division of data group by decision tree analysis ............................................. 43 

3-6   Decision tree diagram ..................................................................................... 43 

3-7 Rule extraction with rough set theory ............................................................. 45 

3-8  Application procedure of rough set theory ..................................................... 45 

3-9  Meridional profile definition .......................................................................... 47 

3-10  Definition of blade angle distribution function .............................................. 47 

3-11  CFD model (# indicates locations) ................................................................ 49 

viii 



3-12  Trade-off in non-dominated solutions ............................................................ 53 

3-13  Velocity triangle at impeller exit .................................................................... 54 

3-14  Comparison of experimental performance curves .......................................... 56 

3-15  Comparison of oil flow patterns ..................................................................... 57 

3-16  Decision tree diagram for extreme design of blower efficiency ..................... 59 

3-17  Decision tree diagram for extreme design of flow uniformity ....................... 59 

3-18  Summary of design rules ................................................................................ 61 

3-19  Discretized levels of design variables ............................................................. 62 

3-20  Design rules for extreme design of blower efficiency .................................... 65 

3-21  Design rules for extreme design of flow uniformity ....................................... 66 

 

4-1  Washer-dryer and its centrifugal fan ............................................................... 73 

4-2  Flowchart for MORDE ................................................................................... 75 

4-3  Concept of Kriging model .............................................................................. 78 

4-4  Control trade-offs using aspiration vector ...................................................... 84 

4-5  Parameterization of shape for centrifugal fan ................................................ 85 

4-6  Trade-offs in non-dominated solutions .......................................................... 90 

4-7  SOMs colored according to objective functions ............................................ 92 

4-8  SOMs colored according to design variables ................................................. 92 

 

5-1  Responses with and without interaction effect ............................................... 104 

5-2  Flowchart of data mining ................................................................................ 105 

5-3  Contribution ratios of effects analyzed using ANOVA ................................... 110 

5-4  SOMs colored using design parameter values ................................................ 111 

5-5  Possible level combinations between b2 and Beta1 for optimizing ( )sησ ... 116 

 

ix 



List of Tables 
 

Table 

 

1-1 Categories of turbomachinery ........................................................................ 4 

 

3-1  Design parameters  ......................................................................................... 51 

3-2  Coefficients of correlation .............................................................................. 53 

3-3  Dimensions of non-dominated solutions ........................................................ 53 

3-4  Rule sets for extreme design of blower efficiency .......................................... 63 

3-5  Rule sets for extreme design of flow uniformity ............................................ 67 

 

4-1  Comparison of design variables with Taguchi method ................................... 77 

4-2  Multivariate dataset ......................................................................................... 82 

4-3  List of design parameters ................................................................................ 87 

4-4  Rules to achieve prescribed trade-off balances ............................................... 95 

4-5  Rules for Solution A (sorted by support level) ................................................ 96 

 

5-1  Summary of data mining techniques ............................................................... 106 

5-2  Design rules derived from rough set theory ................................................... 115 

5-3  Design rules derived from association rule .................................................... 118 

 

 
  

 

x 



Chapter 1 

Introduction 

 

 

1.1 Background and Previous Work 
 

Turbomachinery is widely used for exchanging mechanical energy and fluid energy 

continuously, and can be classified into several categories, i.e., fans, blowers, compressors, 

turbines, pumps, and water mills, according to the types of fluid media and directions of 

energy exchange (Table 1-1). They are used in various situations in power plants, industrial 

machines, consumer products, etc. 

There is increasing social demand for minimizing energy consumption to reduce carbon 

dioxide emissions and suppress global warming. According to the Kyoto Protocol [1], Japan 

must reduce environmentally harmful gas emissions by 6% of that in 1990 by 2012. 

Therefore, the aerodynamic performance of turbomachinery, particularly aerodynamic 

efficiency, must be improved as much as possible. A great deal of effort has been made to 

improve the aerodynamic performance of turbomachinery used in power plants and industrial 

machines, where the levels of energy consumption are relatively large. 

In contrast, there have been fewer efforts for turbomachinery used in consumer products. 

In these products, centrifugal configurations are often used because they can provide higher 

pressure increases in a more compact body than various other types of turbomachinery. Thus, 

at the start of this research, the main focus was centrifugal fans and blowers, and the goal was 

to develop design optimization methods for achieving extreme performance of these types of 

turbomachinery. 

Before 1990, industrial designs of turbomachinery were mainly conducted using one-, 

two-, or quasi-three-dimensional performance prediction tools that formulated simplified 

governing equations of fluid. Then, designs using fully three-dimensional analysis became 

available during the 1990s with the significant improvements in computer hardware and 

commercial computational fluid dynamics (CFD) software incorporating advanced numerical 

techniques. Many experimental approaches were replaced with CFD in industry during this 

period. In the latter half of the 1990s, some researchers in public research institutes began to 

use numerical optimization techniques that combined CFD and optimization algorithms. 

For example, Pierrt [2] developed a blade raw design system using Reynolds-averaged 
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Navier-Stokes flow simulations and an artificial neural network. This was an expert system 

that accumulated results of expensive flow simulations as a design database, which were then 

learned by the artificial neural network to predict better design candidates. Although 

optimization was attempted, the targets of this design system were two-dimensional axial 

turbomachinery configurations. Dennis et al. [3] applied a genetic algorithm and sequential 

quadratic programming to a two-dimensional axial airfoil design problem to accelerate global 

optimization. Although a significant reduction of total pressure loss was achieved, many 

expensive Navier-Stokes simulations were required to determine the optimum solutions. 

Benini and Tourlidakis [4] applied genetic algorithms to two-dimensional centrifugal diffuser 

design, but this work also required expensive computations.  

Most of the previous works focused on optimization of axial turbomachinery 

configurations, and fewer studies were found for centrifugal ones. More importantly, 

computations for merely two-dimensional designs were too expensive to carry out design 

optimizations for consumer products, for which short design turnaround times were required. 

It was another characteristic of these previous works that they mainly aimed at obtaining 

optimal solutions and paid less attention to analysis of reasons for achieving the optimality. 

Regarding to the short design turnaround time, a practical approach was taken by Advanced 

Design Technology [5], which used an inverse design method for turbomachinery. Although 

the computational cost was drastically reduced for designing centrifugal turbomachinery, the 

method was only based on inviscid flow simulations.  

Figure 1-1 illustrates the problems of applying existing design optimization methods to 

practical designs of consumer products, using the design of a vacuum cleaner as an example. 

As shown in Fig. 1-1, the product was developed through the processes of conceptual design, 

basic design, detailed design, trial, and production. 

The first problem was the need for a short design turnaround time. The turnaround time 

could be reduced by numerically efficient optimization methods as well as reduction of 

redesign cycles necessary for modifications. Thus, it was necessary to represent the 

turbomachinery shape with sufficient flexibility with as a few design variables as possible. It 

was also necessary to conduct global optimization using as few CFD evaluations as possible. 

The second problem was the existence of uncertainties in practical designs. Uncertainties 

exist in both design decisions and design conditions. The uncertainty in design decisions is 

defined as the variations in trade-off balance among multiple design objectives (objective 

functions). For example, the sales points of a vacuum cleaner may include high suction 

power, low noise, and light weight, and the designer usually assumes a certain balance 

between these sales points. However, the balance is essentially determined through 
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negotiations between suppliers, buyers (customers), and competitors during or after the design 

stage. If the assumptions made are not correct, time-consuming redesign cycles then become 

necessary.   

The uncertainty in design conditions is defined as the variances in the properties of a 

product (design variables). The variances appear in dimensions, material properties, 

environmental conditions, and degree of aged deteriorations. The variances are important for 

mass-produced consumer products. For example, the suction power of a vacuum cleaner 

varies due to variances in dimensions of centrifugal blowers. A designer usually assumes 

certain statistics for the variances based on experience and previous records. If the variances 

exceed the allowable limits, redesign cycles again become necessary. 

Thus, practical designs had to deal with these uncertainties, which could not be handled 

by existing deterministic optimization methods. As design optimization involves solving a 

mathematically defined problem, the quality of the design depends on the quality of the 

problem definition. Therefore, a design optimization method that could model and handle 

these uncertainties is required. 

The third problem was the demand for design knowledge reinforcement. The design 

process shown in Fig. 1-1 was repeated as the product life cycle, and we expected a new 

design to be improved by using previously acquired design knowledge. Thus, some 

mechanisms of reinforcing design knowledge in design routines were necessary in practical 

designs. That is, a practical design optimization method should aim at reason-oriented design, 

not result-oriented design as used in previous work.  

Figure 1-2 shows a new design paradigm for solving these problems in comparison with 

the traditional paradigm. In the traditional approach, the performance of the product is 

optimized in a step-by-step manner by trial-and-error. The resultant solution is a local 

optimum and is risky to the uncertainties. In contrast, the new design paradigm uses the 

following two steps. The first step is efficient global optimization, taking multiple design 

objectives and even the effects of variances into account. As the result of this step, a design 

database is obtained, which consists of non-dominated solutions and design-of-experiment 

(DOE) data. In the second step, data mining is conducted with the design database to analyze 

the design space and obtain design knowledge. The resultant solution is a global optimum that 

can be adapted to the uncertainties. Moreover, design knowledge can be obtained 

systematically. 

This combination of design optimization and data mining to facilitate knowledge-oriented 

design optimization is called design exploration [6]. The present study took the design 

exploration approach and develops practical methods for this approach. 
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Figure 1-1 Problems in practical design 
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Figure 1-2 Paradigm shift in engineering design 
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1.2 Research Objectives 
 

The objective of this research was to develop and propose practical design exploration 

methods that can solve the problems described in the previous section. The capabilities of the 

developed methods were examined with industrial applications of centrifugal turbomachinery 

for consumer products.  

This final goal was achieved by taking the following stages of development. 

 

I. Stage 1  

 

 Efficient shape parameterization for centrifugal turbomachinery configurations. 

 Single-objective efficient global optimization. 

 Analysis of global characteristics of design space. 

 

II. Stage 2  

 

 Multi-objective optimization. 

 Extraction of design rules for achieving extreme designs. 

 

III. Stage 3  

 

 Multi-objective robust optimization using approximation models. 

 Extraction of design rules for controlling trade-off balance.  

 

IV. Stage 4  

 

 Comparative study of data mining methods. 

 Practical parameter design method based on cooperative data mining. 
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1.3 Organization of Thesis 
 

The chapters of this thesis are assigned to the development stages described in the 

previous section. Chapter 2 describes an efficient shape parameterization method tailored for 

centrifugal turbomachinery configurations. The shape is modeled with non-uniform rational 

B-Spline curves for reducing the number of design variables necessary. This chapter also 

describes a single-objective efficient optimization algorithm that combines simulated 

annealing with artificial neural network for reduction of computational costs. The 

fundamental characteristics of the global design space, such as sensitivity and non-linearity, 

are analyzed using regression analysis with a neural network. These methods are applied to 

the design of centrifugal impeller and diffuser for a vacuum cleaner. 

Chapter 3 describes a multi-objective optimization method that can handle the uncertainty 

in design decisions, i.e., the varieties in trade-off balance among multiple objective functions. 

A multi-objective genetic algorithm is developed to efficiently obtain widespread 

non-dominated solutions. Design rules to improve each objective function are extracted using 

decision tree analysis and rough set theory to find key design points and relate them to flow 

physics. These methods are applied to the design of a centrifugal impeller accompanied with a 

diffuser for a vacuum cleaner. 

Chapter 4 explains a multi-objective robust optimization method that can additionally 

handle the uncertainty in design conditions, i.e., the variance in design variables. A 

probabilistic representation of design parameters is incorporated into the multi-objective 

optimization method developed in Chapter 3. Kriging approximation models are adopted for 

rapidly evaluating statistical responses among design parameters. Design rules for controlling 

trade-off balance in high-dimensional objective function space are extracted using 

Self-organizing maps and association rules. The combined use of association rules with 

“aspiration vectors” is newly proposed, which helps in the decision-making process. These 

methods are applied to the design of centrifugal fan for a washer-dryer. 

Chapter 5 summarizes the data mining methods investigated in Chapters 2, 3, and 4, 

adding analysis of variance to quantify the effects of design variables on objective functions. 

Based on comparative studies on these data mining methods, the strengths and weaknesses of 

each method are clarified and a new rule-based multi-objective parameter design method is 

proposed as a practical design optimization method. The capabilities of this method are 

demonstrated with the same design problem as discussed in Chapter 4. 

Chapter 6 repeats the conclusions of each chapter and presents the final conclusions of 
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this thesis. It also comments on possible future work. 

Appendix A gives the detailed explanation on non-uniform rational B-spline curve used 

for shape parameterization of centrifugal turbomachinery.   
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Chapter 2 

Single-objective Design Exploration  

using Simulated Annealing, Neural Network,  

and Regression Analysis 
 

 

 

2.1 Introduction 
 

Centrifugal fans (or blowers) are suitable to transport gas in compact mechanical systems 

such as consumer products because they can provide higher pressure-rises than other types of 

similar-sized turbomachinery. They generally consist of centrifugal impellers, diffusers, 

volutes, and/or collectors. Unlike high-grade centrifugal compressors used in jet engines or 

gas turbines, centrifugal fans in consumer products must be developed quickly and produced 

inexpensively. Nevertheless, there has been a strong need to improve their aerodynamic 

efficiency. 

Recently, numerical optimization techniques have been employed in turbomachinery 

designs in order to improve performance and shorten lead-time. For example, Pierrt [1][2] 

used artificial neural network for blade raw design. Dennis [3] used genetic algorithm and 

sequential quadratic programming for cascade design. Benini [4] and Platt [5] used genetic 

algorithm for designs of centrifugal configurations of turbomachinery. These previous works 

were concerned with high-grade turbomachinery.  

However, there are several difficulties in applying such optimization techniques to 

inexpensive centrifugal fans. First, designers need a simplified but flexible shape 

parameterization method, because these fans usually have two-dimensional shapes, rather 

than complex three-dimensional ones. This means the parameterization methods must be able 

to represent innovative two-dimensional shapes that can be easily produced but yet promise 

better performance. Second, the optimum design should be automated and efficiently 

conducted, because the allowable design time is short. This requires us not only to use an 

automatic and efficient global optimization algorithm for a one-time design cycle, but also to 

establish a knowledge-based engineering process to achieve technological maturity over the 

course of the design cycles. 

11 



Samareh [6][7] reviewed various shape-parameterization techniques for design and 

optimization. Nowadays, CAD-oriented modeling and morphing (e.g. free form deformation) 

seem to be the most versatile approaches in the sense that they don’t limit the design targets. 

However, CAD-oriented modeling still has defects in automatic mesh generation, and 

morphing suffers from the problems of collapsed meshes, which frequently occurs when 

deformed hexahedral mesh is used for flow simulations. Once these problems arise, it 

becomes very difficult to automate the design process. In contrast, shape parameterization 

with polynomial and partial differential equations has been shown to be good for modeling 

and meshing standardized geometries such as those of airplanes and turbomachinery. Even 

when the geometry becomes slightly more complex, the combination of this shape 

parameterization and unstructured mesh generation enables to conduct shape optimization, as 

investigated by Newman [8].  

Therefore, the author employed a non-uniform rational B-spline (NURBS) curve [9], 

which is a type of polynomial equation. In Section 2.2, the author introduces a NURBS-based 

shape parameterization method for two-dimensional centrifugal fans, particularly for 

enhancing flexibility at blade edges. 

For efficient global optimization, a two-step approach has become popular: it consists of 

(step 1) construction of a response surface (or a meta-model), and (step 2) global optimization 

on the response surface. For example, Pierrt [10] developed a blade design system for axial 

compressors using an artificial neural network and simulated annealing. This system stores 

Navier-stokes simulation results, which are then used to build a response surface represented 

by the neural network. Design optimization on the response surface is conducted using the 

simulated annealing algorithm afterwards. It has been verified by many researchers that these 

types of two-step approaches are very efficient. However, we need special care to the 

accuracy of the response surfaces and robustness in building these models. Otherwise, as the 

result of trusting the model excessively, we sometimes obtain incorrect optimums or suffer 

from bankruptcy of automated design processes. These problems may arise when the design 

space is too complex to be approximated by the model. This is actually the case for 

centrifugal fans in which the inner flow is more complicated than those of axial fans.  

For these reasons, the author chose an approach, whereby the construction and utilization 

of a response surface and exploration using a global optimization algorithm is conducted 

independently but collaboratively. It is worth noting that this approach does not as strongly 

rely on the response surface as the ordinary two-step approaches. The response surface would 

rather be used to support the global optimization algorithm. The author also attempted to 

extract knowledge about the design space by means of statistical analysis. These methods are 
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described in Section 2.3. 

Section 2.4 and 2.5 describe the application of proposed design method to two 

turbomachinery design problems: optimum design of a centrifugal impeller and a centrifugal 

diffuser. 

 

 

 

2.2 Shape Parameterization using Non-uniform Rational  

B-Spline Curves 
 

Among the variety of components that make up a centrifugal fan, the impeller and (vaned) 

diffuser were chosen for design optimization. The shape parameterization methods for them 

are explained using Figure 2-1 and 2-2.  

As shown in Fig. 2-1, an inexpensive centrifugal impeller is usually made of metallic 

plates of a hub plate, a shroud plate and several blades. Its shape is entirely determined if all 

of the meridian, blade and blade-edge (e.g. leading edge and trailing edge) shapes are given. It 

is generally the case for low-specific-speed impellers to define two blade sectional profiles, 

one of which is for the hub surface and the other for the shroud surface. Intermediate parts in 

the spanwise direction are generated by linear interpolation. Nevertheless, in the proposed 

method, the blade’s leading and trailing edges can be flexibly deformed via the 

blade-edge-shape definition described later. 

The meridian shape is defined by two NURBS curves: hub and shroud. The blade shape 

(section) is defined by a combination of two NURBS curves and two circles, tangentially 

connected to each other. These NURBS curves represent the pressure and suction sides of the 

blade, while the circles represent the head and tail of the blade. The control points of these 

NURBS curves are at the coordinates calculated from the blade camber and thickness 

distributions. In order to keep two-dimensionality, a common camber distribution is used, and 

the thickness of the blade is kept constant in spanwise direction. The leading or trailing edge 

consists of one NURBS curve, which starts from the hub surface and ends at the shroud. 

Design variables for optimization are related to the coordinates of the NURBS control 

points, or to the parameters defining the blade camber distribution. Note that the number of 

blades is kept constant in this study. Once the shape is defined, the curves is then discretized 

and surfaces and a hexahedral mesh for computational fluid dynamics (CFD) is generated 

algebraically. 
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Figure 2-1 Shape parameterization of an impeller 
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Figure 2-2 Shape parameterization of a diffuser 
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An inexpensive centrifugal diffuser could be made of injection-molded plastic. For 

example, as shown in Fig. 2-2, the bottom (or top) wall and the vanes are molded together, 

and the top (or bottom) wall is attached to the vanes to prevent leakage. The parameterization 

method for a diffuser is the same as the one for the impellers. 

See Appendix A for more details on NURBS curve representation. 

 

 

 

2.3 Design Exploration Method 
 

2.3.1 Hybrid Algorithm of Simulated Annealing and Neural Network 

Figure 2-3 shows the proposed hybrid optimization process [11]. A simulated annealing 

algorithm (SA) [12] is coupled with an artificial neural network (NN) [13] for synergetic 

optimization.  

In the SA, the next search point is randomly perturbed around the temporary optimum 

according to the following probability density function (normal distribution):  
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where , and ix *
ix iσ  are i-th design variable, its temporary optimum value and its standard 

deviation respectively. Total number of design variables corresponds to . The standard 

deviation is defined by 

DVn

 

( ) n
iii rxx ⋅−⋅= minmax

0σσ ,      (2-2) 

 

where max and min denote the upper and lower boundaries of the design variable,  a 

temperature-stage count and 

n

r a reduction ratio. The 0σ  is set to 1.0 in this study. In the 

beginning of the optimization, σ  is set to be large enough to encourage uniform global 

exploration of design space. On the other hand, near the end of the optimization, σ  becomes 

small to converge at the optimum as quickly as possible. 
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Figure 2-3 Hybrid optimization process 

 

 

 

 

 

 
 

 

Figure 2-4 Architecture of neural network 
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An acceptance probability for permitting a worse solution in the SA is defined by 

 

⎟
⎠
⎞

⎜
⎝
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−=

T
fpaccept exp ,       (2-3) 

 

where  is variation in the objective function’s values and f∆ T  current temperature. The 

temperature is gradually reduced according the following equation: 

 
n

temprTT ⋅= 0 .        (2-4) 

 

The NN is three-layered, and the number of neurons in the input and output layer 

corresponds to the number of input and output parameters of the design problem, respectively 

(Fig. 2-4). The number of neurons in the middle layer is empirically decided according to 

complexity of the design space. Each neuron has multiple inputs and one output, and the 

output is calculated through sigmoid function defined as follows: 

 

( ) ( ){ }ts
tsf

−−+
=

exp1
1, .      (2-5) 

 

Using the sigmoid function, the neuron model is defined as 

 

( )iipip hzfx ,= ,       (2-6) 

 

where ,  and  are i-th neuron’s output, input and a threshold. The ipx ipz ih p  implies the 

p-th teacher signal. The input to the i-th neuron is equal to the weighted sum of neuron 

outputs in the previous layer and is calculated as 

 

∑=
j

jpijip ywz ,       (2-7) 

 

where  and  are connecting weights and output from the j-th neuron in the previous 

layer. 

ijw jpy

The teacher signals are obtained by normalizing the CFD results. The weights and 
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threshold are calculated using a back-propagation learning rule. The goal of learning is to 

minimize the total error function defined as follows: 
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where  is an error function for p-th teacher signal and  the corresponding output of 

the teacher signal. The minimizing algorithm is a steepest descent method which uses the 

gradient vectors of 

pE ipd

E  in terms of  and . Regarding , the gradient vector is defined 

as 

ijw ih ijw
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where 
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When  stands for the output layer, i
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Using the gradient vectors defined above, the connection weights are iteratively calculated 

as follows: 
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The third term in the right hand side is the inertial term to improve learning convergence. 

The η  is a relaxation factor and α  is a mixing ratio of the steepest descent term and the 

inertial term. Note that the learning algorithm for thresholds is similarly formulated as that of 

the connection weights. 

 

The SA has the major role in the collaborative optimization process. The 80%, for 

instance, of all the iterations (i.e. four times every five iterations) are controlled by the SA 

(loop A in Figure 2-3). However, the SA not only searches for a global optimum; it also stores 

the teacher signals for the NN to learn later. In the remaining 20%, the NN controls the 

process, and determines a next search point (loop B in Figure 2-3). This search point is chosen 

as a tentative global optimum by solving a sub-optimization problem on a response surface 

represented by the learned NN. To solve this sub-optimization problem, a simulated annealing 

algorithm is used with an ideal annealing schedule, because neural networking is much faster 

than CFD. The NN learns all the teacher signals that have been obtained so far. The initial 

conditions of the weights and thresholds are set to the previously learned results in order to 

improve learning performance. When the learning fails, initial values of the weights and 

thresholds are randomly perturbed from the previous results and the back propagation rule is 

applied again. 

Using the NN response surface enables us to search for a global optimum much faster 

than with a single SA. Using the SA enables us to sample the design space globally and to 

provide a mechanism to jump out of an incorrect optimum that may be predicted by an 

inaccurate response surface. Even if a response surface can’t be constructed, the automatic 

optimization process can still survive by a single SA. The complimentary roles of the SA and 

NN thus enable robust and collaborative optimization. 

 

The performance of the hybrid algorithm is verified using a test function defined as 
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subject to ( .2,140 = )≤≤ ixi π  The optimum (minimum solution) is 

 

( ππ ⋅==−= 5.0,20 21
* xxf ) .      (2-15) 

 

This is a multi-modal function as shown in Fig. 2-5, in which the objective function is 

normalized. Figure 2-6 compares the performance of the hybrid algorithm (SA+NN) with that 

of single SA given the same conditions for SA algorithm. The NN is active during 20% of all 

the iterations. The figure suggests that the hybrid algorithm finds the global optimum much 

faster than the single SA does. 
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Figure 2-5 Test function 

 

 

20 



 

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

0 200 400 600 800 1000

iteration

no
rm

al
iz

ed
 o

bj
ec

tiv
e 

fu
nc

tio
n

SA
SA+NN

Iteration

N
or

m
al

iz
ed

 o
bj

ec
tiv

e 
fu

nc
tio

n

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

0 200 400 600 800 1000

iteration

no
rm

al
iz

ed
 o

bj
ec

tiv
e 

fu
nc

tio
n

SA
SA+NN

Iteration

N
or

m
al

iz
ed

 o
bj

ec
tiv

e 
fu

nc
tio

n

 
 

Figure 2-6 Comparison of optimization histories 

 

 

 

2.3.2 Regression Analysis of Design Space 

Another feature of the proposed method is that it automatically conducts a statistical 

analysis of the response surface. This analysis aims to identify important design variables, 

thereby helping a designer to understand the design problem. This information is defined as 

“design knowledge” in this study. 

The analysis calculates two statistical values, sensitivity and non-linearity. Figure 2-7 

visualizes the three-dimensional design space of the two design variables and one objective 

function as a simple example. Several points sampled by SA are plotted on the response 

surface of the NN. At the current sampling point, the response surface is cut into orthogonal 

two cross sections. Figure 2-8 shows the profile of a cross section, where the section has been 

numerically discretized. The regression line shows the global tendency between the objective 

function and the design variable. The sensitivity is calculated as the gradient of the regression 

line after re-scaling the abscissa by the distance between the upper and lower limits of the 

design variable X. The non-linearity is defined as the mean square deviation of the cross 

section from the regression line. Sensitivity suggests the importance of a design variable, 
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while non-linearity indicates the difficulty in examining the design variable.  

In the hybrid algorithm, the SA randomly searches in a neighborhood around a temporary 

optimum for better solutions. This neighborhood covers the whole design space at first, after 

which it is gradually narrowed according to the progress of optimization. Therefore, the 

positions of the cross sections mentioned above vary randomly within the whole design space 

before they gather round the final optimum. The knowledge mining calculates and averages 

the two statistical values for every iteration. Thus, the averages are expected to show global 

characteristics at first and local characteristics near the final optimum lastly. It is expected that 

these averaging operations cancel noise due to the immaturity of the response surface. 
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Figure 2-7 Example of design space 
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Figure 2-8 Definition of statistical indexes 

 

 

 

2.4 Design Optimization of Centrifugal Impeller 
 

Centrifugal fans of vacuum cleaners are typical examples of inexpensive fans. In the 

Japanese market, a law limits the maximum input power of a vacuum cleaner. Therefore, we 

have to develop aerodynamically efficient fans in order to increase the units’ suction power. 

In this section, the proposed optimization method is applied to a centrifugal impeller with a 

specific speed of 120 [min-1, m3/min, m] (see Figure 2-1).  

 

2.4.1 Design Problem Definition 

The single objective function is defined as adiabatic efficiency: 
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where , ,G pC T , P , ,axisW κ are mass flow rate, specific heat under constant pressure, total 

temperature, total pressure, axial input power, and specific heat ratio, respectively. The 

subscripts 1 and 2 designate the entrance and exit of the impeller, respectively.  

The design variables are prepared according to the parameterization method described in 

Section 2.2. The trailing edge profile is a line, while the leading edge is flexibly deformed. 

The number of design variables is 27. The initial shape follows an ordinary two-dimensional 

design method. 

The axial input power is treated as a constraint, and it is considered to be feasible if its 

value is within 1% of the target. The constraint is taken into consideration by means of a 

penalty function. 

The hybrid algorithm’s frequency of using NN is set at 20%. Note that the flows were 

simulated using commercial software, “STAR-CDTM (CD-adapco JAPAN Co., LTD.) [14], ” 

solving RANS equations with ε−k  turbulence model combined with standard wall 

function. 

 

 

2.4.2 Results and Discussion 

Figure 2-9 shows the history of the adiabatic efficiency normalized by the initial value. 

Individual solution is plotted in circular marks. The line shows tentative optimums, which the 

SA keeps inside. The normalized efficiency is improved by 2.7% at the optimum. The hybrid 

algorithm using SA and NN find better solutions, but NN accounts for 62% of all the findings 

in this case. This clearly shows that the hybrid algorithm has a great advantage in efficient 

design exploration over a single SA.  

Figure 2-10 compares flow fields of the initial and optimum shapes. The flow fields are 

visualized with surface-restricted streamlines, which show flow directions near wall surfaces. 

The regions near the leading edges are shown in the upper half of the figure, and hub surfaces 

are shown in the bottom half. 

A significant difference in shapes is found at the leading edges. The linear leading edge of 

the initial shape changes into a unique “S-shaped” one in the optimum shape. In the optimum 

shape, the inclined edge near the hub surface generates a streamwise vortex as shown in the 

figure. This streamwise vortex, together with the horseshoe vortex, sweeps out a low-energy 

flow from the corner of the hub surface and the blade’s suction side. 
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Figure 2-9 History of the objective function (impeller) 
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Figure 2-10 Comparison of restricted streamlines 
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Figure 2-11 Design space characteristics (impeller) 

 

 

 

The initial impeller tends to have low-energy fluid at this corner, resulting in non-uniform 

flow at the impeller exit. In fact, the near-wall flow direction at the exit is not along the blade 

in Figure 2-10. In contrast, as the result of controlling the secondary flow in the upstream 

region, the optimum shape ensures that the outflow is completely along the blade. The more 

uniform outflow reduces secondary flow loss and improves adiabatic efficiency. 

Figure 2-11 shows the results of the statistical analysis of the design space. The average 

sensitivity and non-linearity converge during the optimization process, and the figure plots the 

last values for each design variable. 

Two design variables, D0 and D1h, are found to have large sensitivity to the adiabatic 

efficiency. D0 is the inlet diameter of the impeller, and D1h is the hub-side diameter of the 

blade’s leading edge. In terms of non-linearity, D0 and D2 have large values (D2 is the outlet 

diameter of the impeller). 
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2.5 Design Optimization of Centrifugal Diffuser 
 

The inflow condition for this diffuser (Figure 2-2) is calculated from the average CFD 

results of the optimum impeller described in Section 2.4. The inflow condition is assumed to 

be uniform. The outer diameter of the diffuser is kept constant in the optimum design. 

 

 

2.5.1 Design Problem Definition 

The objective function is defined as static pressure recovery at the diffuser as follows: 

 

entranceexit ppP −=∆ .         (2-17) 

 

The number of design variables is 26. The blade thickness is allowed to have a 

non-uniform distribution in this case, but the distribution form is kept constant throughout the 

optimization. Skew is not allowed, as in the impeller case. Regarding the blade edges, the 

leading edge is assumed to be linear while the trailing edge is deformed flexibly using a 

NURBS curve. The initial shape is decided based on a traditional two-dimensional design 

method. 

Other conditions for the hybrid algorithm and the flow solver are set similarly to those of 

the impeller’s case. 

 

 

2.5.2 Results and Discussion 

Figure 2-12 shows the history of the objective function normalized by the initial value. 

The optimum design improves the normalized pressure recovery by nearly 10%.  

In this case, the NN finds only 6% of all the better solutions. Although there is still a 

slight improvement in exploration efficiency, it is not as much as in the impeller’s case. This 

is because the non-linearity of the design space is so strong (as described later) that the 

accuracy of the response surface deteriorates.   

Figure 2-13 compares static pressure contours of the initial and optimum shapes. The 

optimum shape has a smoothly bending blade-tail profile, in which the upper side of the blade 

is stretched downward. A pressure gradient is naturally established since more pressure is 

recovered on the upper side than on the lower side. This gradient helps the mainstream to 

bend smoothly and avoid flow separation. 
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Figure 2-12 History of the objective function (diffuser) 
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Figure 2-13 Comparison of pressure distributions 

28 



   

wedge-shaped 
gap

streamwise
vorticity

section A

diffuserimpeller

blades
(vanes)

streamwise
vortex

wedge-shaped 
gap

streamwise
vorticity

section A

diffuserimpeller

blades
(vanes)

streamwise
vortex

 
 

Figure 2-14 Streamwise vortex 

  

 

Another feature of the optimum shape can be explained with help of Figure 2-14, which 

shows a section of the optimum impeller and diffuser. The trailing edge of the diffuser blade 

forms a wedge-shaped gap. In this gap, a streamwise vortex is generated by pressure drop 

over the diffuser blade. This is shown in the lower figure, which visualizes axial vorticity 

distribution in section A. 

The mainstream, where energy is high, is supported by the above-mentioned pressure 

gradient. However, near-wall flow, where energy is low, needs more assistance. The 

streamwise vortex then mixes the low and high-energy flow regions, suppressing the 

boundary layer growth. 

In the upstream region near the throat, the flow field for the optimum shape is too strongly 

diffused to be stable aerodynamically. The current problem definition allows that a flow is 

diffused as long as it is not separated. This means that stability of an optimum solution 

strongly depends on the accuracy of the flow solver. We need to make further investigations 

to be able to devise better problem definitions. 
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Figure 2-15 Design space characteristics (diffuser) 

 

 

Figure 2-15 summarized the results of the design space analysis. Unlike the impeller’s 

case, many design variables show a large sensitivity and large non-linearity at the same time. 

In fact, designing a diffuser always faces problems of flow separation, which is a typical 

non-linear phenomenon. These results imply some difficulties in designing a diffuser, which 

is in agreement with common sense regarding turbomachinery design. The thβ , bth and D4h 

are good candidates for important design variables. The thβ and bth are the blade angle and 

blade height near the throat, respectively. The throat is where the section area of flow paths 

becomes the smallest, as designated in Figure 2-13. It is well known that the throat has the 

greatest impact on the aerodynamic performances of a diffuser. D4h is the diameter of the 

trailing edge on the hub surface, where the streamwise vortex is generated. 

It is interesting that the proposed knowledge mining method is able to identify all the 

design variables, which are related to the throat and the wedge-shaped gap, as important 

parameters. 
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2.6. Conclusion 
 

This chapter described a single-objective global design optimization method suitable for 

centrifugal fans. The shapes of centrifugal impellers and diffusers are parameterized by using 

NURBS curves. This method has an advantage in modeling the blade’s leading and trailing 

edges flexibly, keeping two-dimensional simplicity as a whole. 

A hybrid algorithm combining SA and NN was developed for efficient and automatic 

design exploration. The NN learns the CFD results that were collected by the SA. The NN is 

then used as a response surface to accelerate the global search. The SA explores the design 

space independently of the NN, ensuring robust and automatic optimization. Statistical 

analysis for the purpose of knowledge mining is conducted with the NN. 

The proposed method was applied to the impeller and diffuser design problems. The 

resulting impeller design had a unique S-shaped leading edge profile, which effectively 

controls secondary flow. The diffuser design gave a smoothly bending trailing edge profile 

with a remarkable wedge-shaped gap, which generates a streamwise vortex and effectively 

prevents boundary layer separation. 

The design process of both designs were surely accelerated, but speedup depended on 

how strongly non-linear the design space was. The statistical analysis revealed important 

parameters for new shapes and these confirmed to what designers take to be common sense 

when drawing up turbomachinery designs.  

Based on these results, the author concludes that the proposed design method is suitable 

for automatically finding innovative shapes and useful design knowledge of centrifugal fans. 

Note that the design problem, the result of which strongly depends on accuracy of a flow 

solver, should be defined more properly than was done in this paper. For example, in the 

diffuser design problem, several constraints are necessary to secure aerodynamic stability. The 

author believes that such constraints should be treated as objective functions and that a 

multi-objective optimization problem should be solved, in order to avoid problems of 

simulation accuracy as much as possible. Tacking these issues will be the topic of the next 

work.  
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Chapter 3 

Multi-objective Design Exploration  

using Multi-objective Genetic Algorithm, 

Decision Tree Analysis, and Rough Set Theory 

 

 

3.1 Introduction 
 

In Chapter 2, a single-objective global optimization method for centrifugal 

turbomachinery configurations was developed to find innovative shapes that can improve 

aerodynamic performance in short turn-around-time. It was also confirmed that characteristics 

of design space, which were revealed by regression analysis, helps designers to understand 

important design variables to be investigated carefully. 

However, extreme design regarding an explicit single objective function often ignores 

other implicit design objectives or constraints. For example, more efficient fans are usually 

noisier. Fans with higher efficiency at a design flow rate usually have worse efficiencies at 

off-design flow rates. In this sense, the single-objective optimization approach is only useful 

when we can reduce multiple design criteria into a single objective properly with reasonable 

assumptions. When these assumptions are not available, we need to optimize multiple 

objective functions directly. It is indeed beneficial to have multiple design candidates as 

non-dominated solutions from multi-objective optimization, because designers can choose the 

best solution according to design requirements specified afterwards. This makes it possible to 

design products under the uncertainty in design requirements. 

In this chapter, therefore, a multi-objective optimization method is developed using 

real-coded multi-objective genetic algorithm. The author also attempts to extract design rules 

from multi-objective design space for finding governing design rules for achieving extreme 

improvement in each objective function. While the sensitivity and non-linearity of design 

space discussed in Chapter 2 are concerned with general information on the global 

characteristics, the design rules are related to particular information on conditions to achieve a 

certain design objective. The developed methods are applied to a design problem of 

centrifugal impeller accompanied with a vaned diffuser.  
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Figure 3-1 shows a motor blower used for a vacuum cleaner. The blower consists of a 

centrifugal impeller, vaned-diffuser, and return guide. Its specific speed is as low as 120 

[(min-1)(m3/min)0.5 (m)-0.75] at the design point. The design objective of these blowers is to 

achieve higher aerodynamic efficiency over a wide range of operating flow rates in such a 

way that the vacuum cleaners have high suction power regardless of dust amount.  

However, the blower size is not large enough for designers to investigate the inner flow 

field experimentally. For instance, the throat size of the diffuser is only a few millimeters. 

Therefore, the predominant design approach for these blowers is now computational fluid 

dynamics (CFD) and numerical optimization techniques. In addition, there has been 

increasing demand for design knowledge acquisition from these numerical investigations as a 

substitute for experimentation. 

Although there were many multi-objective optimization studies of aerodynamic 

configurations [1][2][3][4], there have not been many studies on this type of 

low-specific-speed blower that accompanies a vaned diffuser. Benini et. al [5] optimized the 

shape of a vaned diffuser by using Reynolds-averaged Navier Stokes (RANS) simulation and 

a multi-objective genetic algorithm (MOGA). However, the inflow to the diffuser was 

assumed to be uniform and so the interaction effect with the impeller was ignored. This 

approach cannot be used to evaluate aerodynamic stability because the non-uniform inflow to 

the diffuser plays an important role on aerodynamic stall. Khelladi et al. [6] computed flows 

of a high-fidelity CFD model, which included an impeller, diffuser, and return guide. 

Although the interaction effect was considered, design optimization was not conducted.  

The intention of this study is to optimally design aerodynamically efficient and stable 

centrifugal impellers. This goal is achieved by multi-objective shape optimization of a 

centrifugal impeller, where the time-averaged and spatially non-uniform interaction effect 

with the diffuser can be investigated. Although it is widely recognized that the multi-objective 

optimization is computer intense, a lot of simulation results and optimal design solutions can 

be made available as a design database instead. The author therefore believes that 

multi-objective optimization is not costly, if we can extract additional information from the 

database by means of data mining.  
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Figure 3-1 Motor blower for vacuum cleaner 

 

 

 

Nomenclature 

 

hD2   =  outer diameter of impeller blade on hub side [mm] 

sD2    =  outer diameter of impeller blade on shroud side [mm] 

2D    =  mean of  and  [mm] hD2 sD2

sD0    =  outer diameter of impeller inlet [mm] 

hD0    =  inner diameter of impeller inlet [mm] 

hD1    =  inner diameter of impeller blade on hub side [mm] 

sD1    =  inner diameter of impeller blade on shroud side [mm] 

hD_r 1  =  ratio for determining  hD1

sD_r 1  =  ratio for determining  sD1

R    =  radius corresponding to diameter  [mm] D
0b    =  height of impeller inlet [mm] 

2b    =  height of impeller exit [mm] 
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3b   =  height of diffuser inlet [mm] 

01R    =  radius of first circle consisting of the shroud line [mm] 

01R_r   =  ratio for determining  01R

tanR   =  radius of connecting point between second circle and line on shroud line [mm] 

tanR_r   =  ratio for determining  tanR

inβ    =  blade angle of first NURBS control point in blade angle distribution [degree] 

maxβ   =  blade angle of second NURBS control point in blade angle distribution [degree] 

outβ    =  blade angle of third NURBS control point in blade angle distribution [degree] 

max_r β   =  ratio of determining radial location of maxβ  

1leD   = diameter of first NURBS control point for leading edge definition 
(near hub line) [mm] 

2leD   = diameter of second NURBS control point for leading edge definition [mm] 

3leD   = diameter of third NURBS control point for leading edge definition 
 (near shroud line) [mm] 

mD   = mean of  and  [mm] hD1 sD1

1leR_r  = ratio of determining  1leD

2leR_r  = ratio of determining  2leD

3leR_r  = ratio of determining  3leD
Q   = flow rate [m3/min] 

blowerη  = blower efficiency 
p   = averaged static pressure [Pa] 

axW    = shaft power [W] 

bi   = incidence angle [degree] 
σ   = standard deviation 

ig   =  mass flow rate at mesh cell i on diffuser inlet [kg/s] 

i_4β   = inlet flow angle at mesh cell i on diffuser inlet [degree] 

b4β    =  inlet blade angle at diffuser inlet (constant) [degree] 
n   = number of mesh cells on the diffuser inlet boundary  
DV   =  design variable(s) 
OF   = objective function(s) 
A   = criteria in terms of design variable(s) 
B   =  criteria in terms of objective function(s) 
W   =  relative velocity [m/s] 
U   =  peripheral velocity [m/s] 
C   =  absolute velocity [m/s] 
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3.2 Design Exploration Method 
 

3.2.1 Procedure of Design Exploration 

Design exploration processes are divided into two steps, as shown in Fig. 3-2. In the first 

step, the optimization problem is solved by the multi-objective genetic algorithm (MOGA), 

which is explained in the next section. We then investigated the obtained sample data and 

non-dominated solutions. Non-dominated solutions are optimal solutions in multi-objective 

optimization problems in the sense that no other solutions in the objective function space are 

superior to them when all objective functions are considered. In other words, a non-dominated 

solution has at least one superior objective function’s value compared with all the other 

non-dominated solutions.  

In the second step, data mining techniques, decision tree analysis and rough set theory, are 

applied to the CFD database accumulated in the first step. This is done to extract dominant 

design variables and their levels to be maintained to improve design objectives. If the 

database of the sample data is used, the resultant rules are characterized as general rules. If 

the database of non-dominated solutions is used, trade-off control rules are obtained. In this 

Chapter, extraction of general rules is attempted. Extraction of trade-off control rules is 

mentioned in Chapter 4. 
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Figure 3-2 Flowchart of design exploration 
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3.2.2 Multi-objective Genetic Algorithm 

Genetic algorithm (GA) [8] mimics an evolutionary process of natural selection as shown 

in Fig. 3-3. After forming initial population, where each individual represents design 

candidate, CFD are conducted to evaluate multiple objective functions (evaluation). By 

making a scalar function called "fitness" from these objective functions (fitness assignment), 

superior individuals are chosen according to the magnitude of fitness (selection). The feature 

of multi-objective genetic algorithm [9] is the way of defining this scalar function. Elitist 

strategy is used in the process of generation alternation for accelerating convergence 

(generation alternation). New population is created by means of exchanging (crossover) and 

perturbing (mutation) genetic information. In the followings, the methods used in the 

developed optimization system are explained. 

 

Initial population is generated using Latin hypercube sampling, which is a kind of design 

of experiment.  

The MOGA uses an evaluation method based on Pareto-ranking and fitness sharing [10] 

to obtain widely spread non-dominated solutions. Pareto-ranking method evaluates fitness of 

each population referring to its rank number that adds the number of dominating solutions and 

one. Consequently, the rank numbers for non-dominated solutions become ones (Fig. 3-4). 

Fitness sharing method gives smaller fitness for solutions gathering together in the objective 

function space so that widely spread solutions can be obtained as a result of evolution.  

In the evaluation process, each objective function  is first normalized as follows. if
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where  and  are number of population in total and each rank, respectively.   nPop inRnk

38 



The fitness is corrected according to convergence in local area in the objective function 

space using sharing function ( )j,kdsh  as follows. 
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Sharing function is calculated as   
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where Euclid distance  between the individual  and  is calculated as follows: j,kd k j
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shσ  in Eq. (3-4) is basis distance, which is used for judging degree of the gathering, and 

calculated as follows: 
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where  is objective function before it is normalized. In the normalized form,  f ′
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Since the average fitness of Eq. (3-2) changes due to the sharing operation, it is corrected as  
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in order that the sums of average fitness stay the same. Here,  are  fitness values 

before and after sharing operation, respectively.  

F F ′

 

All the design parameters are treated as real numbers in the MOGA and real-coded 

genetic operations, a roulette wheel selection method, a BLX-α(α = 0.5) crossover method, 

and a non-uniform mutation method are used [8].  

In the BLX-αcrossover method, a pair of new individual is created as follows: 
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The  is set to 0.5 for balancing global and local optimum searches. crsα

In the non-uniform mutation, disturbance of mutation is controlled as it is large and small 

in the former and later processes of evolution, respectively.  
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To improve convergence of the MOGA, the Pareto-optimality-based constraint handling 

technique [11] and the Best-N strategy [7] are employed in the MOGA code. The 

Pareto-optimality-based constraint handling technique introduces Pareto-ranking concept 

further to the constraint space so that it can avoid the use of penalty functions that need 

factitious parameters. Since solutions violating the constraints are given a larger rank number 

in this method, these solutions are gradually diminished. The Best-N strategy chooses the best 

N population from the previous two generations (2*N population) so that this generation 

alternation assures steady improvement of an average of an objective function over a 

generation. 
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Figure 3-3 Flowchart of genetic algorithm 
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Figure 3-4 Pareto-ranking method (example of two objective function space) 
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3.2.3 Design Rule Mining with Decision Tree Analysis 

Decision tree analysis [12] is an application of analysis of variance in statistical science. 

This method has been widely used as a decision-making method based on statistical analysis 

of multivariate data. In this study, this method is newly applied to an engineering design 

database that can be obtained by multi-objective optimization.  

The goal of decision tree analysis is to extract a single design rule (decision rule) that is 

expressed in the following if-then form: 

 

if (DV1 > A1) and (DV2 < A2) and …, then (B1<OF<B2).   (3-13) 

  

Decision tree analysis iteratively divides a group of data into two sub-groups of data so as 

to distinguish one group from the other as clearly as possible (Fig. 3-5). The variance of 

means of objective function of each group is used as a criterion for determining the clearness 

of the division. The procedure for decision tree analysis is as follows.  

 

1. Decide a criterion Ai for design variable DVi, where i denotes an index number of a 

design variable. 

2. Divide original data group P into two sub-groups Q and R, in such a way that DVi is 

bigger and lower than Ai in Q and R, respectively. 

3. Calculate the variances of data in Q and R from the mean of the original data group 

P. 

4. Go back to 1) until the maximum variance is found. 

5. Divide the group P into Q and R by the determined criterion. Go back to 1) and apply 

the same process to each of the sub-groups. 

 

As a consequence of this procedure, a tree diagram shown in Fig. 3-6 is obtained. The 

grouping criteria are shown in the boxes, which correspond to diagram nodes. Design 

variables appear from the top box in order of sensitivity to the design objective so that, 

usually, the dominant main effects of these design variables can be extracted. A design rule is 

obtained by tracing a path to reach a desired node. In Fig. 3-6, a rule to maximize the 

objective function is shown with a thick lined path as an example. Decision tree analysis is 

characterized by its single and probabilistic design rule. The commercial software JMP (SAS 

Institute) [13] is used to calculate decision tree diagrams. 
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Figure 3-5 Division of data group by decision tree analysis 
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Figure 3-6 Decision tree diagram 
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3.2.4 Design Rule Mining with Rough Set Theory 

Rough set theory was originally developed by Pawlak [14]. This mathematical method 

has been applied to human sense analysis because rough set theory is capable of handling 

ambiguous data and extracting underlying rules from that data. Because simulation data is 

deterministic, only the latter function is used. Rough set theory extracts design rules (decision 

rules) through the classification of set elements and set operations. As shown Fig. 3-7, any 

combination of design variable X's levels, and an objective function Y's level are assigned to 

set elements, and sufficient conditions are determined by examining inclusion relationship of 

these set elements [14][15]. In rough set theory, included elements are named as "lower 

approximation," while elements that partially share the same area but are not included are 

called "upper approximation." Rough set theory uses the lower approximation to extract 

design rules. 

The concept and flowchart of applying rough set theory to an engineering design database 

are explained using Fig. 3-8. First, the CFD data samples with continuous variables are 

discretized to make logical set operation possible. Consequently, design variables (DVs) and 

objective functions (OFs) are categorized into several levels as the table in Fig. 3-8. Here, a 

level is assigned to a range of values of a design parameter in such a way that, for instance, 

the level 1,2 and 3 corresponds to the minimum, middle and maximum ranges, respectively. 

For multi-objective optimization cases, any clustered group, such as a group of the same rank 

number, can be a discrete category instead of these levels. Each line in the table is then 

regarded as a deterministic rule describing conditions and results. Hence, all the data becomes 

a collection of rule sets. 

However, the rule sets still have as many conditions as the number of design variables, 

making it difficult for designers to understand them. Since some design variables do not affect 

the results or decisions, reducing the number of design variables required to obtain the same 

results is possible. This operation used for the purpose of obtaining minimum sets of 

conditions to determine the desired decision attributes is called “reduction”, which makes 

obtaining simple rules with fewer conditions possible. This reduction is done using set 

operations. After obtaining reduced rule sets, the rule sets are filtered on the basis of the 

frequency with which the same rules are extracted. This is done because the reduction process 

still produces many rule sets, from which dominant rule sets must be determined. Finally, the 

meaning of the filtered rule sets is interpreted. Unlike decision tree analysis, rough set theory 

can extract multiple and deterministic design rules. The open software ROSSETA [16][17] is 

used for the necessary calculations. 
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Figure 3-7 Rule extractions with rough set theory 
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Figure 3-8 Application procedure of rough set theory 
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3.3 Design Optimization of Centrifugal Impeller  

accompanied with Diffuser 
 

 

3.3.1 Shape Parameterization  

The shape of a low-specific-speed impeller is often designed two-dimensionally as a 

result of balancing performance-gain with production cost. Therefore, the shape 

parameterization method developed in Chapter 2 is used for defining the centrifugal fan of a 

vacuum cleaner [18]. In this section, detailed explanation is given about how to determine 

NURBS control points.  

The shape of a centrifugal impeller is defined by a meridional profile and several blade 

profiles, i.e., blade sections. The fundamental concept of the method is that only two blade 

sections corresponding to the hub and shroud surfaces are defined and connected by two 

NURBS curves assigned to the blade’s leading and trailing edges. Since this method does not 

require those multiple blade sections to be defined, the number of design variables can be 

reduced. Moreover, the method is capable of providing adequate spanwise 

three-dimensionality of the blade by deforming the connecting NURBS curves. 

The meridional profile of the impeller is defined as shown in Fig. 3-9, where the vaned 

diffuser and the connecting vane-less diffuser are also shown. The hub and shroud lines are 

represented by NURBS curves, onto which the two blade sections mentioned above are 

projected. For simplicity, features such as lines and circles are directly used, and the resultant 

geometries are then fitted by these NURBS curves with a sufficient number of control points. 

In this study, the hub line was fixed, and the shroud line is modeled with two circles and a 

line. These features are tangentially connected to each other. As shown in Fig. 3-9, each of the 

blade’s leading and trailing edges is represented by a NURBS curve with five control points. 

The locations of the control points at the ends are determined by blade profile definitions so 

that three control points in the middle can be moved. Notice that the trailing edge is assumed 

to be straight in this study to avoid highly distorted flow at the trailing edge. 
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Figure 3-9 Meridional profile definition 
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Figure 3-10 Definition of blade angle distribution function 
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The blade profile is built using camber and thickness definitions. The camber is defined 

by a distribution function of blade angle to the radius, as shown in Fig. 3-10. Here, the blade 

angle is defined as an angle made by tangential lines to the blade camber and to the 

circumferential line. This function is modeled by a NURBS curve with three control points. 

The distribution function for thickness is also defined in the same manner. On the basis of 

these functions, discretized points on the blade surface are calculated numerically. The 

leading edge and trailing edge on the blade section are modeled using circles. Notice that the 

blade profile uses NURBS curves indirectly while the meridional profile uses them directly 

for geometry representation. Although this method is capable of modeling 

quasi-three-dimensional skewed blades, the same distribution functions are used in this study 

for both the hub and shroud sections to build two-dimensional shapes for easier mass 

production. Thus, we only defined one NURBS curve for blade angle distribution, which are 

commonly used for both the hub and shroud sections (Fig. 3-10). The blade angle 

corresponding to  (in the case of  > ) or  (in the case of  < ) is 

automatically calculated. Blade thickness was taken to be constant. 

hR1 hR1 sR1 sR1 hR1 sR1

This parameterization method is similarly used for modeling a vaned diffuser, although 

the diffuser shape is fixed during the design optimization. Once an impeller and diffuser are 

modeled, they are combined with a vane-less diffuser region. 

 

 

3.3.2 Computational Fluid Dynamics 

The computational domain is defined as a combination of the blade-to-blade regions of 

the impeller and diffuser to take the time-averaged interaction effect into consideration. A 

computational grid is shown in Fig. 3-11. The multi-block grids are automatically generated 

by an in-house tool that uses an algebraic generation algorithm. The mesh is structured and 

generated by specifying the least mesh size on the block boundaries and the numbers of 

meshes in I-J-K directions. Mesh density in the intermediate regions is controlled using 

geometric series calculations. The blocks for the impeller and vaned-diffuser parts are 

modeled according to the shape parameterization methods that are shown in Fig. 3-9 and 

3-10. The blocks for the inlet duct, vane-less diffuser, and outlet duct parts are additionally 

modeled by specifying duct heights, radiuses, and the corresponding mesh sizes. 

Multi-rotating reference frame modeling is used, and the mixing plane is taken as being at the 

interface between the impeller and vane-less diffuser (#4 in Fig. 3-11). The number of 

revolution is 43,000 [min-1]. The unstructured-mesh-based RANS solver STAR-CDTM 
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(CD-adapco) calculates a steady flow of compressible air using the standard ε−k  

turbulence model and a wall function. The spatially second-order MARS scheme is applied 

for discretization of governing equations, and the resultant non-linear equations are solved by 

the SIMPLE algorithm and the conjugate gradient method. The number of mesh cells was 

decided as 224,952 after confirming that almost the same CFD results were obtained with 

566,256. Computational fluid dynamics is conducted at the prescribed design point of  = 

1.5 [m

Q
3/min] at ambient condition. The numbers of the impeller blades and diffuser vanes are 

8 and 13, respectively. 

At the inlet, axial uniform inflow is assumed and the mass flow rate and temperature are 

fixed. Static pressure is extrapolated from the downstream to the inlet to calculate inflow 

density. Static pressure is fixed at the outlet. At the mixing plane, the same grids are used for 

both the impeller side and diffuser side. Flow properties at the mixing plane are averaged in 

the circumferential direction, but not in the spanwise direction so that spanwise non-uniform 

inflow to the diffuser can be considered. The impeller and vaned diffuser are aligned in the 

axial direction in such a way that both hub surfaces have the same axial position. This causes 

a meridional gap on the shroud side due to  > , as described in Fig. 3-9. 3b 2b
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Figure 3-11 CFD model (# indicates locations) 
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3.3.3 Design Problem Definition 

The optimization was performed only for the impeller’s shape whereas CFD was 

performed for the combined configuration. This design policy attempts to design impellers 

that make the most of the potential performance of the combined diffuser. The author used 

this policy because of a difficulty in optimizing diffuser shapes. Optimizing a vaned diffuser 

in terms of pressure-rise generally results in an aerodynamically unstable shape, with which 

the flow is about to separate. However, with present technologies, RANS simulation cannot 

predict flow separation precisely without fine mesh and careful model tuning, which are 

undoubtedly not suitable for parameter surveys.  

As mentioned earlier, the design objective is improving aerodynamic efficiency and 

stability against the varying flow rate. The uniformity of inflow incidence to the vaned 

diffuser is used to evaluate stability. Namely, the author assumed that a more uniform inflow 

to the diffuser at the design point also results in a more stable flow at the off-design points, 

because the incidence at the diffuser inlet has enough safety margins against flow angle 

variations. 

The objective functions are then defined as follows. 

 

 Blower efficiency: 

 

( )
ax

blower W
ppQ 17 −=η .       (3-14) 

 

The product of the flow rate  and the pressure rise Q 17 pp −  is divided by the shaft 

power . The subscripts of  denote the locations of the flow path (see # in Fig. 3-11).  axW p

 

 

 The root mean square of the incidence angle ( bi_bi 44 β−β= ) distribution at the vaned 
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The summation is weighted by the local mass flow rate  at the mesh cell . The inlet 

angle of the diffuser vane  is constant in this study because the diffuser shape is 

two-dimensionally manufactured by means of molding and is fixed during design 

optimization. 

ig i

b4β
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The shaft power  was taken as a constraint because the maximum energy 

consumption of a vacuum cleaner is regulated. Geometrical parameters are assigned to design 

variables using the dimensions shown in Figs. 3-9 and 3-10. Table 3-1 summarizes all the 

definitions of these design variables and their allowable definition regions, together with the 

constraint and the objective functions. Major dimensions regarding radiuses and heights are 

related to the design variables from Nos. 1 to 9. The blade angles are related to those from 

Nos. 10 to 13. The remaining Nos. 14, 15, and 16 define the leading edge’s deformation. Most 

of design variables are defined in normalized forms as shown in Table 1 in order to make the 

automatic geometry modeling and mesh generation possible, avoiding definitions of 

infeasible or highly distorted geometries. 

axW

 

 

 

3.4 Results and Discussion 
 

3.4.1 Non-dominated Solutions 

The population of MOGA was set to 40, and 12 generations were altered within the 

allowed turn around time. The obtained non-dominated and associated dominated solutions 

are shown in Fig. 3-12. As described in Fig. 3-12, an apparent trade-off relationship was 

found between two objectives, i.e. higher blower efficiency resulted in higher non-uniformity 

(less aerodynamic stability), and vice versa. In this calculations, seven non-dominated 

solutions A, B, …, and G were determined on the trade-off line. The impeller’s shapes 

corresponding to these non-dominated solutions are also visualized, shown in Fig. 3-12 as the 

axial view, side view, and bird view near the leading edges. Efficiency and stability-weighted 

design candidates are shown toward the right and left, respectively. 

Clear distinctions in shapes cannot be found from these figures except from the leading 

edges. However, identifying a tendency of these leading edges remains difficult. Therefore, 

choosing dominant design variables to the trade-off is attempted by means of correlation 

analysis. Table 3-2 summarizes coefficients of correlation between the design variables and 

objective functions. If a design variable is related to the trade-off, the corresponding two 

correlation coefficients must have different signs. Taking this into consideration, the author 

chose the dominant design variables , , , and hD2 sD2 2b max_r β  as a consequence of 

filtering those with magnitudes of correlation coefficients lower than 0.7. 

 

52 



A B C D E F G

non-dominated solutions

Blower efficiency [%]

N
on

-u
ni

fo
rm

ity
 o

f 
in

flo
w

 to
 d

iff
us

er
 [d

eg
re

e]

0.4 degree

2 %

A
B C

D E
F

G

efficiency-weightedstability-weighted 
(uniformity-weighted)

trade-off relationship

A B C D E F G

non-dominated solutions

Blower efficiency [%]

N
on

-u
ni

fo
rm

ity
 o

f 
in

flo
w

 to
 d

iff
us

er
 [d

eg
re

e]

0.4 degree

2 %

A
B C

D E
F

G

efficiency-weightedstability-weighted 
(uniformity-weighted)

trade-off relationship

 
Figure 3-12 Trade-off in non-dominated solutions 

 

  

 

Table 3-2 Coefficients of correlation 
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Table 3-3 Dimensions of non-dominated solutions 
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Figure 3-13 Velocity triangle at impeller exit 

 

 

Table 3-3 summarizes these parameters in the normalized forms.  indicates 

how much the trailing edge inclines in the meridional plane. There is a tendency for 

efficiency-weighted designs are to be  > 

hs D/D 22

sD2 hD2  and uniformity-weighted designs to be 

 < . In terms of ( =constant), efficiency-weighted blowers have larger 

, and uniformity-weighted blowers have smaller . Regarding , 

efficiency-weighted blowers seem to have larger 

sD2 hD2 23 b/b 3b

23 b/b 23 b/b max_r β

max_r β , but the tendency is not as clear as 

that of the other parameters. 

 

Velocity triangles at the impeller exit are schematically shown in Fig. 3-13. In these 

low-specific-speed centrifugal impellers, the flow near the shroud surface generally has lower 

energy than that near the hub surface due to the effect of secondary flow (see  and 

). In addition, as previously mentioned, there is a meridional gap on the shroud-side in 

the vane-less diffuser region for this design problem and so the flow near the shroud is very 

diffusive. Therefore, improving pressure recovery by widening the meridional bump and 

injecting more energy to this diffusive region is possible. The author believes that this is why 

efficiency-weighted designs result in larger  and  than and , respectively.  

shroudC

hubC

sD2 3b hD2 2b

In the downstream vane-less diffuser region, the flow angle of  becomes much 

smaller than that of  because of the meridional bump. Therefore, for the purpose of 

improving the uniformity of the flow angle,  must initially rise by reducing  

( → ) in preparation for the flow angle decrease at the vane-less diffuser region. 

shroudC

hubC

shroudC sD2

shroudC shroud
'C
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In terms of , it is obvious that  should be close to  for more uniform flows. 

These are the reasons why  and  tend to become smaller than  and , 

respectively, for uniformity-weighted designs. 

23 b/b 3b 2b

sD2 3b hD2 2b

The last parameter  controls the aerodynamic load balance (distribution) of the 

impeller. Although its tendency is not as linear as the others, this parameter certainly affects 

the trade-off relationship. With these considerations, it is concluded that the trade-off between 

efficiency and stability is controlled by the dimensions of the vane-less diffuser and the load 

balance of the impeller. 

max_r β

As a design candidate for balancing efficiency and stability, non-dominated solution C 

was chosen and aerodynamic performance was measured experimentally. The solutions D, E, 

and F were not chosen because their  and  were considered too small to avoid the 

unfavorable interaction effect of separation flow with the blade leading edge. This separation 

flow starts from the gap between the impeller inlet and its casing, which was not incorporated 

in our CFD model. Figure 3-14 shows the results of the experiment, showing the current 

model (baseline) performance as well as a solution designed by the traditional 

Design-of-Experiment-based single-objective optimization method that merely optimizes 

efficiency. In the single-objective optimization method, we first carried out parameter surveys 

using an orthogonal table and then determined the optimum level combination of design 

variables. All the test models were mounted on the same motor. With regard to the combined 

vaned diffuser, the single and multi-objective designs share the same one. The diffuser used 

for the baseline impeller has the same vane shape as the others but different  ― 6.8 [mm] 

for the baseline and 7.3 [mm] for the others. The multi-objective design has been proven to 

not only improve the blower efficiency at the design point but also keep efficiency high at 

other flow rates. In contrast, the single-objective design suffers from aerodynamic stall at 

lower flow rates although it has an improved efficiency at the design point. From these 

results, it was confirmed the proposed multi-objective optimization method is effective for 

designing a centrifugal impeller that is aerodynamically efficient and stable. 

0b sD0

3b

Figure 3-15 compares oil flow patterns between the baseline and design C, which 

approximately shows secondary flow direction near the walls. Even though design C has a 

more diffusive vane-less diffuser due to larger  than the baseline configurations, it 

achieves having similar oil flow patterns at the vaned-diffuser, avoiding flow separation. In 

the impeller region, the secondary flow of design C is more strongly restricted, resulting in 

more smoothed secondary flow directions. 

3b
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Figure 3-14 Comparison of experimental performance curves 

 

 

 

3.4.2 Data Setup for Design Rule Mining 

Although the design variables dominant to the trade-off was chosen, only their qualitative 

tendencies have been discussed. From industrial viewpoints, clarifying quantitative 

relationships between the setup of design variables and the resulting performance is needed. 

Hence, decision tree analysis and rough set theory were applied to obtain these quantitative 

design rules. These data mining techniques can be applied to either all the CFD sample data 

or the non-dominated solution data. The meaning of derived design rules changes depending 

on which data we use. In the former case, general design rules for optimality can be obtained, 

because the data are concerned with the global design space. In the latter case, design rules to 

control trade-offs that maintain optimality can be obtained, because the data are related to 

trade-off relationships among non-dominated solutions. 
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In this study, the number of non-dominated solutions was merely seven, which is not 

sufficient for mining design rules. In contrast, the CFD samples obtained in the first step were 

considered sufficient and so the data mining techniques could be applied to the CFD data. The 

CFD samples obtained in the first step were cleansed by eliminating duplicated data and 

outliers, resulting in 161 normalized data samples. 
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Figure 3-15 Comparison of oil flow patterns 

(top: axial view from shroud side; bottom: close-up view of leading edge areas) 
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3.4.3 Design Rules from Decision Tree Analysis 

First, decision tree analysis was applied to the CFD data. The purpose here was to find 

general rules to achieve extreme designs in terms of blower efficiency and stability. Figures 

3-16 and 17 show decision tree diagrams obtained for blowerη  and ( )biσ , respectively. Each 

box gives a decision condition, a ratio of average of the objective function in the 

corresponding group to that of the top group (r_av.), and the number of data in the group. The 

decision conditions in the upper boxes are more important than those in the lower boxes in the 

sense that they are sensitive and definitive. The decision conditions in the boxes further to the 

right have a higher objective function value while those further to the left have a lower one. 

The expansion of the diagram was terminated when the number of data in a node was 

approximately 20% of the initial number. 

The design rule to maximize  is obtained by tracing from the top to the bottom 

right node, as shown in Fig. 3-16: 

blowerη

 

if ( ≧22.89) and ( <0.319), then (r_av. = 1.035).    (3-16) inβ 20 D/D s

 

This means that higher efficiency can statistically be achieved if we have a relatively large 

inlet blade angle inβ  and small inlet diameter . Moreover, the blower efficiency is 

expected to improve by 3.5% on average if these quantitative conditions are satisfied. The 

former condition is believed to be a result of the reduction of friction loss due to the larger 

throat area of the impeller. The latter condition is expected to increase the total 

static-pressure-rise by enhancing the local static-pressure-rise at the impeller’s entrance.  

sD0

From Fig. 3-17, the design rule for achieving maximum uniformity is: 

 

if (  ≧ 6.24), (  < 89.96), and (  ≧ 0.336), then (r_av. = 0.951).   

         (3-17) 

2b sD2 20 D/D s
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Figure 3-16 Decision tree diagram for extreme design of blower efficiency 
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Figure 3-17 Decision tree diagram for extreme design of flow uniformity 
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Relatively large  increases the uniformity because  < (  = const.) in this 

design problem. As we have already discussed with regard to Fig. 3-13,  should be 

relatively small for uniform flow. In terms of , the opposite tendency of rule (3-16) is 

found. Rules (3-16) and (3-17) derived from decision tree analysis have statistical meanings 

as to dominant effects of these design variables including both main and interaction effects, so 

there can be some exceptions. However, these design rules seem understandable from a 

common sense in turbomachinery design. 

2b 2b 3b 3b

sD2

sD0

Figure 3-18 shows a summary of the design rules derived from decision tree analysis and 

correlation analysis with qualitative expressions. The rule toward the extreme design 

regarding aerodynamic efficiency guides a move from P1 to P2 in the objective function 

space. Similarly, the rule toward the extreme design regarding aerodynamic stability guides a 

move from P1 to P3. For these moves, quantitative rules are also available. The trade-off 

control is made possible by applying the qualitative rules described in this figure. The rule set 

for the trade-off control, which is described in Fig. 3-18, is an example of moving from P3 to 

P2. Although these paths are schematic and do not mean that we can circulate the state of 

design objectives by changing only these dimensions appeared in the rules, making these 

general guides available and visualizing them on a map is surely useful for designers. 

 

 

3.4.4 Design Rules from Rough Set Theory 

Rough set theory was next applied to the CFD data to clarify general rules and compare 

the results with those of decision tree analysis. In applying rough set theory, each design 

variable is discretized to five levels in such a way that each level contains the same number of 

data items. The partitioning of the levels is visualized in Fig. 3-19. Notice that extreme bias 

was observed for . 20 D/D s

The objective function  was partitioned into 10 levels of equal width between the 

minimum and maximum values, and rules to be in level 10, where 

blowerη

blowerη  becomes the 

maximum, were calculated. The extracted rules are shown in Table 3-4. Rules that have been 

extracted fewer than six times have been filtered (see “counts” in Table 3-4). As a result of 

this filtering operation, 17 rules were obtained. Rule 1, for example, denotes: 

 

if ( =level 1), ( =level 4) and (20 D/D s 01R_r outβ =level 2), then ( blowerη = level 10).  

         (3-18) 
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Figure 3-18 Summary of design rules 
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The number of conditions needed was drastically reduced from 16 to 3, resulting in a very 

simple rule. While decision tree analysis extracts a single rule that has statistical meaning, 

rough set theory extracts various deterministic rules as listed in Table 3-4. This diversity and 

certainty are advantages of rough set theory because the derived rules are related not only to 

the main effects of design variables but also to the interaction effects. Decision tree analysis 

cannot be used to extract the interaction effects because a data group is divided on the basis of 

a criterion of a single design variable. 
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Figure 3-19 Discretized levels of design variables 
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Table 3-4 Rule sets for extreme design of blower efficiency 

 

No Design
Variable 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 weight avr. stand.

dev.

1 D2h 3 0.02 3.0 0.0
2 D2s 0.00 NA NA
3 D0s/D2 1 1 1 1 1 1 1 1 1 1 1 0.24 1.0 0.0
4 r_D1h 3 5 0.04 4.0 1.0
5 r_D1s 2 2 2 2 2 2 0.12 2.0 0.0
6 b2 4 4 4 1 4 1 0.12 3.0 1.4
7 b0/b2 3 3 3 3 3 3 0.12 3.0 0.0
8 r_R01 4 4 4 4 4 4 0.12 4.0 0.0
9 r_Rtan 0.00 NA NA

10 βin 5 5 5 4 0.10 4.8 0.4
11 βmax 0.00 NA NA
12 r_βmax 4 0.02 4.0 0.0
13 βout 2 2 2 0.06 2.0 0.0
14 r_Rle1 0.00 NA NA
15 r_Rle2 5 3 0.04 4.0 1.0
16 r_Rle3 0.00 NA NA

extracted
count 6 7 6 6 6 6 6 6 6 6 10 6 6 6 6 6 7

Extracted rules

 
 

 

 

 

However, it is difficult for rough set theory to give a statistical meaning of what these rule 

sets imply as a whole. Therefore, to evaluate the statistics of these rule sets, the author 

calculated the average and standard deviation of the level for each design variable appearing 

in Table 3-4. Weight index was also calculated to evaluate the relative importance of each 

design variable. The weight is a normalized index calculated as the “counts” in Table 3-4 

multiplied by the frequency at which the rule element appears (e.g., eleven times for 

 and six times for ). Design variables with larger weights are considered 

important because their rule elements appear very frequently in decision rules. 

20 D/D s 20 b/b

Figure 3-20(a) shows the weights. Setting a threshold to 0.1 for the weight, design 

variables , , , , , and 20 D/D s sD_r 1 2b 20 b/b 01R_r inβ  were deemed important. The 

calculated statistics, the averages and standard deviations, of the levels are shown in Fig. 

3-20(b). The author believes that the smaller values of standard deviation reflect the 

generality of the rule. Although the order of importance is different from the order of results 
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of the decision tree analysis (Fig. 3-16), the rules that  should be small (level 1) 

and  should be relatively large (level 4 - 5) agree with the results of decision tree 

analysis. Other rules regarding , , , and  provide new insight as to 

how performance can be improved. It is also important to mention here that, in Table 3-4, the 

level of  varies in the rule sets according to the design variables to be combined with. 

20 D/D s

inβ

sD_r 1 2b 20 b/b 01R_r

2b

Similarly, the rule sets to be in the top 20% of aerodynamic stability were analyzed by 

rough set theory, and the statistics of frequently extracted rules were evaluated; the results are 

shown in Table 3-5 and Fig. 3-21. The five most important parameters were chosen as , 

, , , and . Although the order of importance is different from the order 

of results of the decision tree analysis again, the rules that  should be small (level 1) and 

 should be middle-large (level 4) agree with the result of decision tree analysis. Other rules 

for , , and  suggest additional viewpoints to control aerodynamic 

stability.  

sD2

hD_r 1 2b inβ max_r β

sD2

2b

hD_r 1 inβ max_r β

Notice that, in Table 3-5, the rule set of max_r β  takes various levels, as observed with 

 in Table 3-4. These parameters  and 2b 2b max_r β  are considered to be related to the 

interaction effects of more than two design variables because the fact that their optimum 

levels change according to design variables to be combined with, is a typical characteristic of 

interaction effects. 

With these findings, the author concluded that the rules for design variables related to 

dominant total effects can be determined as similarly as decision tree analysis by applying 

rough set theory and analyzing resultant rule sets statistically. It was also concluded that 

rough set theory can be used to extract design rules related to interaction effects by its diverse 

and deterministic rule extraction mechanism while decision tree analysis has the advantage of 

determining sensitivities of design variables. 
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(a) Weight of each design variable 
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(b) Statistics of rule elements 

 

 

Figure 3-20 Design rules for extreme design of blower efficiency 
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Figure 3-21 Design rules for extreme design of flow uniformity 

 

66 



 

Table 3-5 Rule sets for extreme design of flow uniformity 

 

No Design
Variable 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 weight avr. stand.

dev.

1 D2h 5 4 4 3 5 0.0 4.2 0.7
2 D2s 1 1 1 1 1 1 1 1 1 1 1 1 0.1 1.0 0.0
3 D0s/D2 5 4 5 4 5 4 4 4 0.1 4.4
4 r_D1h 5 4 4 4 4 4 4 5 5 4 0.1 4.3
5 r_D1s 3 3 1 4 1 0.0 2.4 1.2
6

0.5
0.5

b2 5 5 5 4 4 4 4 4 4 4 4 4 0.1 4.3
7

0.4
b0/b2 4 5 5 5 5 5 5 5 0.1 4.9 0.3

8 r_R01 2 1 3 1 0.0 1
9 r_

.8 0.8
Rtan 2 2 2 2 2 0.0 2.0 0.0

10 βin 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.1 1.0 0.0
11 βmax 1 1 4 4 1 4 4 0.1 2.7 1.5
12 r_βmax 1 1 5 4 5 5 5 1 4 4 1 4 3 0.1 3.3 1.6
13 βout 1 3 1 4 1 1 3 0.1 2.0
14 r_

1.2
Rle1 4 3 3 0.0 3.3 0.5

15 r_Rle2 4 4 2 1 1 4 1 0.1 2
16 r_

.4 1.4
Rle3 4 3 0.0 3.5 0.5

extracted
count 3 3 3 4 3 3 3 3 3 3 3 3 3 3 4 3 3 3 4 3 3 3 3 3 3 3 3 4 3 3 3 3 4 3 3 3 3 3 3 4 3

Extracted rules

 
 

 

 

With these case studies of data mining, three types of design variables have been 

observed. The first one is a parameter that indicates strong main effects. , , and 

 are classified into this type. These design variables are sensitive and maintain certain 

optimum levels in design rules. The second one is a parameter that changes its level 

depending on the other design variables to be combined with.  and  are among 

this type, which can be related to interaction effects. These parameters are also sensitive but it 

is difficult to identify the best level of them for better designs. The third one is a parameter 

that is not so sensitive but keeps its level regardless of the design variables to be combined 

with. These parameters concern optimality and can be detected by rough set theory as the 

other dominant design variables.  

20 D/D s inβ

sD2

2b max_r β

 

 

 

3.5 Conclusion 
 

The author described multi-objective optimization and design rule mining methods for a 

low-specific-speed centrifugal impeller with a vaned diffuser. An efficient shape 

parameterization method using NURBS curve representation was used to enhance the 

flexibility of the geometry. The CFD evaluates time-averaged non-uniform inflow to the 
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diffuser so that both aerodynamic efficiency and stability had been evaluated. By carrying out 

multi-objective optimization aimed at improved efficiency and stability, seven non-dominated 

solutions were found, and design variables dominant to the trade-off were clarified to be 

dimensions of the vane-less diffuser and the load balance of the impeller. By experimentation, 

it was concluded that the proposed multi-objective optimization method is effective for 

designs of this type of low-specific-speed centrifugal blower. 

In the subsequent step, two different data mining techniques, decision tree analysis and 

rough set theory, were applied to the CFD data in order to extract quantitative design rules to 

achieve better performance. Dominant design variables were determined together with their 

levels to be set. Differences in the features of the derived rules between the decision tree 

analysis and rough set theory were also discussed. The decision tree analysis extracts a single 

probabilistic rule while rough set theory mines various deterministic rules. However, 

statistically evaluating rough set rules makes evaluating similar probabilistic rules as a 

decision tree possible. As a consequence of these case studies, it is concluded that decision 

tree analysis is suitable for detecting the dominant total effects of design variables and 

interaction effects can be extracted only by using the rough set theory. It follows from these 

arguments that these characteristics of extracted design rules are complementary each other so 

that we should use both methods to understand a design problem properly. Notice that these 

data mining techniques can be widely applicable to any design database in the same manner 

as demonstrated in this paper, while the proposed multi-objective optimization method was 

tailored for low-specific-speed blowers. 

In this study, however, the number of non-dominated solutions was not sufficient for data 

mining and so these data mining techniques could not be applied to them. It is our expectation 

that sufficient number of non-dominated solutions enables the extraction of quantitative 

design rules also with regard to the trade-off control. Further advancing MOGA evolutions 

and increasing the number of non-dominated solutions is needed. Since this approach results 

in an increase of the design turn around time, it should be planned to use surrogate models of 

design space to reduce computational cost even for higher dimensional design problems. In 

the next step of design exploration, the data mining techniques used in this study will be 

applied to various data sets obtained by surrogate model-based optimizations to clarify design 

space characteristics. Besides, the features of data mining techniques, including other 

methods that have not mentioned, will be comparatively investigated to find the best use for 

them in engineering designs.
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Chapter 4 

Multi-objective Robust Design Exploration 

using Kriging Model, Self-organizing Map, 

and Association Rule 

 

 

4.1 Introduction 
 

Multi-objective optimization becomes available in chapter 3, enabling to handle the 

uncertainty in design-decisions in practical designs. Moreover, quantitative design rules have 

been revealed for improving each objective function, helping designers to connect key design 

variables with flow physics.  

However, there is different uncertainty in design-conditions, which cannot be defined as 

objective functions. Namely, uncertainty in design variables cannot be handled with the 

developed method yet. This uncertainty causes from variance in dimensions, material 

properties, environmental conditions and aged deteriorations. Besides, design rules for 

controlling trade-off balance have not been extracted yet. 

Therefore, in this chapter, the previously developed method is improved to a 

multi-objective robust optimization method, in which the variance in design variables is 

modeled. A systematic way of trade-off rule mining from high-dimensional non-dominated 

solutions is also proposed. 

   

Centrifugal fans used in consumer products such as washer-dryers and vacuum cleaners 

are typical mass-produced products. Improving the mean performance of these products and 

minimizing variance in their performance are important design issues for producers. 

Figure 4-1 shows a washer-dryer and the centrifugal fan installed in its drying system. 

Reduced drying time and operating noise are features that are most important to customers. In 

the fan's design, a higher flow rate, i.e., higher efficiency, and lower aerodynamic noise are 

the keys to improving these features. It is also important to reduce variance in performance in 

these areas under conditions of dimensional uncertainty due to mass production. 

Techniques of multi-objective optimization using evolutionary algorithms have become 

popular in the area of turbomachinery design because they can deal with conflicting relations 
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among multiple design objectives. Many previous studies [1][2][3][4] have focused on 

multi-objective turbomachinery designs. However, none of these studies has considered 

dimensional uncertainty. This is mainly because the calculation of statistical response to 

uncertainty has been computationally too expensive.  

Regarding robust designs, Egorov [5] took a stochastic approach to the robust design of 

turbomachinery, but his work was not based on optimization. Lee and Park [6] incorporated 

uncertainty in design variables and optimized a weighted sum of mean and standard deviation 

of a single objective function. They used Taylor series expansion to approximate sensitivity of 

the objective function. In their work, simulations were directly conducted. Padmanabhan and 

Batill [7] used an artificial neural network as an approximation model for reducing 

computational cost in robust design. However, their work also used Taylor series expansion 

for evaluating sensitivity. Koch, et al. [8] adopted Kriging model and the descriptive Monte 

Carlo sampling method. They succeeded in evaluating actual variations against uncertainty in 

design variables, not approximated sensitivity. Robust optimization using computation fluid 

dynamics was started by Huyse, et al. [9], where they attempted aerodynamic robust design of 

two-dimensional blades. Lyu, et al. [10] studied multi-objective optimization of automotive 

pneumatic control valves in terms of cost and quality. They conducted Monte Carlo 

simulations with Radial Basis Function approximation model. It was remarkable that they 

defined tolerances themselves as design variables. In these ways, it has becoming possible to 

evaluate variations against uncertainty in design variables.  

However, trade-off relations between the mean and variance of multiple objective 

functions have not been investigated so far, particularly for turbomachinery designs. Some 

researchers like Kumar et al. [12] and Shimoyama [13][14] have started to apply techniques 

of multi-objective optimization to robust designs as a multi-objective Six Sigma approach.  

The author took a similar approach to theirs, but he instead integrated the multi-objective 

Six Sigma approach with the parameterization method in the Taguchi method [15], which is 

an acknowledged method of robust design. Within this context, the author first aimed at 

developing a widely applicable multi-objective robust design framework, which integrated a 

multi-objective genetic algorithm, Kriging models, and a generalized probabilistic 

representation of design parameters. Kriging models were chosen as response surface models 

for their excellent accuracy in prediction, which is required to evaluate robustness.  
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Figure 4-1 Washer-dryer and its centrifugal fan 

 

 

Another difficulty in multi-objective robust optimization is higher dimensional 

non-dominated solutions than those from a multi-objective "non-robust" optimization. It is 

usually difficult to choose a proper design candidate or extract design rules from these high 

dimensional data if the data cannot be visualized in graphs. To overcome this problem, it was 

also intended to develop methods of analyzing trade-offs in this study. 

Nakayama et al. [24] developed the aspiration level method that enables interactive 

trade-off analysis in multi-objective optimization problems. In this method, a directional 

vector located in high-dimensional objective function space is used for specifying a 

preference in a trade-off balance. The author newly applied this traditional concept of 

directional vector to data mining. Namely, aspiration vector concept was combined with a 

design rule extraction method, association rule, to find quantitative rules to control any 

trade-off balances.   

"Multi-objective design exploration (MODE)" concept that was originally proposed by 

Obayashi, et al. [16] is extended to new paradigm of "multi-objective robust design 

exploration (MORDE)". In the following, a generalized framework of multi-objective robust 

optimization is first described and then methods of analyzing trade-offs are explained. 

MORDE's capabilities is demonstrated by applying the methods to an industrial design 

problem in a centrifugal fan. 
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Nomenclature 

 

x  : design variable 

y  : objective function 

f  : evaluation function 

p  : probability density function 

θ  : angle between aspiration vector and data vector 

µ  : mean 

σ  : standard deviation 

sη  : fan efficiency 

tbL  : turbulent noise level, dB 

w  : weight of objective function 

 

 

 

4.2 Design Exploration Method 
 

4.2.1 Generalized Multi-objective Robust Design Framework  

The framework developed incorporates probabilistic representations of design parameters 

into a real-coded multi-objective genetic algorithm. Kriging models [17][18][19] are used to 

numerically evaluate these probabilistic responses between design variables and resulting 

variables such as objective functions and constraints. The used Kriging model tool has been 

developed by Jeong et al. [20]. Although Kriging models are believed to provide the most 

accurate predictions among available options, a great deal of computational cost is required to 

construct the models. However, they were worthwhile using because a number of robustness 

evaluations by actual simulations were more costly. It should also be noted that Kriging 

models are capable of optimization based on "expected improvement", which attains efficient 

global optimization in a high-dimensional design space [19]. 

Figure 4-2 shows a flowchart for the method of multi-objective robust optimization that is 

developed. First, the design space is sampled by Latin hypercube sampling (LHS) to collect 

the necessary dataset to construct Kriging models. Since a single Kriging model approximates 

the relation between multiple design variables and a single evaluation function, multiple 

Kriging models must be constructed to evaluate multiple functions.  
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Figure 4-2 Flowchart for MORDE 

( p : probability density function, : i-th design variable, ix
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Once Kriging models are prepared, a multi-objective genetic algorithm (MOGA) solves 

the optimization problem using statistic parameters calculated by the Kriging models. Unlike 

traditional methods of non-robust optimization, each individual in MOGA only determines 

the representative values of uncertainty profiles of design variables, , as shown in the right 

box at the top of Fig. 4-2. According to a prescribed uncertainty profile, a probability 

distribution function, , is assumed. Descriptive LHS is then done to locate sampling 

points according to the probability distribution for evaluations of robustness as efficiently as 

possible. The Kriging models are used to predict the deterministic responses of evaluation 

functions, , to these sampling points (right box in the middle of Fig. 4-2). After that, 

responses are collected as 

ix

( )ixp

jf

( )jfp  and the means and standard deviations are numerically 

calculated. Finally, the mean  and standard deviation  of each evaluation 

function are assigned to two objective functions (right box at the bottom of Fig. 4-2). Thus, 

the number of objective functions becomes twice the number of evaluation functions (Kriging 

models). 

( ) 121 +×−jy ( ) 221 +×−jy

In the following sequence of genetic operations, the method explained in Chapter 3 is 

used. The evolutionary process is iterated until the maximum variation in the averages of 

objective functions become lower than a given criterion. After non-dominated solutions are 

obtained, the trade-off is analyzed using data-mining methods that will be explained later.  

In uncertainty profiles, a rectangular and normal distribution are prepared as options for 

the current system. If an uncertainty profile is known through measurements, the normal or 

other actual distribution profiles can be used. If the profile is unknown, a rectangular profile 

should be used. Response calculations using the rectangular profile correspond to experiments 

using noise factors in the Taguchi method. Since the intention of this research was to develop 

a compatible method of parameterization with the philosophy of the Taguchi method, 

parameter representations are generalized as summarized in Table 4-1. 

Table 4-1 explains the relations between the setup of design variables in our system and 

corresponding factors in the Taguchi method. By changing the types of uncertainty profiles 

and types of search regions of design variables in optimization, the roles of design variables 

can be assigned to the ones of the Taguchi method.  

One outstanding feature of the Taguchi method is that it explicitly classifies design 

variables into control factors and noise factors, making designers aware of parameters' roles. 

While noise factors cannot be controlled by designers, control factors can be maintained in 

the design and manufacturing processes.  
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Table 4-1 Comparison of design variables with Taguchi method 
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However, in the Taguchi method, it is difficult to handle continuous uncertainty profiles 

like a normal distribution and the trade-off between multiple design objectives. In these areas, 

the multi-objective Six Sigma approach has advantages. As a result, the author combined both 

strengths and defined the method of parameterization summarized in Table 4-1.   

 

 

4.2.2 Kriging Model 

Among available approximation models such as second-order response surface, 

multi-layered neural network, radial basis function, and Kriging model, Kriging model is 

believed to be the most accurate. Although the use of it is the most computationally costly, it 

was chosen for the purpose of predicting not only mean but also variations against 

uncertainty.    
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Figure 4-3 Concept of Kriging model 

 

 

 

 

Figure 4-3 schematically shows the concept of Kriging model. Kriging model is an 

approximation function of multiple inputs and a single output. The prediction of Kriging 

model, denoted by red line in the figure, exactly interpolates the sample points. The model 

also provides normal distribution that represents prediction uncertainty. It is possible to use 

this uncertainty information for efficient global optimization [19].      

Prediction of a function value  by a Kriging model is described as y

  

( ) ( )xx zy += µ ,               (4-1) 

 

where  is a vector of design variables, x µ  is the mean of  for all m  samples, and  

is a deviation from the mean. Here, the mean of  of all the samples is zero. The variance is 

 but covariance is not zero. 

y z

z
2σ

A correlation function between any two design points,  and , is defined in the 

form of a Gaussian function as 

ix jx
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where  is the number of design variables and nDV θ  is a Kriging parameter defined for each 

design variable. 

The mean µ  is calculated by 

 

1R1
yR1

1

1

ˆ
−

−

= T

T

µ ,                      (4-3) 

 

where  is an m-vector of ones, 1 R  is an mm×  matrix, each element of which 

corresponds to a correlation function [ ]jiCorr xx ,  between two sample points, and y  is the 

column vector of sample values. 

The deviation  is calculated by the following equation: z
 

( ) ( ) ( )1yRxrx µ−⋅⋅= −1Tz ,             (4-4) 

 

where  is a column vector, each element of which corresponds to a correlation function 

between the predicting point  and sample points . 

( )xr

x ix
A Kriging model provides a measure for uncertainty of prediction, i.e. the mean squared 

error, 
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where 

 

( ) ( )
m

T IyRIy µµσ
ˆˆˆ

1
2 −−
=

−

.            (4-6) 

 

Constructing a Kriging model is equal to calculating a set of θ  that maximize the 

following likelihood function, 
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This is an unconstrained single-objective optimization problem and is solved by a genetic 

algorithm in our study. 

 

 

 

4.2.3 Trade-off Rule Mining by Self-organizing Map and Association Rule 

There are various data-mining techniques that can be applied to a design dataset, but, in 

this study, the author aimed to find design rules to achieve a certain trade-off balance of 

objective functions. For this purpose, two data-mining techniques, Self-organizing maps 

(SOMs) and the association rule, were used.  

 

A SOM [21] is an unsupervised learning algorithm of neural networks, which projects 

high-dimensional data onto two-dimensional data (map). It converts multi-dimensional data 

into multiple two-dimensional data so that designers can visualize the correlation patterns of 

design parameters in the form of graphical maps [25]. The map has two-dimensional grids, on 

which data points are allocated. Each data point has meta-data of a vector, an element of 

which corresponds to design parameter values in the original high-dimensional space. The 

locations of the data points on the map are first randomly decided and then iteratively moved 

in a way which data points that are closer in the original space are located in a closer region 

on the map. The closeness is judged using the Euclidean distance of the vector data. As a 

result of the iteration, clusters that contain similar solutions appear on the map, enabling 

visualization of high-dimensional data. Commercial software, SOMineTM (Eudaptics GmbH), 

is used for creating the SOMs [26]. 

 

While SOMs represent a graphical and qualitative method of finding trade-off patterns, 

the association rule is a numerical and quantitative method of obtaining trade-off design rules. 

Design rules are expressed in “if-then” form that define a certain combination of levels of 

design variables (condition attributes) and a certain level of a design objective (decision 

attribute).  

The author has already applied other methods of extracting design rules, decision tree 

analysis, and rough set theory, to a multi-objective optimization problem in the previous 
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chapter. Based on this work and some other preliminary investigations, it was found that 

decision tree analysis extracts a single probabilistic rule as a necessary condition and rough 

set theory extracts multiple deterministic rules as sufficient conditions. The association rule 

[22] is another alternative for extracting design rules with different features. The association 

rule has been used to find implicit rules from transaction data such as Point-of-Sales data. 

However, how it should be used in engineering design is still being discussed so that the 

author aimed to clarify this in this study.  

 

The association rule mines design rules using a covering search algorithm, from a 

multivariate dataset with categorical data elements as shown in Table 4-2. In engineering data, 

condition attributes can be design variables x  and their levels. A decision attribute can be 

one of objective functions , but any other scalar variable can be chosen depending on the 

purpose. Because each line of the multivariate dataset represents a rule, which means if 

(condition attributes) then (a decision attribute), the dataset is considered to be a rule set. 

Consequently, the purpose of design-rule mining is to find more compact combinations of 

condition attributes to obtain simpler rules. 

y

The association rule searches for all combinations of data elements, and counts up the 

number of times they occur. "A priori algorithm" is used to avoid redundancy in the search 

procedure. A rule length, which is defined as the sum of the number of necessary condition 

attributes and a decision attribute, must be specified in advance to restrict the search space 

and reduce the computational cost. 

Because so many different rules can still be derived from the dataset, important rules are 

chosen based on the following criteria: 

 

all

BA

N
N +=→ B)(Asupport ,      (4-8) 

A

BA

N
N +=→ B)(Aconfidence , and     (4-9) 

( )
(B)support

BAconfidenceB)(Alift →
=→ ,     (4-10) 

 

where ,  represents a certain combination of attributes, and  is the number of data 

that satisfies the conditions denoted by .  

A B CN

C
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Table 4-2 Multivariate dataset 

 

Decision 
attribute

Condition attributes

...

Level 2

Level 3

Level 4

............4

Level 5Level 2Level 4Level 33

Level 1Level 1Level 4Level 52

Level 2Level 5Level 2Level 11

No

Decision 
attribute

Condition attributes

...

Level 2

Level 3

Level 4

............4

Level 5Level 2Level 4Level 33

Level 1Level 1Level 4Level 52

Level 2Level 5Level 2Level 11

No 1x 2x 3x 4x y

 
 

 

 

 

Because the association rule itself does not discriminate  from  and treats all the 

data elements evenly, some derived rules may have  in . However, we are only 

interested in rules that contain  in B . Therefore, rules that do not have  in  are 

filtered first, and then rules are sorted or checked by using these criteria. 

ix y

ix B

y y B

Support means how many times the combination of attributes A  and  appear 

simultaneously in the dataset, indicating importance in the sense of frequent occurrence. In 

other words, a large value of support implies the commodity of a rule. 

B

Confidence means how accurately the same combination of attributes  and  is 

repeated in the data that includes . If confidence is equal to one or lower than one, the 

derived rules are sufficient conditions or necessary conditions, respectively. That is, 

confidence represents the accuracy of a rule. 

A B

A

Lift is used to check if the obtained rule is trivial. If most of the lines in Table 2 have the 

same decision attribute, the condition attributes in a derived rule become less meaningful. 

Because lower values of lift mean that the derived rules are trivial, we check if it is higher 

enough than the possible minimum value, i.e. one. 

In the calculation of association rule, the minimum values of the "support" and 

"confidence" are specified in advance. The calculation was conducted with the commercial 

software, Visual Mining StudioTM (Mathematical Systems Inc.) [27]. 
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4.2.4 Specifications for Trade-off Balance Using Aspiration Vector 

The author proposes a new definition of the decision attribute in Table 4-2, which is 

suitable for specifying a trade-off balance. Figure 4-4 shows the method of definition in a 

three-dimensional objective function space as an example. Here, the optimization problem is 

assumed to be a minimization problem.  

First, the non-dominated solution space is normalized. The virtual point, S, corresponding 

to the coordinate (1,1,1), is defined as the origin for a vector to control the trade-off balance. 

Note that this origin can be taken in a different way depending on the purpose, e.g., the 

current product's performances can be assigned to the origin. An "aspiration vector" that 

specifies the trade-off balance is defined as: 
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where  is a positive weight for the -th objective function, and  is the 

space dimension ( =3 in Fig. 4-4). Then, a vector connecting S and the 

),,2,1( niwi L= i n

n j -th non-dominated 

solution is defined as a data vector: 
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where  represents the coordinates of the ),,2,1()( mjy j
i L= j -th non-dominated solution, 

and  is the total number of non-dominated solutions. m
 The angle between the aspiration vector and the data vector is calculated to measure the 

proximity to the preferred balance.  
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Figure 4-4 Control trade-offs using aspiration vector 

 

 

 

The design rules to achieve the specified balance can be derived by setting jθ  to the 

decision attribute in Table 3 and finding rules that minimize jθ . 

 

 

 

4.3 Design Optimization of Centrifugal Fan  

with Dimensional Uncertainty 
 

4.3.1 Shape Parameterization 

In this study, the proposed methods were applied to a design problem that optimized the 

shapes of a centrifugal fan with dimensional uncertainty. The shape was parameterized by a 

method similar to those in the previous chapters. Figures 4-5 (a) and (b) briefly explain how 

to define the respective meridional and blade profiles of the centrifugal fan.  
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      (a) Definition of meridional shape             (b) Definition of blade shape 

 

Figure 4-5 Parameterization of shape for centrifugal fan 

 

 

 

 

In the definition of the meridional profile, inlet diameter D0s, inlet height b0, and outlet 

height b2 are taken as design variables. Either the hub or shroud curve is modeled as a 

combination of a circle and a line for the fan part. The dummy scroll part is attached to the 

outer side of the fan part. These curves for the meridional profiles are then converted to 

non-uniform rational B-spline (NURBS) curves for a mesh-generation tool. The shape of the 

scroll is fixed during optimization. 

In the definition of the blade profile, the blade angle distribution is defined by a NURBS 

curve with three control points, as shown in Fig. 4-5 (b). The blade camber line is then 

calculated according to this distribution, and the blade surface is defined by adding a constant 

thickness to the camber line. The blade is assumed to be two-dimensional in the axial 

direction due to manufacturing reasons. The design variables for the blade profile are Beta1, 

Beta2, Beta3, r_R1, r_RBeta, where r_R1 and r_RBeta correspond to normalized variables of R1 

and RBeta. The outer radius of the fan is fixed in this problem. 
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4.3.2 Design Problem Definition 

The objectives of this fan design were to increase fan efficiency and reduce the turbulent 

noise level. This aerodynamics was evaluated by a Reynolds-averaged Navier Stokes (RANS) 

simulation of the blade-to-blade region of the centrifugal fan. The in-house algebraic mesh 

generator automatically created a multi-block structural mesh of 149292 vertices and 145920 

cells. Then, commercial software, STAR-CDTM (CD-adapco), was used for a steady RANS. 

The standard k-ε turbulence model was used with a wall function model to reduce the mesh 

size. The discretization scheme was a spatially 2nd-order MARS scheme, and a SIMPLE 

algorithm solved the system of non-linear equations. 

 

The fan efficiency is defined at the design point (flow rate: 1.5 m3/min, number of 

revolutions: 19000 min-1) as:  

 

 
ax

s W
pQ ∆⋅

=η ,         (4-14) 

 

where , , and  correspond to the flow rate, static pressure rise at the fan part, and 

the shaft power.  

Q p∆ axW

The turbulent noise level is evaluated by the theoretical prediction model [23], which 

relates the noise level to the magnitudes of relative velocities in the fan: 

 

 ( ){ }ZDWWLtb ⋅⋅+= 2
2

6
2

6
110log10 ,       (4-15) 

 

where , , , and 1W 2W 2D Z  correspond to the average relative velocity at the impeller 

inlet, the average relative velocity at the impeller outlet, the outlet diameter of the fan, and the 

number of blades.  and 2D Z  are constant in this study.  

It was attempted to evaluate the effect of the dimensional uncertainty of the fan on the 

aerodynamics. Therefore, the means, µ , and standard deviations, σ , of the distributions of 

the aerodynamics are assigned to objective functions: - ( )sηµ , ( )sησ , ( tbL )µ  and ( )tbLσ . 

Note that these four objective functions are defined as a minimization problem. The µ  and 

σ  of the shaft power are also added as constraints. 
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Table 4-3 List of design parameters 
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As dimensional uncertainty could not be measured on actual production lines, the 

rectangular profile in Table 1 was assumed. The width of the rectangular profile was 

empirically set to equal the tolerance. All the design parameters are summarized in Table 4-3 

with their definition ranges. 
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4.4 Results and Discussion 
 

4.4.1 Visualization of Trade-off Patterns 

Using LHS, 79 valid samples were obtained by flow simulations. Three Kriging models 

were constructed to predict the fan efficiency, turbulent noise level, and shaft power. Cross 

validations of these Kriging models were conducted and the means and standard deviations of 

prediction errors for fan efficiency, turbulent noise level, and shaft power resulted in (0.022%, 

0.44%), (0.006%, 0.30%), and (0.022%, 0.69%), respectively. Based on these results, the 

author considered the models were sufficiently accurate.  

The optimization problem was then solved by using MOGA. The population was set to 

100, and 162 generations were altered until convergence was obtained with a convergence 

criterion of 0.001%. The statistics of responses to uncertainty were calculated with 1000 

samples of descriptive LHS, after confirming that almost the same results had been obtained 

as when using 2000.  

1268 feasible non-dominated solutions were obtained. It took a week to sample the 

simulation data on a single-node dual core AMD OpteronTM 2.2 GHz computer and another 

week to build the models, and carry out optimization and data mining. Two weeks is 

considered to be within a practical design lead-time. 

Figure 4-6 visualizes the obtained non-dominated solutions as small black dots in scatter 

plots. The four-dimensional solution space is projected onto the two-dimensional plane, 

which has axes of mean performance.  

To investigate the trade-offs, the following four representative preferences were defined 

as test cases: 

 

Solution A (weighting ( )sηµ )  : : : = 1 : 0 : 0 : 0,  (4-16) 1w 2w 3w 4w

Solution B (weighting ( )⋅µ )  : : : = 1 : 0 : 1 : 0,  (4-17) 1w 2w 3w 4w

Solution C (weighting ( )⋅σ )  : : : = 0 : 1 : 0 : 1, and  (4-18) 1w 2w 3w 4w

Solution D (weighting equally) : : : = 1 : 1 : 1 : 1,  (4-19) 1w 2w 3w 4w

 

where , , , and  correspond to weights for 1w 2w 3w 4w ( )sηµ , ( )sησ , ( )tbLµ , and ( tbL )σ .  

Solution A is an extreme design in terms of ( )sηµ . Solution B aims to simultaneously 

improve mean performance ( )sηµ  and ( )tbLµ , similar to the traditional approach in 

multi-objective non-robust optimization. In contrast, Solution C intends to improve standard 
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deviations ( )sησ  and ( )tbLσ , as a quality engineering approach like the Taguchi method 

does. Solution D is an equally compromised solution in terms of all the objective functions. 

Solutions A, B, C, and D were first selected as ones that had the smallest θ  with the 

aspiration vectors of Eqs. (4-16), (4-17), (4-18), and (4-19), respectively. They are indicated 

by the large colored circles in Fig. 4-6. In the figures, variations in these solutions due to the 

dimensional uncertainty are also shown as collections of small colored circles being the 1000 

samples of descriptive LHS. Note that the large colored circles are mean values while the 

small colored circles are exact values.  

It is confirmed that Solutions A, B and D are in the right balanced positions specified by 

the weights of mean properties  and  (eq. (4-16), (4-17), and (4-19)). Namely, 

Solution A is located in the left-end area, and Solution B and D are in the middle area in terms 

of the two mean properties.  

1w 3w

It is also confirmed that the uncertainty variations of Solution C and D are smaller than 

those of Solution D and B, respectively (eq. (4-18) vs. (4-19) and eq. (4-19) vs. (4-17)). These 

are comparisons of different weights on standard deviations in the total balances. 

Consequently, standard deviations of Solution C, D and B increase in this order. 

From these observations, it is concluded that the aspiration vector can accurately specify a 

trade-off balance. 

 

The author then used SOMs to find trade-off patterns. Figure 4-7 shows SOMs created 

based on the similarity of the four objective functions. The locations of Solutions A, B, C, and 

D are indicated on the maps and the corresponding clusters are numbered from 1 to 4 in the 

same order. 

In terms of ( )sηµ , solutions in the bottom-right corner of the SOM are better than others 

(Fig. 4-7 (a)). Similarly, solutions at the top, left, and middle areas are better for ( )sησ , 

( tbL )µ , and ( tbL )σ , respectively. Although there are areas where two objective functions can 

be improved simultaneously as in cluster 3, there are no areas that can improve all the 

objective functions at the same time. Therefore, the author determined that these objective 

functions have trade-off relations. 
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Figure 4-6 Trade-offs in non-dominated solutions 

 

  

 

 

From an engineering point of view, it is beneficial to have various design candidates as 

obtained in these results, because we can adapt a design solution to a given design 

requirement afterward. For example, Solution A in cluster 1 is expected to have the best yield 

rate for high-efficiency fans from the four Solutions. Solution B in cluster 2 is superior in 

mean performance so that it is a good compromise between fan efficiency and noise level if 

we can restrain dimensional uncertainty as minimally as possible. In contrast, the quality of 

Solution C in cluster 3 is the most stable so that this is suitable for mass-produced products.  

As explained above, MORDE is characterized in its diversity of solutions, which are 

concerned not only the mean performance but also the robustness of performance. These 
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different types of solutions have not been able to be obtained by using a single method of 

design in traditional approaches.   

Figure 4-8 shows the same SOMs colored according to the values of design variables. By 

comparing Figs. 4-7 and 4-8, correlations patterns between objective functions and design 

variables can be investigated. For instance, as Fig. 4-8 (h) has a similar pattern to Fig. 4-7 (a), 

we can see that Beta3 plays an important role in controlling ( )sηµ . Another resemblance in 

patterns is seen in Figs. 4-7 (c) and 4-8 (b).  

However, this graphical approach is not always good at finding correlation patterns in 

analyzing trade-offs. First, recognition of the patterns may depend on a designer's subject. For 

example, some designers can see that Fig. 4-8 (f) has a more similar pattern to Fig. 4-7 (a) 

than Fig. 4-8 (h). Moreover, it is difficult to find dominant design variables for ( )tbLσ  

(Fig.4-7 (d)), because the gradation pattern is more complicated due to the effects of multiple 

design variables. This is generally true when we aim to find correlation patterns, where more 

than three parameters are concerned. Because the graphical approach is based on pattern 

recognition in low-order correlations, it is difficult to use the same approach in higher-order 

correlations. In addition, quantitative relations are difficult to examine. 

It is summarized here that low-dimensional trade-off patterns can be obtained by 

graphical methods like SOM, but we need a method of extracting design rules that can handle 

high-dimensional data quantitatively, which is often obtained through multi-objective robust 

optimization. 

 

  

4.4.2 Derivation of Quantitative Trade-off Control Rules 

Quantitative design rules for controlling trade-off balance are then extracted using the 

multivariate data of non-dominated solutions. To apply the association rule, all the design 

variables are first discretized into five levels with equal intervals to obtain the categorized 

dataset. The θ  in Eq. (4-13) was chosen as the decision attribute, and discretized into 7, 4, 5, 

and 4 levels for solutions corresponding to A, B, C, and D, in a way that the minimum 

(optimum) levels contain a sufficient amount of data.  

The rule length must be given for the association rule in advance. As found in the 

previous chapter, another method of extracting the design rule, rough set theory, can rationally 

minimize the necessary number of condition attributes based on logical set operations. Thus, 

rough set theory was first applied to the same dataset and found that the rule length should be 

set to four. 
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Figure 4-7 SOMs colored according to objective functions 
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Tables 4 (a), (b), (c), and (d) respectively list extracted rules that minimize the levels of 

θ  for Solution A, B, C, and D. Because the author intended to extracted accurate rules for 

sufficient conditions, rules with a confidence of one were chosen and then sorted by their 

values of support.  

For instance, Table 4-4 (a) lists up the rules that correspond sufficient conditions to make 

θ  for ( )sηµ−  retain in the level 1. Thus, the rule No.1 in Table 4-4 (a) means:  

 

if (b2 is level 2), (b0/b2 is level 1), and (Beta3 is level 1), 

then (θ  for ( )sηµ−  is level 1).       (4-20) 

 

As seen in Table 4-4, the association rule can extract multiple design rules to achieve 

prescribed trade-off balances. Another advantage of the association rule is that discrete but 

quantitative rules are now available. The "counts" at the right of the table are the total number 

of decision attributes extracted in the rule set. The counts are used to approximately determine 

the importance of design variables and those with larger counts are called "cores". The 

individual setup to achieve the trade-off balance is presented as each rule, but the average 

setup that all the rule sets imply is also available by examining the condition attributes of the 

cores. 

From Table 4-4 (a), the blade angles, Beta3 and Beta1, are the main cores for ( )sηµ . The 

rule sets tell us that Beta 3 should be in level 1 (0-20%) or 2 (20-40%), while Beta1 should be 

in levels 2 or 4, on average. From Figs. 4-7 (a) and 4-8, cluster 1 that includes Solution A 

certainly has smaller values for Beta3 and middle values for Beta1, so the author considered 

that reasonable rules had been obtained by the association rule. Small Beta3 results in a large 

relative velocity at the fan outlet and increases the rise in static pressure in the fan part, 

because the peripheral velocity is constant in this design problem. Therefore, the rules suggest 

that the reaction factor of the fan should be reinforced to improve ( )sηµ .  

From Table 4-4 (b), blade angle Beta3 and r_RBeta are determined as cores. As Solution B 

equally takes care of ( )sηµ  and ( )tbLµ , Beta3 is adjusted slightly larger than that in Table 

4-4 (a) as a compromise. The blade load balance, which these cores are related to, is found to 

be the key to improving the mean performance. If we look at cluster 2 with Solution B in 

Figs. 4-8 (e) and (h), we can see that it is difficult to specify quantitative conditions for these 

core-design variables only from SOMs. 

From Table 4-4 (c), we found that b2, D0s/D2, r_RBeta and Beta3 are the keys to robust 

designs (Solution C). The smallest level of b2 and the largest level of Beta3 mean that the 
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velocity triangle at the fan outlet has a better aspect ratio and then velocity variations against 

dimensional uncertainty become smaller. In other words, robust solutions do not prefer 

skewed velocity triangles. 

From Table 4-4 (d), "counts" become similar and the dominant cores are not as clear as 

those in Tables 4-4 (a), (b), and (c). The design variables also seem to acquire various levels. 

This implies that there are multiple possibilities to achieve the same trade-off balance as in 

Solution D. This diversity of rules is certainly confirmed as randomness of colors in SOMs 

(cluster 4 in Fig. 4-8). 

 

It is interesting to see that the value of D0s/D2 remains almost at the same level in Fig. 4-8 

(c) and that of r_R1 also remains almost at the same level in Fig. 4-8 (d). This means that 

these design variables are only dominant for Pareto-optimality so that their values are 

constant in non-dominated solutions. That is, small values of D0s/D2 and r_R1 are necessary 

conditions to become non-dominated solutions. Here, why do these conditions not appear as 

rules in Table 4-4 in a more dominant way?  

The author considered that the association rule had not been able to extract rules with 

these design variables because only sufficient conditions were chosen in Table 4-4. To 

confirm this hypothesis, the same rule sets were sorted by values of support, regardless of the 

confidence values. 

One example is presented in Table 4-5, which should be compared with Table 4-4 (a). 

Unlike Table 4-4 (a), the decision attributes for D0s/D2 and r_R1 now appear frequently. The 

values of supports for these rules become much larger while confidence values become much 

smaller, suggesting these rules are necessary conditions. The lift values became smaller so 

that the rules are considered trivial and these conditions are very natural in non-dominated 

solutions. 

 

From these investigations with the association rule above, the author concluded that the 

association rule can derive multiple-design rules in quantitative expressions, where even more 

than three parameters are related. This feature of handling high-dimensional data supports 

designers more in understanding the trade-offs, reinforcing graphical methods such as SOMs. 

Moreover, the association rule can extract both sufficient condition rules and necessary 

condition rules by changing levels of support and confidence criteria. This is an advantage of 

the association rule compared with other methods of extracting rules such as decision tree 

analysis and rough set theory. 
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Table 4-4 Rules to achieve prescribed trade-off balances 

(a) Rules for Solution A 

No. Variable 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Count
1 b2 2 2 1 3 2 2 1 2 2
2

9
b0/b2 1 1 2 1 4 2

3 D0s/D2 1 1
4 r_R1 1 1
5 r_RBeta 2 3 2
6 Beta1 2 2 4 4 4 4 2 2 2 2 10
7 Beta2 3 4 1 1 1 3 6
8 Beta3 1 1 1 2 2 1 1 1 1 1 1 1 2 1 1 15

Conf. 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Supp.(%) 0.8 0.5 0.5 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.3 0.3 0.3 0.3 0.3
Lift 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2

Rule no.

6

 
 

(b) Rules for Solution B 

No. variable 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 Count
1 b2 3 3 4 4 4
2

5
b0/b2 4 4 3 5 4 3

3 D0s/D2 1 1
4 r_R1 1 1
5 r_RBeta 3 3 3 3 4 3 3 3 3 3 4 3 3 4 3 3 3 3 4 4 20
6 Beta1 3 4 3 2 3 4 4 7
7 Beta2 4 5 3 3
8 Beta3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 22

Conf. 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Supp.(%) 2.7 2.7 2.7 1.9 1.4 1.1 1.1 1 0.9 0.9 0.9 0.8 0.8 0.8 0.7 0.6 0.6 0.6 0.5 0.5 0.4 0.4
Lift 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11

Rule no.

6

 
 

(c) Rules for Solution C 

No. Variable 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Count
1 b2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 16
2 b0/b2 1 1 1 1 1 1
3 D0s/D2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 14
4 r_R1 1 1
5 r_RBeta 2 1 2 2 2 2 2 2 3 3 1 2 12
6 Beta1 3 3 4 3 4
7 Beta2 1 1 1 1 4
8 Beta3 5 5 5 5 5 5 5 5 5 5 10

Conf. 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Supp.(%) 1.5 0.8 0.8 0.8 0.8 0.7 0.7 0.6 0.6 0.6 0.6 0.6 0.6 0.5 0.5 0.5 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
Lift 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9

Rule no.

6

1 3

 
 

(d) Rules for Solution D 

No. Variable 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 Count
1 b2 4 4 5 5 5 5 4 2 2 9
2 b0/b2 3 5 5 3 3 3 3 3 2 2 10
3 D0s/D2 1 1
4 r_R1 1 1 1 1 1 5
5 r_RBeta 1 1 2 1 2 2 2 3
6 Beta1 1 1 1 1 1 4 6
7 Beta2 5 2 5 4 2 2 2 3 1 9
8 Beta3 1 2 1 2 2 2 2 3 3 3 3 3 12

Conf. 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Supp.(%) 0.7 0.4 0.3 0.3 0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
Lift 9.4 9.4 9.4 9.4 9.4 9.4 9.4 9.4 9.4 9.4 9.4 9.4 9.4 9.4 9.4 9.4 9.4 9.4 9.4 9.4 9.4

Rule no.

2

8
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Table 4-5 Rules for Solution A (sorted by support level) 

 

No. Variable 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Coun
1

t
b2 3 3 3 3 3 3 3 7

2 b0/b2 0
3 D0s/D2 1 1 1 1 1 1 1 1 1 9
4 r_R1 1 1 1 1 1 1 1 1 1
5 r_RBeta 0
6 Beta1 3 3 3 3 4
7 Beta2 0
8 Beta3 1 1 1 1 1 1 1 7

Conf. 0.1 0.1 0.1 0.4 0.4 0.4 0.4 0.1 0.1 0.1 0.1 0.5 0.5 0.5 0.1 0.1 0.1 0.1
Supp.(%) 11 11 11 8.6 8.6 8.5 8.5 7.3 7.3 7.2 7.2 7.1 7.1 7.1 7.1 7.1 7.1 7.1
Lift 1.0 1.0 1.0 4.0 4.0 4.1 4.0 1.3 1.3 1.4 1.3 4.4 4.3 4.3 1.0 1.0 1.0 1.0

Rule no.

9

 
 

 

  

 

4.5 Conclusion 
 

A new design paradigm called MORDE was proposed, which combines a method of 

multi-objective robust optimization and data mining methods.  

The author first developed a generalized framework for multi-objective robust 

optimization. By incorporating probabilistic representation of design parameters, which is 

compatible with the parameterization in the Taguchi method, multi-objective robust design 

optimization based on Kriging models becomes feasible within a practical design lead-time. 

The author then proposed a method of controlling trade-off balance using an aspiration 

vector, which measures the proximity to a designated preference for a trade-off balance. 

Using this method, the design rules to achieve the preference were extracted by applying the 

newly adopted association rule to a dataset of non-dominated solutions.  

MORDE was applied to an industrial-design problem with a washer-dryer’s centrifugal 

fan. This design was aimed at statistically improving both the efficiency of the fan and 

reducing its turbulence noise level when there was dimensional uncertainty due to mass 

production. It was demonstrated that it is possible to flexibly choose a design candidate and 

find quantitative rules to accomplish the required trade-off balance. It was also demonstrated 

that traditional non-robust optimal design as well as quality-weighted design like the Taguchi 

method could be simultaneously accomplished with MORDE approach.  

The association rule can reveal multiple and quantitative design rules to achieve trade-off 

balances even from a high-dimensional dataset, while it is difficult for SOMs to do the same 
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analysis. It was also clarified that, as a method of extracting design rules, the association rule 

has advantage in finding both necessary and sufficient conditions. 

As the author is interested in analyzing the design space to clearly understand the design 

problem, several data mining techniques have been incorporated into engineering design thus 

far. In the next step of this research, it is attempted to clarify the strengths and weakness of 

these techniques and develop a method that enables effective collaboration.  
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Chapter 5 

A New Design Method based on  

Cooperative Data Mining  

from Multi-objective Design Space 

 

 

5.1 Introduction 
 

Up to the previous chapter, a computationally inexpensive design optimization method, 

which can handle the both uncertainties in design-decisions and design-conditions, has been 

developed. Besides, quantitative design rules have been extracted not only for achieving 

extreme design regarding each objective function, but also for controlling trade-off between 

multiple objective functions. Based on these developments, the design optimization becomes 

practical.  

Several data mining methods have been introduced in this study so far. These methods 

have been used for analyzing multi-objective design space and yielding design knowledge, 

which is oriented to knowledge-based design. The author considers that knowledge-based 

design is an alternative of practical design method because the essential idea in these design 

knowledge can be applied to other design problems without any additional expensive 

computations. Therefore, in this chapter, the author attempts to develop a new multi-objective 

parameter design method that uses data mining method in cooperative way.  

 

It has become common to design products using parameter surveys and optimizations that 

use simulations and experiments. The resultant data obtained with a large amount of trial and 

error can be captured as a design database. Designers are likely interested only in the final 

solution but the author believes that it is important to analyze such databases to deepen 

understanding of design problems. Namely, we should decide on a final design solution after 

reviewing the sum of the design knowledge obtained from the design database. Therefore, it is 

believed that a parameter design method that is used to practice this idea should be developed.  

A parameter design method is used to decide how to provide design variables to achieve 

the desired product performance. In one parameter design method, the Taguchi method [1], 

the best setup of design variable levels that should be set is determined by evaluating 
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sensitivities and signal-noise ratios (SNRs) of the design variables to a single objective 

function. Since the Taguchi method aims at doing robust designs, the level combination of 

design variables in which the SNR is at the maximum is first chosen, and the level 

combination of other design variables with relatively larger sensitivities is then adjusted for 

obtaining the preferred level of the objective function. Although the Taguchi method is a 

systematic and reasonable method for robust designs, it cannot be used to optimize multiple 

objective functions.  

In contrast, numerical optimization methods [2][3][4] that are used to evaluate trade-offs 

between multiple objective functions, including performance robustness, determine the 

optimum level combinations of design variables for achieving any prescribed balances of 

multiple objective functions. In these methods, both the designs that value robustness and 

limit performance regardless of robustness are possible, depending on the aims of the designs. 

This flexibility is an advantage over the Taguchi method. However, these numerical 

optimization methods yield many optimum solutions, i.e. a database that corresponds to 

different balances of objective functions. Because a database cannot be easily analyzed due to 

its high-dimensionality, data mining techniques are necessary. 

Various data mining techniques have been applied to multi-objective optimization 

databases to clarify the relationship of design variables with multiple objective functions. For 

example, Jeong et al. [5] applied functional analysis of variance (ANOVA) to analyze 

different types of design variable effects on objective functions and their contribution ratios. 

Obayashi et al. [6] applied Self-organizing map (SOM) to visualize high-dimensional data on 

two-dimensional maps for finding correlation patterns between design variables and objective 

functions. Lim et al. [7] and Sugimura et al. [4][8] applied design rule extraction methods, 

decision tree analysis, rough set theory, and association rule, to the design database for 

determining the quantitative relationships of design variables and objective functions. The 

features of the individual data mining technique have become clear based on these previous 

works. However, there are strong and weak points in each individual technique; thus, it is 

beneficial to develop a method combining these techniques based on comparative studies.  

The author proposes "a multi-objective parameter design method" consisting of these data 

mining techniques in a collaborative manner. This method is used for first analyzing the 

design database by using a series of data mining techniques, and then using design rules 

obtained as a result of data mining for determining the optimum level combination of design 

variables to achieve a desired balance between multiple objective functions. This method is 

different from the Taguchi method in that it uses both main and interaction effects of design 

variables and can handle multiple objective functions. 
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In the followings, the proposed method is first explained. After that, it is demonstrated 

with an application to a multi-objective robust design optimization problem of an industrial 

fan, for demonstrating its capability and discussing how the collaboration of data mining 

techniques 

 

 

 

5.2 Multi-Objective Parameter Design Method 
 

5.2.1 Parameter Design Using Both Main and Interaction Effects 

The purpose of multi-objective parameter design is to obtain combinations of design 

variable levels that simultaneously optimize multiple objective functions as much as possible. 

 

minimize , ( )nxxxfy ,,, 2111 L=

minimize , ( )nxxxfy ,,, 2122 L=

･･･ 

minimize ,     (5-1) ( nmm xxxfy ,,, 21 L= )
 

where  and  are the numbers of design variable and objective function, respectively. n m
There are two types of design variable effects of on an objective function, main and 

interaction effects. The main effect is an independent contribution of a single design variable 

to an objective function. The interaction effect is a synergistic contribution of more than two 

design variables, which is obtained after subtracting the main effects from the total effect. 

Any high-order interaction effect can be defined, but only the interaction effects of two design 

variables are considered in this study. 

Figure 5-1 describes the relationship between the design variables,  and , and the 

objective function , (a) without and (b) with the interaction effect between  and . 

The optimum level of  that minimizes  is maintained regardless of levels of  with 

no interaction effect, as shown in Fig. 5-1 (a). In contrast, the optimum levels of  changes 

depending on the combined levels of  with interaction effect, as shown in Fig. 5-1 (b). 

1x 2x

1y 1x 2x

1x 1y 2x

1x
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(a) Without interaction effect            (b) With interaction effect 

 

Figure 5-1 Responses with and without interaction effect 

 

 

 

Since interaction effects make design problems difficult to understand, they have been 

avoided in traditional parameter design methods such as the Taguchi method. However, 

interaction effects can be keys to solving conflict in multi-objective designs. For instance, if 

 has predominant main effects for two objective functions  and , with opposite 

signs of responses,  and  cannot be improved at the same time. However, if there was 

also a predominant interaction effect between  and  for , it then became possible 

to improve  by adjusting , and improve  by adjusting , using the same  as 

with . In this way, the possibility of design extends if interaction effects can be determined 

and applied.  

1x 1y 2y

1y 2y

1x 2x 2y

1y 1x 2y 2x 1x

1y

Based on the above, a multi-objective parameter design method should use both main and 

interaction effects to effectively achieve a prescribed balance in multiple objective functions. 

In this context, the final goal of data mining is to obtain various quantitative design rules that 

represent level combinations of design variables to be set for achieving a design preference. 

 

 

5.2.2 Data Mining Process for Finding Design Rules  

Figure 5-2 shows the proposed flowchart of data mining for obtaining design rules and 

determining an optimum design candidate. First, a design database is prepared in the 

multivariate data format. The database can be acquired using parameter surveys. Although the 
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original database usually consists of continuous parameters, discretization of the database is 

necessary for processes of the rough set theory and the association rule. 

The design space is then investigated macroscopically. ANOVA reveals different types of 

design variable effects and their contribution ratios to each objective function. The results 

from ANOVA are used for interpreting results of the following data mining processes. SOM 

or alternative visualization methods are used for visualizing the relationship between design 

parameters, particularly trade-off patterns between multiple objective functions. 

 

 

 

Self-organizing map
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Rough set theory

Lists of design rules

Design candidate

Optimization using main effects

Optimization using interaction effects
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Figure 5-2 Flowchart of data mining 
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Table 5-1 Summary of data mining techniques 

 

ANOVA

SOM

Decision tree analysis

Rough set theory

Association rule

Data mining method Capability

type of effect 
contribution ratio 

single probabilistic rule
localized rule

clustering
visualization of
correlation pattern

multiple deterministic rules
reduction (simplification)

multiple rules
support and confidence

Feature of design rules

quantitative rules
necessary condition

quantitative rules
sufficient condition

quantitative rules
necessary ～sufficient 
condition (controllable)

qualitative rules
(pattern recognition)

ANOVA

SOM

Decision tree analysis

Rough set theory

Association rule

Data mining method Capability

type of effect 
contribution ratio 

single probabilistic rule
localized rule

clustering
visualization of
correlation pattern

multiple deterministic rules
reduction (simplification)

multiple rules
support and confidence

Feature of design rules

quantitative rules
necessary condition

quantitative rules
sufficient condition

quantitative rules
necessary ～sufficient 
condition (controllable)

qualitative rules
(pattern recognition)

 
 

 

 

 

After that, the design space is investigated microscopically. Quantitative design rules that 

optimize each objective function are extracted using three different design rule extraction 

methods, decision tree analysis, rough set theory, and association rule. Methods are chosen 

according to the number and features of design rules to be extracted. For example, decision 

tree analysis yields a single rule of necessary condition. The rough set theory is used to 

extract many rules of sufficient condition, while the association rule is used to extract many 

rules of both sufficient and necessary conditions depending on the purpose. Here, decision 

tree analysis process can be skipped for parameter design because a single rule is not 

sufficient for solving a conflicting multi-objective design problem. However, this rule is 

useful for understanding the design problem because the simple rule represents the average 

structure of the design space.  

The capability of each data mining technique and the features of the derived design rules 

are summarized in Table 5-1. Details of collaboration between these data mining techniques 

with their application are discussed in the next chapter. 

At this stage, multiple design rules for improving each objective function are obtained.  

Finally, we choose one optimum design candidate by searching for a compatible design rule 
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that simultaneously improves all objective functions. The first effort that should be done in 

the search process is to improve each objective function by using the dominant main effects 

of different design variables. Then, the remaining conflicts (if any) are resolved by using the 

dominant interaction effects, and an optimum solution is chosen.  

In the next section, ANOVA is reviewed briefly. For Self-organizing map and association 

rule, see Chapter 4. For decision tree analysis and rough set theory, see Chapter 3.  

 

 

5.2.3 Analysis of Variance 

ANOVA [5] is a method for quantitatively analyzing the effects of design variables on an 

objective function. The Kriging surrogate model is used to approximate the design space, and 

creates fine and uniform data samples in the design space for enabling the following statistical 

calculations. The mean and variance of all the data samples are calculated as:  

 

( )∫ ∫=
n

nntotal dxdxdxxxxf
1

2121 ,,,ˆ LKLµ , and    (5-2) 

( ){ }∫ ∫ −=
n

ntotalntotal dxdxdxxxxf
1

21
2

21
2 ˆ,,,ˆ LKL µσ .   (5-3) 

 

Design variables are normalized here.  

The total variance , which corresponds to the total effect, is decomposed into the 

variance due to each effect. The main effect of  and the interaction effect between  and 

 are calculated as:  

2
totalσ̂

ix ix

jx

 

( ) ( ) total
n

niinii dxdxdxdxdxxxxfx µµ ˆ,,,ˆ
1
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( ) ( )∫ ∫ +−+−≡
n

njjiinji dxdxdxdxdxdxdxxxxfxx
1

11112121 ,,,,ˆ LLLLLµ  

( ) ( ) totaljjii xx µµµ ˆˆˆ −−− .      (5-5) 

 

The contribution ratio of each main effect to the total effect is calculated as: 
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where  
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i

iiix dxx
i

22 ˆˆ µσ .       (5-7) 

 

The contribution ratio of interaction effect is calculated similarly. 

 

 

 

 

5.3 Multi-objective Parameter Design of Centrifugal Fan 
 

The proposed parameter design method was applied to the design problem in the previous 

chapter [4] that numerically optimized the shape of a centrifugal fan installed in drying 

system of washer-dryer. In this design optimization problem, it was assumed that the fan had 

dimensional uncertainty due to mass production. The objectives of this fan design were to 

improve fan efficiency and the turbulent noise level under dimensional uncertainty. Thus, the 

following four objective functions were defined: the mean and standard deviation of the fan 

efficiency, and the mean and standard deviation of turbulent noise level. The fan efficiency 

and the turbulent noise level were evaluated using results from steady flow simulations. 

The fan's shape was parameterized as a combination of meridional and blade profiles (Fig. 

4-5). In the definition of the meridional profile, inlet diameter D0s, inlet height b0, and outlet 

height b2 were taken as design variables. In the definition of the blade profile, the blade angle 

distribution was defined by a non-uniform rational B-spline curve with three control points. 

The design variables for the blade profile were assigned to these control points, Beta1, Beta2, 

Beta3, r_R1, r_RBeta, where r_R1 and r_RBeta correspond to normalized variables of R1 and 

RBeta.  

A probability density function for representing the dimensional uncertainty in these design 

variables is modeled with a rectangular function, the width of which was set equal to the 

tolerance. All the design parameters are summarized in Table 4-3.  

The design space defined in Table 4-3 was sampled using the Latin hypercube sampling 
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method (LHS) with actual flow simulations. 79 valid data points were obtained, and Kriging 

models were constructed to approximate the global design space with these data. Using LHS 

again, new 1000 data points were collected, which the author considers as a sufficient number 

of data points for data mining. The proposed flowchart of data mining was applied to this 

database, and the multi-objective parameter design that takes into account performance 

robustness was demonstrated. Note that the database was the result of Design of Experiments, 

not the non-dominated solutions. Collaboration between these data mining methods is 

discussed in the next section. 

 

 

 

5.4 Results and Discussion 
 

First, ANOVA was conducted on the database. Figure 5-3 shows the calculated 

contribution ratios of the effects to each objective function. In the legends of Fig. 5-3, the 

name of a single design variable is the main effect, and a combination of two different design 

variables is the interaction effect from these design variables. 

It was found that the main effects are dominant for ( )sηµ , ( )tbLµ  and ( tbL )σ , while 

interaction effects play an important role for role for ( )sησ . Regarding the former three 

objective functions, design variables of the predominant main effects are different from each 

other, namely, b2 for ( s )ηµ , r_R1 for ( )tbLµ , and r_RBeta for ( )tbLσ . Therefore, it is 

possible to improve these three objective functions simultaneously by controlling these design 

variables independently. 

In contrast, ( )sησ  shares the dominant main effect of design variable b2 with ( )sηµ . 

This means that simultaneous improvement with these main effects would be impossible in 

terms of the mean and standard deviation of fan efficiency if these objective functions were in 

a trade-off relationship. However, it was found that there are also interaction effects relating 

to b2, namely, b2-Beta1 and b2-Beta3, which can be used for solving a conflict between 

( s )ηµ  and ( )sησ . 
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Figure 5-3 Contribution ratios of effects analyzed using ANOVA 

 

 

 

 

ANOVA reveals dominant effects in the global design space and extracts design variables 

for careful investigation afterwards. However, ANOVA cannot clarify how these design 

variables and objective functions are correlated. Therefore, the author applied SOM to 

visualize the correlation patterns. Because SOM analysis is based on human recognition of 

patterns, it is necessary to create SOMs with the simplest clusters pattern as possible for 

avoiding misjudgments. This is possible by creating SOMs based on the similarity of the 

objective functions and dominant design variables, which are determined using ANOVA. In 

this design problem, the dominant design variables were chosen as b2, D0s/D2, r_R1, r_RBeta, 

Beta1 and Beta3, which are in 75% of the contributions in Fig. 5-3. 
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Figure 5-4 SOMs colored using design parameter values 
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Figure 5-4 shows SOMs created and colored with corresponding parameter values. It was 

confirmed that better ( )sηµ  approximately corresponds to smaller values of the 

corresponding dominant design variables b2 and Beta3 (areas inside thin solid lines in Figs. 

5-4 (a), (e), and (j)). For improving ( )sησ , the most dominant main effect of b2 should be 

relatively smaller (areas inside thick solid lines in Figs. 5-4 (b) and (e)). Similarly, better 

( tbL )µ  is related to small values of r_R1 (areas inside thin dotted lines in Figs. 5-4 (c) and 

(g)). For improving ( tbL )σ , r_RBeta and Beta3 may take smaller and larger values, 

respectively, although these correlations are not as clear as those of other objective functions 

(areas inside thick dotted lines in Figs. 5-4 (d), (h), and (j)). From Figs. 5-4 (a) and (b), it was 

recognized that the trade-off between ( )sηµ  and ( )sησ  is not strong, but careful choosing 

of design candidates is necessary. 

As shown in Fig. 5-4, low-order qualitative correlations can be determined with SOMs as 

far as the cluster patterns remain simple. It is because of the strength of SOMs that we can 

examine correlations of more than four-dimensional data with maps. However, it was also 

concluded that it is difficult to detect low-order correlations from complicated cluster patterns 

as well as higher-order correlations with more than three parameters. To clarify these 

correlations, particularly quantitative ones, design rule extraction methods were adopted. 

 

Decision tree analysis was then applied to the database, and a corresponding decision tree 

diagram to each objective function was obtained. From these diagrams, the following rules for 

extremely improving corresponding objective functions were obtained.  

 

 Rule for maximizing ( )sηµ  

if (b2 < 0.57),  (Beta3 < 0.16) and (D0s/D2 < 0.53) then (avg. 0.49 → 0.50) (5-8) 

 

 Rule for minimizing ( )sησ  

if (0.16 ≦ b2 ＜ 0.65) and (Beta3 ≧ 0.74) then (avg. 0.0033 → 0.0024) (5-9) 

 

 Rule for minimizing ( )tbLµ  

if (r_R1 < 0.25),  (b2 ≧ 0.37) and (D0s/D2 < 0.33) then (avg. 96.4 → 94.7) (5-10) 
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 Rule for minimizing ( )tbLσ  

if (r_RBeta < 0.59),  (Beta3 ≧ 0.52) and (Beta1 < 0.24) then (avg. 0.25 → 0.19)

         (5-11)      

 

In "if" terms of Eqs. (5-8)-(5-11), the definition region of the design variables is 

normalized. The "avg." term means the change in the average of the corresponding objective 

function before and after applying the conditions represented in "if" terms. As already 

mentioned above, a single rule of necessary condition is obtained for each objective function.  

The order of design variable appearing in the condition terms represents the order of 

sensitivities to the corresponding objective function. It is strength of decision tree analysis 

that both extraction of a simple rule and detection of the sensitive design variables are 

possible. In fact, design variables in the first condition terms exactly coincide with those in 

the ANOVA results.  

However, the orders of design variables appearing after the second terms do not always 

match with those in ANOVA. Decision tree analysis extracts dominant design variables in 

each divided sub-group of data, while ANOVA detects dominant design variables in the global 

design space. This difference in target data results in the difference in dominant design 

variables. In this context, a rule derived from decision tree analysis can be defined as a 

localized rule. 

A more important fact is that it is impossible to distinguish interaction effects from main 

effects from decision tree analysis, as expressed in Eq. (5-9), which has interaction effects as 

shown in Fig. 5-4 (b). This is because decision tree analysis is used to evaluate the sum of the 

effects.  

Despite this weak point in decision tree analysis, the simple rule is useful to estimate the 

essence of the design problem. For example, for improving ( )sηµ , levels of b2 and Beta3 

must be small, suggesting that a fan with a large reaction factor is crucial. To improve 

( )sησ , it was found that a better aspect ratio of the velocity triangle at the impeller exit is 

necessary to minimize the effect of dimensional uncertainty on the velocity profiles as much 

as possible. To improve ( tbL )µ , the maximum relative velocity at the blade inlet must be 

suppressed by reducing r_R1 and increasing b2. For improving ( )tbLσ , design variable 

r_RBeta related to the blade load balance is the key issue. 

In summary of ANOVA, SOM and decision tree analysis, it was concluded that the 

objective functions ( )sηµ , ( tbL )µ , and ( )tbLσ  can be controlled by the main effects of 
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different design variables. Regarding ( )sησ , we need to use the interaction effect because 

the main effect of the same design variable was detected for ( )sηµ  and ( )sησ , which are 

in a trade-off relationship. Although a necessary condition to simultaneously  improve 

( s )ηµ  and ( )sησ  was analyzed as 0.16 ≦ b2 ＜ 0.57 from Eqs. (5-8) and (5-9). This 

condition is merely a necessary condition and the interaction effect was not distinguished.  

  

Then, the rough set theory was applied to extract multiple design rules of sufficient 

conditions discriminating between main and interaction effects. In applying the rough set 

theory, definition ranges of design variables are discretized into five levels with equal widths. 

The ranges of the objective functions are also equally divided into five levels in a way that the 

optimum level contains enough data samples to be analyzed.  

Tables 5-2 (a), (b), (c), and (d) show lists of derived rules for obtaining the optimum level 

of the corresponding objective functions, ( )sηµ , ( )sησ , ( )tbLµ , and ( tbL )σ . The 

obtained rules are sorted in order of frequency of extracting the same rules. One column 

corresponds to one of the obtained rules. For instance, rule No. 1 in Table 5-2 (a) is 

   

if (b2 = level 1), (Beta1 = level 2), and (Beta3 = level 1)  

then ( ( )sηµ = level 5).       (5-12) 

 

The strength of the rough set theory is that it can be used to extract many rules with 

minimum rule lengths automatically by the reduction mechanism. The weak point, unlike 

ANOVA and decision tree analysis, is that the importance of the obtained rules and design 

variables cannot be easily evaluated.  

The "count" number on the far right of each table shows how many times each design 

variable appears in the rule elements. This index can be used to estimate the importance of the 

design variables. The design variables with larger count numbers are called "cores" in rough 

set theory. In fact, the cores in Tables 5-2 (a), (b), (c), and (d) roughly agree with the dominant 

design variables in ANOVA (Fig. 5-3). The author considers the reason the similar tendency 

was obtained is that the original data was uniformly sampled using LHS. Conversely, careful 

judgment is necessary when the sampling is not uniform.   

The results from the rough set theory were compared with those from decision tree 

analysis. For example, the decision tree's rule for optimizing ( )sηµ  in Eq. (5-8) signifies 

that levels of b2, Beta3, and D0s/D2 should at least be within 1-3, 1, and 1-3, respectively.  
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Table 5-2 Design rules derived from rough set theory 

 

(a) Rules for optimizing ( )sηµ  (conditions for setting ( )sηµ  in level 5) 

No. Variable 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 count
1 b 2 1 1 1 2 1 1 1 1 1 1 2 1 1 1 1 2 1 3 1 1 20
2 b 0 /b 2 1 2 5 5
3 D 0s /D 2 1 1 2 1 1 2 3 4
4 r_R 1 1 1 1 1
5 r_R Beta 2 1 3 2 4
6

4
8
4

Beta1 2 3 2 4 1 1 3 2 8
7 Beta2 4 1 2 3 1 5
8 Beta3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2 25

Rule No.

 

(b) Rules for optimizing ( )sησ  (conditions for setting ( )sησ  in level 1) 

No. variable 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 count
1 b 2 5 2 1 3 3 2 4 2 1 2 1 3 3 2 2 4 1 1 18
2 b 0 /b 2 2 4 4 4 2 4
3 D 0s /D 2 1 3 3 1 2 5 2 5 8
4 r_R 1 4 4 2 1 3 2 2 7
5 r_R Beta 4 2 4 2 2 4 6
6

6

Beta1 2 2 5 2 2 2 2 3 1 1 3 2 3 2 1 2 1 3 3 19
7 Beta2 2 5
8

2
Beta3 1 5 5 5 2 1 1 1 2 1 5 2 1 3 14

Rule No.

 

(c) Rules for optimizing ( )tbLµ  (conditions for setting ( )tbLµ  in level 1) 

No. Variable 1 2 3 4 5 6 7 8 9 10 11 count
1 b 2 3 3 3 4
2 b 0 /b 2 3 3 3 4 3 3 4 7
3 D 0s /D 2 1 1 1 1 1
4 r_R 1 1 1 1 1 1 1 1 1 1 1 2 11
5 r_R Beta 3 3 3 3
6

4

5

4
Beta1 4 4 5 2 4

7 Beta2 4 4 2
8 Beta3 3 2 4 4 5 3

Rule No.

6  

(d) Rules for optimizing ( )tbLσ  (conditions for setting ( )tbLσ  in level 1) 

No. Variable 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 count
1 b 2 5 5 5 1 5 5 5 5 5 3 2 5 1 5 5 5 5 5 2 5 20
2 b 0 /b 2 1 3 1 2 1 2 3
3 D 0s /D 2 5 2 3 3 5 5 2 2
4 r_R 1 1 4 5 3 1 5 5 4 5 2 3 4 5 5 4 4 16
5 r_R Beta 1 2 1 1 4 1 1 2 2 2 5 2 1 5 1 4 2 17
6

7
8

Beta1 3 1 1 3 1 3 1 1 1 1 1 1 1 1 1 3 1 1 1 19
7 Beta2 1 1 4 5 1 5 3 2 3 5 1
8

0
Beta3 5 1 5 4 1 1 5 4 4 5 4 3 2 13

Rule No.
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The rules from the rough set theory, which are related to the same design variables, are 

Nos. 4, 5, 14, 19, and 21 in Table 5-2 (a). It was confirmed that the rules' conditions from the 

rough set theory are more limited than those from the decision tree analysis. Moreover, some 

rough set's rules like Nos. 19 and 21 represent conditions that do not satisfy the rule from 

decision tree analysis. This relationship is also true for ( )tbLµ  and ( tbL )σ . These are 

because the rules from the rough set theory are of sufficient conditions while the rule from 

decision tree is of a necessary condition. 

For ( )sησ , which is concerned with the interaction effect, b2-Beta1, many rules that are 

related to this combination can be found from Table 5-2 (b). Figure 5-5 is a bubble chart of 

the possible level combinations of these design variables. The bubble size refers to the 

frequency of rule extraction. In this way, the interaction effects are distinguished from the 

main effects using the rough set theory. Moreover, possible combinations are determined 

quantitatively, unlike with SOM and decision tree analysis. Since we already know that b2 

should be in levels 1 - 3 for improving ( )sηµ , it is concluded that Beta1 should be set in 

level 2 or 3. This corresponds to rule No. 9 in Table 5-2 (b).  
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Figure 5-5 Possible level combinations between b2 and Beta1 for optimizing ( )sησ  
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Finally, the association rule was applied to the database. As mentioned before, the 

association rule is used to derive multiple rules of both necessary conditions and sufficient 

conditions by changing the confidence parameter. Since obtaining necessary conditions was 

not the intention in this study, only the rules of sufficient condition were extracted by setting 

the confidence parameter to one, and compared the results with those from the rough set 

theory. For extraction of rules of necessary conditions using the association rule, please see 

the previous chapter. 

Although the strength of the association rule is that the accuracy of rules is changeable, 

the rule length must be manually specified in advance. At this point, the rough set theory has 

an advantage over the association rule. Thus, the author referred the rule length in the results 

from the rough set theory (Table 5-2), and determined it as four for ( )sηµ  and ( )sησ , and 

as five for ( tbL )µ  and ( tbL )σ . Table 5-3 summarizes the obtained rules with a confidence 

of one, sorted by magnitude of support.   

By comparing Tables 5-2 and 5-3, it was confirmed that similar rules were obtained. In 

terms of interaction effect, b2-Beta1, rule No. 9 in Table 5-2 (b) corresponds to rule No. 9 in 

Table 5-3 (b). The association rule provides almost the same rules sets as those with the rough 

set theory if the confidence is set to one and the same rule length is specified.   

 

As discussed above, data mining methods have both strengths and weaknesses. Thus, their 

complementary use is necessary. By following the data mining process described in Fig. 5-2, 

and as demonstrated in this chapter, we can extract dominant effects using ANOVA, find 

trade-off patterns using SOM, and extract design rules using decision tree analysis, rough set 

theory, and association rule. In extracting multiple design rules, association rule should use 

the same rule length obtained from rough set theory. Based on the lists of multiple design 

rules finally obtained using the rough set theory or association rule, we can find a proper 

design candidate that solves the conflict between multiple objective functions. In this way, 

multi-objective parameter design is possible. 
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Table 5-3 Design rules derived from association rule 

 

(a) Rules for optimizing ( )sηµ  (conditions for setting ( )sηµ  in level 5) 

No. Variable 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 count
1 b 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 18

2 b 0 /b 2 1 2 5 3

3 D 0s /D 2 1 1 2 2 1 1

4 r_R 1 1 1

5 r_R Beta 1 2 3 2 4
6 Beta1 2 3 4 1 2 3
7 Beta2 4 1 2 3 1
8 Beta3 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 2 1 1 2 2 22

confidence 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
support(%) 0.8 0.8 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.6 0.6 0.6 0.6 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

Rule No.

6

2

6
5

 

(b) Rules for optimizing ( )sησ  (conditions for setting ( )sησ  in level 1) 

No. variable 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 count
1 b 2 5 2 1 2 4 3 3 2 1 2 3 1 1 1 2 3 4 1 18

2 b 0 /b 2 2 1 4 4

3 D 0s /D 2 1 2 5 2 1 1 1

4 r_R 1 4 4 2 1

5 r_R Beta 4 2 4 1 4 2
6 Beta1 2 2 2 2 2 5 2 3 1 3 3 3 3 4 1 2 3 2 3 19
7 Beta2 2 1
8 Beta3 1 5 5 1 2 5 1 5 1 1 5 1 1 13

confidence 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
support(%) 1.1 0.9 0.9 0.8 0.8 0.8 0.8 0.7 0.7 0.6 0.5 0.5 0.5 0.5 0.5 0.5 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4

Rule No.

4

7

4

6

 

(c) Rules for optimizing ( )tbLµ  (conditions for setting ( )tbLµ  in level 1) 

No. Variable 1 2 3 4 5 6 7 8 9 10 11 count
1 b 2 3 3 3 4 4

2 b 0 /b 2 3 3 3 4 4 3 3 7

3 D 0s /D 2 1 1 1 1 1 5

4 r_R 1 1 1 1 1 1 1 1 2 1 1 1 11

5 r_R Beta 3 3 3 3 4
6 Beta1 4 4 5 2 4
7 Beta2 4 4 2
8 Beta3 4 4 5 3 2 3 6

confidence 1 1 1 1 1 1 1 1 1 1 1
support(%) 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4

Rule No.

 

(d) Rules for optimizing ( )tbLσ  (conditions for setting ( )tbLσ  in level 1) 

No. Variable 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 count
1 b 2 5 5 5 5 1 2 3 5 1 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 2 25

2 b 0 /b 2 2 2 1 1 1 3 3 4

3 D 0s /D 2 5 2 2 3 3 5 5 5 2 5 5 5 5 13

4 r_R 1 1 5 4 4 2 1 1 3 3 5 4 5 5 5 4 5 4 4 18

5 r_R Beta 1 5 1 2 2 2 1 1 1 1 1 1 2 2 4 4 5 2 18
6 Beta1 3 1 1 1 1 1 1 1 3 1 3 1 1 3 3 1 1 1 3 1 3 3 3 1 24
7 Beta2 1 3 3 1 2 5 4 5 5 1 5 1
8 Beta3 5 1 4 4 4 4 5 5 5 5 1 1 1 3 2 2 16

confidence 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
support(%) 0.7 0.5 0.4 0.4 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3

Rule No.

8

1
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5.5 Conclusion 
 

A new multi-objective parameter design method was proposed, which can be used to 

solve conflicting trade-off problems between multiple objective functions. This method uses 

lists of design rules obtained by a combination of the following data mining techniques: 

analysis of variance, self-organizing map, decision tree analysis, rough set theory, and 

association rule. The derived database of the design rules distinguishes main and interaction 

effects of design variables. The proposed method first uses the predominant main effects of 

different design variables for controlling each objective function. Then, it uses predominant 

interaction effects to resolve the remaining trade-offs if there are any. The proposed method is 

applied for not only to better understanding design problems through data mining but also to 

reusing the design rules for establishing a more generalized robust parameter design method 

than a traditional ones like the Taguchi method. 

The author also summarized the capabilities of each data mining technique to clarify their 

strengths and weaknesses for facilitating their combined use. ANOVA should be first applied 

to determine important main and interaction effects, which are used in the later process of 

data mining. SOM or alternative visualization methods should be used for finding qualitative 

low-order correlations, particularly for determining the trade-off relationship between 

objective functions. Then, design rule extraction methods should be applied to obtain 

quantitative design rules for solving the trade-off problems. A decision tree analysis can be 

applied to extract an easy-to-understand single rule of necessary condition, but it cannot 

handle main and interaction effects discriminately. Both the rough set theory and the 

association rule can be applied to extract multiple design rules that distinguish main and 

interaction effects. While the rough set theory is used to only extract rules of sufficient 

conditions, the association rule is used to extract rules of both sufficient and necessary 

conditions. However, the rough set theory has advantages in finding the minimum rule length, 

which has to be specified in advance for the association rule. Therefore, use of the association 

rule, after obtaining the proper rule length with the rough set theory, is recommended.  
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Chapter 6 

Concluding Remarks 

 

 

6.1 Conclusion of Chapter 2 
 

An efficient shape parameterization method was developed for centrifugal 

turbomachinery configurations. Non-uniform rational B-Spline curves were used and 

assigned only to the enclosing boundaries of the blades consisting of the hub, shroud, leading 

edge, and trailing edge profiles. That is, traditional multi-sectional definition of the blade 

profile was avoided and the number of design variables required was reduced. 

A hybrid optimization algorithm was developed by combining simulated annealing with 

an artificial neural network for efficient, global, and single-objective optimization. The neural 

network adaptively learned the simulation results collected by simulated annealing. The 

trained neural network, as an approximation model, periodically predicted a possible global 

optimum. Simulated annealing itself explored the design space independently of the neural 

network in case the neural network learning failed, which ensured a robust and fully 

automatic optimization. The approximated design space was then analyzed by regression 

analysis to determine the sensitivity and non-linearity of each design variable, which helps the 

designer understand the global characteristics of the design space. 

The methods developed here were applied to design problems of centrifugal impeller and 

diffuser. The optimized impeller had a unique S-shaped leading edge profile, which 

effectively controlled secondary flows and improve the flow uniformity at the impeller exit. 

The optimized diffuser had a unique bending trailing edge with a wedge-shaped gap, which 

generated a streamwise vortex and prevented boundary layer separation. In both designs, the 

design turnaround times were accelerated, although the degree of speedup depended on how 

much design space was non-linear. Regression analysis revealed important design variables 

that were related to these unique shapes of the optima. 

Based on these results, it was concluded that the proposed single-objective design 

exploration methods enabled efficient global optimization of centrifugal turbomachinery 

configurations. It was also concluded that the revealed characteristics of the design space 

helped designers to understand design problems at a macroscopic level. 
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6.2 Conclusion of Chapter 3 

 
The single-objective optimization method developed in Chapter 2 had defects in 

decision-making under the uncertainty in trade-off balance among multiple design objectives. 

Thus, a multi-objective optimization method was developed using a multi-objective genetic 

algorithm to obtain widespread non-dominated solutions. Multiple non-dominated solutions 

then became available, with which a designer could adaptively choose a solution to a design 

requirement specified afterwards. To analyze microscopic structures of the design space, 

decision tree analysis and rough set theory were adopted as data mining methods. These 

methods were used to extract quantitative design rules to achieve extreme design in terms of 

each objective function. 

The developed methods were applied to the design of a low-specific-speed centrifugal 

impeller with a vaned diffuser. The design objectives were set to improve both aerodynamic 

efficiency and aerodynamic stability. Seven non-dominated solutions were obtained, and 

simultaneous improvements were confirmed by experiments with a selected non-dominated 

solution. Data mining methods indicated that dimensions such as inlet blade angle, vane-less 

diffuser height, and blade load balance were important for extreme designs. Decision tree 

analysis generally extracts a single rule of necessary condition, while rough set theory mines 

multiple rules of sufficient conditions. Decision tree analysis extracts a single rule but it is 

easy to understand, while rough set theory extracts complicated multiple rules, some of which 

are concerned with interaction effects of design variables. 

Based on these results, it was concluded that the multi-objective design exploration 

methods were capable of handling the uncertainty in design decisions and revealing key 

reasons for achieving extreme designs. 

 

 

 

 

6.3 Conclusion of Chapter 4 

 
The multi-objective optimization method developed in Chapter 3 was deterministic and 

could not be used when the degree of uncertainty in design conditions was not negligible. 

Therefore, this method had been extended to a probabilistic method that enables robust 

optimization with uncertainty in design conditions. 
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First, a generalized framework for multi-objective robust optimization was developed by 

incorporating probabilistic representation of design parameters, which was compatible with 

parameterization in the Taguchi method. Multi-objective robust design optimization became 

feasible within a practical design turnaround time using Kriging models that can rapidly 

calculate significant number of statistical responses among design parameters. In terms of 

data mining, extraction of design rules for achieving any trade-off balance were investigated. 

The aspiration vector concept was introduced to represent the designer’s preference of 

trade-off balance, and the combined use of association rule and the aspiration vector was 

proposed for design rule extraction.  

The integrated method of multi-objective robust optimization and trade-off rule mining 

was named MORDE (Multi-objective Robust Design Exploration), and was applied to an 

industrial design problem of a centrifugal fan used for a washer-dryer. The design was aimed 

toward improving the means and standard deviations of resultant statistical distributions of 

fan efficiency and turbulence noise level under conditions of dimensional variances due to 

mass production. It was demonstrated that designers could flexibly choose a design candidate 

and find quantitative rules to accomplish the required trade-off balance. It was also clarified 

that association rules can reveal multiple and quantitative design rules, while it is difficult to 

performed the same analysis with a Self-organizing map. Rules from association rules can be 

either necessary or sufficient conditions depending on control parameters for rule extraction. 

Based on these results, it was concluded that MORDE was capable of design optimization 

within a practical design turnaround time taking both uncertainties in design decisions and 

design conditions into account. It was also concluded that MORDE revealed key reasons for 

achieving arbitrary trade-off balance. 

 

 

 

 

6.4 Conclusion of Chapter 5 

 
Practical design exploration methods were developed as described in the previous 

chapters. As design rules extracted by data mining methods represent key structures in 

multi-objective design space, it seemed beneficial to use these design rules for parameter 

design. Thus, a new rule-based multi-objective parameter design method was proposed in this 

chapter. 
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This new method used a database of design rules obtained by the following data mining 

methods: analysis of variance, Self-organizing map, decision tree analysis, rough set theory, 

and association rule. The design rules distinguished main and interaction effects of design 

variables. The method first used the predominant main effects of different design variables for 

optimizing different objective functions. Then, it used predominant interaction effects to 

resolve any remaining trade-off conflicts.  

The strengths and weaknesses of each data mining method were clarified and a systematic 

procedure of cooperative data mining was established. Analysis of variance was first applied 

to determine the important main and interaction effects, which were used in the later process 

of data mining. Self-organizing maps or alternative visualization methods were used to find 

qualitative low-order correlations, particularly to determine the trade-off relationships 

between objective functions. Then, design rule extraction methods were applied to obtain 

quantitative design rules for solving the trade-off problems. Decision tree analysis could be 

applied to extract a single easy-to-understand rule of necessary conditions, but could not 

distinguish main and interaction effects. Therefore, decision tree analysis could be skipped 

depending on the purpose of parameter design. Both rough set theory and the association rule 

were applied to extract multiple design rules that distinguished main and interaction effects. 

While rough set theory was used to extract rules of sufficient conditions, association rules 

were used to extract rules of either sufficient or necessary conditions. However, rough set 

theory had an advantage in finding the minimum rule length, which had to be specified in 

advance for association rules. Therefore, the use of association rules, after obtaining the 

proper rule length by rough set theory, was recommended. 

The proposed method was applied to the same design optimization problem as that 

discussed in Chapter 4 and showed advantages over traditional parameter design methods, 

such as the Taguchi method, in that it could handle multiple design objectives and interaction 

effects. 

 

 

 

 

6.5 Conclusion of Thesis 
 

The objective of this research was to develop and propose design optimization and data 

mining methods that were efficient and practical for designing centrifugal turbomachinery for 
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consumer products. It was necessary to conduct efficient global optimization as well as deal 

with the uncertainties in design decisions and design conditions. It was also necessary to 

facilitate knowledge reinforcement in design routines. 

With regard to efficient global optimization, a shape representation method tailored for 

centrifugal turbomachinery configurations was developed, and hybrid methods that use global 

optimization algorithms (simulated annealing and multi-objective genetic algorithm) and 

approximation models (neural network and Kriging model) were developed. Design 

turnaround time was then reduced in such a way that the optimization methods can be used in 

designs for consumer products.  

With regard to uncertainty handling, a multi-objective robust optimization method was 

developed. By modeling variances in design parameters in a multi-objective optimization 

framework, practical designs with uncertainties became feasible with various non-dominated 

solutions.  

With regard to knowledge reinforcement, several data mining methods were applied and 

the characteristics of each method were clarified by comparative studies. Design rules for any 

prescribed trade-off balance could be obtained by cooperative use of design rule extraction 

methods and aspiration vectors. Moreover, the obtained design rules were reused in a newly 

proposed multi-objective parameter design method. 

The designs from Chapters 3 and 4 were applied to actual products of a vacuum cleaner 

and a washer-dryer manufactured by Hitachi Ltd. in 2006 and 2007, respectively. Thus, the 

capability of the proposed methods was successfully demonstrated in real-world applications. 

 

 

 

 

6.6 Future Work 
 

The following topics have arisen from this research as future work. 

 

 Verification of results of multi-objective robust design optimization 

 

With regard to the centrifugal fan for a washer-dryer discussed in Chapters 4 and 5, it 

was impossible to measure the actual variance in dimensions and resulting performance of all 

the products for economic reasons. That is, the resultant statistics of multi-objective robust 
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design optimization have not yet been verified. This may remain difficult for this product in 

the near future. Thus, verification of this design method should be conducted with a different 

product, such as a semi-conductor device, the performance of which can be measured on the 

production line. 

 

 Design rule extraction related to physics 

 

In this research, only design parameters such as design variables, constraints, and 

objective functions were defined as targets of data mining. However, designers are also 

interested in physical mechanisms of performance improvement. Therefore, it is expected that 

some indexes representing flow physics should also be added to the design parameters.  

Recent developments in scientific visualization techniques have made it possible to 

extract dominant vortex structures and topological structures of flow fields. Thus, the 

information from these results should be added to the design parameters. 

 

 Efficient multi-objective global optimization in large design space 

 

When the design space becomes high-dimensional, it generally becomes difficult to 

search for optimum solutions. This is typically true with multi-objective robust optimization 

with large number of design variables. In this research, the dimensions of design space were 

relatively low (between 8 and 27). However, these sizes are not sufficient for conducting 

design optimization of a product system comprised of several numbers of turbomachinery. 

Therefore, a more efficient optimization method must be developed.  

Kriging models can provide an Expected Improvement (EI) index that enables 

probability-based efficient global optimization. However, EI is tailored for single- and not 

multi-objective objective optimization problems. Therefore, this approach should be extended 

to multi-objective optimization in future studies. 
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Appendix A 

Non-uniform Rational B-Spline Curve 

 

NURBS (Non-uniform Rational B-Spline) curve is a generalized form of various 

parameter curves. Its definition contains B-Spline curves and Bezier curves as special cases. 

NURBS curve definition is associated with (1) position vectors of defining polygon vertices, 

(2) basis function to define how to interpolate the vertices to make a smooth curve, (3) a 

parameter to designate locations along the curve, (4) NURBS degree or order, and (5) knot 

vector. 

An arbitrary point on a NURBS curve is defined as: 
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where 

 

vertices)(polygon pointscontrolofnumberisn:n 1+ , 

vectorknotinomponentscofnumberism:m 1+ , 

( )orderNURBScalledis1pkdegreeNURBS:p += , 
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Note there is a constraint among ,  and m n p , 
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1pnm ++= .        (A-3) 

 

In practice, the knot vector and the parameter are usually defined within the range from 

0.0 to 1.0. NURBS basis function is defined in the following recursive form. 
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The conventional rule 0
0
0
≡  is adopted. 

The sum of basis functions is equivalent to 1. 
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The last basis function, , cannot be calculated with the above definition because 

 is out of the definition. Then, 
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To make the edges of a NURBS curve coincide with the first and the last control points, some 

components of the knot vector are overlapped as 
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The components in the middle part are evenly increased. This type of knot vector is 

called an open uniform knot vector.  
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