TOHOKU UNIVERSITY
Graduate School of Information Sciences

Automatic Performance Tuning Methods
for Heterogeneous Computing Systems

(COoooOoO0UOUOpoODoOCOOoOUOOUOUOoDDOCobOOOOOon)

A dissertation submitted for the degree of
Doctor of Philosophy (Information Sciences)

Department of Computer and Mathematical Sciences

by

Katsuto SATO

January 16, 2012






Automatic Performance Tuning Methods for Heterogeneous Computing Systems
Katsuto Sato

Abstract

Conventional computing systems, calledmogeneous computing systernsist of general
purpose processors (CPUs) with the same hardware architecture. Currently, the size of a homoge-
neous computing system is often limited by the power budget available for the system. Since drastic
improvement of power efficiencies is practically hard for CPUs, it is difficult for such a system to
significantly increase the system size under assumption of the same power budget. Therefore, the
power budget restricts the performance improvement, and it becomes a big program.

Heterogeneous computing systecosisist of some different processors that have different ar-
chitectures, such as general purpose processors (CPUs) and accelerators. A heterogeneous comput-
ing system is considered a promising system architecture to achieve high-performance and energy-
efficient computing. As accelerators have high floating operation rates and high memory bandwidths,
heterogeneous computing systems can achieve high power efficiency. Therefore, heterogeneous com-
puting systems are widely utilized in recent large-scale high performance computing systems. TSUB-
AME 2.0 [1] and Roadrunner [2] are well-known as examples of large-scale heterogeneous comput-
ing systems. As these systems have many accelerators, a programmer can use multiple accelerators
to improve a performance of a program. In these systems, appropriate task assignment is important
to efficiently use accelerators of the systems: processor selection and load balancing.

As the sustained performance on an accelerator depends on computations of tasks, programmers
need to assign only suitable tasks to accelerators. Assigning an unsuitable task causes serious perfor-
mance degradation. Moreover, appropriate task assignment is determined at runtime because it often
depends on input data and available accelerators. Hence, runtime processor selection is important to
exploit the high computing potential of heterogeneous computing systems.

Load-balancing among multiple accelerators is required to efficiently use a heterogeneous com-
puting system that has many accelerators. Basically, programmers must assign tasks to a processor
with careful consideration of suitability between a task and a processor. However, since appropriate
task assignment completely depends on the configuration of accelerators in a heterogeneous comput-
ing system, it is difficult to assign tasks into accelerators in advance. Inappropriate task assignment
may cause serious performance degradation in the system.

A Graphics Processing Unit (GPU) is one of accelerators that have high floating-point operation
rates and high memory bandwidths. As a standard PC with a GPU can be seen as a widely-available
heterogeneous computing system, standard programmers can use a GPU for computation, which is
calledGPU computing For GPU computing, programmers can writ&eanelfunction to definea
taskthat is executed on GPUs by using programming frameworks such as CUDA [3] or OpenCL [4].

As accelerators such as GPUs have architecture-specific features useful to improve performance,
architecture-specific performance tunings and optimizations such as execution parameter setting and
efficient memory accesses are necessary to achieve high performance. However, these tunings and
optimizations are difficult and labor-intensive even for expert programmers. Thus, the automatic
tunings and optimizations are required to improve sustained performance of accelerators.

To alleviate these difficulties, programming frameworks or system software should be equipped
with the functionality of the performance tunings. To this end, automation of performance tunings



is strongly required. In this dissertation, automatic performance tuning methods including runtime
processor selection, program optimization, and load balancing among accelerators are proposed to
overcome the above difficulties.

In Chapter 2, the SPRAT framework consisting of a domain-specific programming language
and its runtime environment is proposed to automatically select the appropriate processor at runtime.
The SPRAT compiler translates a program written in the SPRAT language to a code written in C++
for a CPU and a code written in CUDA for GPUs, respectively. The SPRAT runtime environment
automatically selects an appropriate processor for each task based on the performance prediction.
In the performance prediction of SPRAT, a linear prediction model is built for each program. In
addition, runtime processor selection based on energy efficiency is performed by using the prediction
model and the parameters of power consumption. The effects of runtime processor selection for
performance-aware and energy-aware computing are evaluated. From the evaluation results, it is
demonstrated that the SPRAT framework enables even a non-expert programmer to benefit from the
use of GPUs without risks of performance degradation.

In Chapter 3, to improve the sustained performance, two performance tuning strategies are pro-
posed; some optimization methods to improve sustained memory bandwidth and a tuning method of
execution parameters. In GPU computing, improving sustained memory bandwidth is important to
achieve high performance. Hence, Chapter 3 first proposes one tuning strategy including two opti-
mization methods of memory accessBgusable data prefetchirfinds highly-reusable data blocks
and places those blocks on an on-chip memory to shorten the memory access latdjusging
access patterneemoves the inefficient memory access patterns in the program by using an on-chip
memory as a read buffer. Furthermore, Chapter 3 proposes the other tuning strategy to automatically
find the optimal configuration of execution parameters based on profiling data. The proposed tuning
method runs a program with several configurations and measures its sustained performances for pro-
filing. Evaluation results indicate that the two performance tuning strategies are effective to improve
sustained performance of CUDA programs.

In Chapter 4, an online task scheduling method is proposed to realize automatic load balancing
among multiple accelerators. Automatic load balancing by online task scheduling is effective to ex-
tract the potential of multiple accelerators. For the task scheduling, accurate performance prediction
and dependency analysis are necessary. Hence, Chapter 4 first proposes a performance prediction
method and a dependency analysis method. Then, an online scheduling method is proposed. The
proposed performance prediction method uses not only past execution times but also the argument
values passed to the tasks. In the dependency analysis, unnecessary data dependencies and synchro-
nization points are removed to make many more parallel tasks. The online task scheduling method
is performed based on theinimum completion tim@MCT) algorithm. In this method, a task in a
program is assigned to an appropriate accelerator that can early complete the task. Evaluation re-
sults show that the proposed prediction method achieves higher accuracy than conventional methods.
The online task scheduling method can automatically and finely balance the loads between different
accelerators, and efficiently use their performances.

In conclusion, this dissertation establishes three approaches that enable programmers to fully
exploit the computing potential of heterogeneous computing systems. The proposed methods can au-
tomate performance tuning and optimizations, and realize a programming framework with automatic
performance tuning mechanisms. This programing framework enables programmers to describe pro-
grams without labor-intensive performance tunings and risks of performance degradation.
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Chapter 1

Introduction

1.1 Background

A conventional computing system has generally de@nogeneousnd consisted of general-
purpose processors, called CPUs, with the same architecture. However, it is difficult for
CPUs to drastically improve their power efficiencies. As a result, the size of such a system
is limited by the given power budget. Although the most popular way to improve the system
performance is to increase the system size, it is difficult to further increase the size of such a
system without increasing the power consumption.

Figures 1.1 and 1.2 show the peak performances and the peak memory bandwidths of
various processors. In these figures, accelerators sushegdics Processing Units(GPUS)
have higher performances and memory bandwidths than typical CPUs. This is because CPUs
use a huge amount of hardware resource for large cache memories and complicated control
logics to reduce the latency of instruction execution, while GPUs use most hardware resource
for computation as shown in Figure 1.3. Although GPUs increase power consumption at a
certain level, they usually improve the performance per watt for data-parallel processing
due to their high peak performances and memory bandwidths, and thus improve the energy
efficiency. Therefore, accelerators have become important components to achieve a higher
performance under assumption of a limited power budget.

However, as accelerators are usually assumed to be controlled by CPUs, a computing
system needs to have different kinds of processors, CPUs and accelerators. CPUs are used
for 1/0 processing, communications, and complicated program flow controls. On the other
hand, accelerators are used for massive data-parallel processing with high power efficiency.

1
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General Purpose Processor Accelerator
(Such as CPUs) (Such as GPUs)

l:::] Cache Memory |:] Control Logic |:| Other

I:l ALU/Floating-point operation unit

Figure 1.3: The difference in usage of hardware resources for CPUs and accelerators.

Hence heterogeneous computing systarossisting of CPUs and accelerators are promising
to achieve both high performance and high power efficiencyhigh energy efficiency

In heterogeneous computing systems, to achieve both high performance and high power
efficiency, each task must be appropriately assigned to one processor in the system. By the
appropriate assignment of the tasks, the execution time of a computation is shortened, and
hence the energy consumption is reduced; the energy efficiency is improved. However, in-
appropriate task assignment causes serious performance degradations. Hence, programmers
have to appropriately assign tasks to processors with carefully considering the combination
of a given computation and an available processor.

Figure 1.4 shows an example of heterogeneous computing systems. A heterogeneous
computing system consists of multiple computing nodes, each of which has at least one CPU
and one accelerator. Accelerators have their own memory spaces, delied memories
which are independent of main memory spaces managed by a CPU. Therefore, explicit data
management is required for collaborative work of CPUs and accelerators. As the overhead of
data transfer between a CPU and accelerators is not negligible in many cases, one difficulty
in task assignment is to ensure that the performance gain is larger than the performance
loss due to the overhead. Hence, it is required to consider the data transfer overhead for

3
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Bus

Multiple Accelerators

Figure 1.4: An example of heterogeneous computing systems.

appropriate task assignment.

If there are multiple accelerators in a heterogeneous computing system, another diffi-
culty is to decide which accelerator executes a task. If an application haspaaailel tasks
that can be independently executed, load balancing among multiple accelerators is needed
to minimize the execution time. As programmers do not always know available accelerators
and the overhead of data transfers in advance of execution, dynamic load balancing among
multiple accelerators is required to exploit their computing power. However, it is difficult
and labor-intensive even for expert programmers to balance the loads among accelerators.

To fully exploit the system performance, it is needed to optimize a program according
to the architecture of every accelerator in the system. For a conventional processor such
as a CPU, a program has mainly been optimized to improve the ratio of cache hits and to
parallelize for use of multiple cores. On the other hand, accelerators have execution param-
eters that affect the sustained performance, and some of the parameters must be specified at
execution. As those parameters strongly depend on the accelerator to be used for execution,
knowledge and programming experience of the accelerator are required for programmers to
optimally determine the parameters. Hence, it is also difficult and labor-intensive to find the
optimal parameter setting.

As described above, there are many difficulties to achieve high sustained performance
because of complicated and labor-intensive performance tunings. Hence, programming

4
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frameworks or system software must deal with some performance tunings to alleviate dif-
ficulties of performance tunings. To handle these performance tunings by programming
frameworks, it is required to establish automatic performance tuning methods that carry out
appropriate task assignment and tuning of execution parameters. Therefore, this dissertation
discusses strategies to automate labor-intensive performance tunings.
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1.2 Graphics Processing Units as Accelerators

Among several accelerators, GPUs draw attention as accessible accelerators that have high
floating-point operation rates and high memory bandwidths. A GPU is originally designed to
accelerate computation in CG rendering, callgdaphics computatianThose computations

can be offloaded to a GPU so as to alleviate loads on the CPU. The performance of GPUs
has been improved to generate higher-quality images. Moreover, their programmability is
also extended to support more advanced rendering techniques.

To improve the programmability,@ogrammable shaddras been introduced to GPUs.

A programmable shader enables a programmer to describe and execute a user-defined tiny
program to implement more advanced effects of computer graphics. Programmers can ac-
cess the programmable shaders via grapdgiggdication programming interfacgé\PIs) and

special shader languages such as Cg [5], HLSL [6], and GLSL [7]. With shader program-
ming efforts to trick GPUs, even a non-graphics computation can exploit their computing
power. These trials are callg@neral purpose computation on GPBPGPU).

In 2007, NVIDIA announce€ompute Unified Device Architectul(@ UDA)[3]. Unlike
the previous shader programming methods, CUDA does not require graphics API to use
GPUs for computation and is the first programming frameworl&BtJ computing CUDA
provides an extended C language, called C for CUDA, and several algorithms can be freely
implemented with a few constraints, which is generally so-cgbegdramming flexibility
Shader programming languages have strong constraints on the programming models, and
programmers must describe programs with consideration for these constraints. However,
CUDA eliminates most of the constraints and enables a programmer to develop a program
in a similar fashion to the conventional C language. So far, there have been many reports
to demonstrate that CUDA can accelerate various kinds of non-graphics applications [8]. In
CUDA, a computation-intensive part of a program is offloaded to a GPU for acceleration,
and the other is executed on a CPU. The offloadable part of a program is c&le®A
kernel As a GPU works well for data-parallel processing, data-parallel processing parts of
a program are usually rewritten as CUDA kernels.

Programmers can implement several algorithms for GPUs by using the CUDA lan-
guage. However, to achieve a high performance, a programmer has to learn not only the
CUDA language but also the architectural features of GPUs. The architectures of GPUs are
drastically changed according to their generations and grades. It is strongly needed to opti-
mize a program for a particular GPU architecture. Without architecture-aware optimizations,

6
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the sustained performance would be very low. Moreover, as a program written in the CUDA
language, called @ UDA program can be directly executed only on NVIDIA's GPUs, it is
impossible to switch one kind of processor to another of processor during the execution of a
program.

In 2009, Khronos group proposed OpenCL that is a standard programming interface for
various accelerators including GPUs [4]. A program written in OpenCL, called@enCL
program can be executed on different accelerators without any modification of the program.
However, performance tunings such as optimizing task assignment and tuning of execution
parameters are still required, and the sustained performance significantly depends on the
performance tunings.

As mentioned above, CUDA and OpenCL enable programmers to describe a program
that can work with GPUs. However, complicated and labor-intensive performance tunings
are still required to effectively use GPUs. Especially, if the optimal tuning parameter de-
pends on runtime factors, it is inherently impossible to know them in advance of execution.
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1.3 Objective of the Dissertation

In programming heterogeneous computing systems, there are many difficulties in perfor-
mance tunings. To overcome the difficulties, a programming framework should automate
some performance tunings and enables programmers to write programs without considera-
tion of processors that are used to execute tasks. Figure 1.5 shows the overview of the pro-
gramming framework proposed in this dissertation to overcome the difficulties. As shown
in this figure, automatic tuning mechanisms work in compiler and runtime environment lay-
ers, and then automation of performance tunings can free programmers from labor-intensive
performance tunings. Hence, the objective of this dissertation is to establish automatic per-
formance tuning methods used in the programming framework that allows to develop a pro-
gram without considering the underlying processors in a system. To achieve this objective,
the programming framework has to appropriately assign tasks to processors, determine opti-
mal execution parameters for a particular processor, and appropriately balance loads among
accelerators. Therefore, this dissertation proposes the following three methods to automate
these performance tunings and clarifies the effects of these methods through quantitative
evaluations.

One proposed method is a domain-specific programming language to automate appro-
priate processor selection. In this language, programmers definelsin a program that
can be executed either on a CPU or on an accelerator. In a programming framework, the
proposed method works in both compiler and runtime environment layers, as shown in Fig-
ure 1.5. In the compiler layer, the proposed method abstracts differences of processors to
realize runtime processor selection. In the runtime environment layer, the proposed method
automatically selects an appropriate processor for each kernel based on performance pre-
diction. Thereby, the proposed language enables programmers to write a program without
considering which processor is selected to execute kernels. Moreover, this runtime environ-
ment can select an appropriate processor not only for performance-aware computing but also
for energy-aware computing that can optimize power efficiency of heterogeneous computing
systems.

Another proposed method is use the features of the proposed programming language to
achieve some automatic performance tunings. This proposed method works in the compiler
layer shown in Figure 1.5 of the programming framework and applies some optimizations
and tuning for automatically-generated programs at compiling. As a result, programmers do
not need to examine various optimization techniques to improve the sustained performance

8
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Figure 1.5: Performance tunings in programming frameworks.

of GPUs. This dissertation also achieves automatic tuning of execution parameters required
for efficient use of GPUs.

The last proposed method is an online task scheduling method. If a heterogeneous
computing system has multiple accelerators and if an application has the tasks that can be
executed in parallel, calleparallel tasks load balancing is needed to simultaneously use
those accelerators for parallel processing of the parallel tasks. For a parallel task whose
execution time depends on its input data and varies dynamically, it is impossible to stati-
cally balance the loads among accelerators. Therefore, this dissertation proposes an online
task scheduling method based on performance prediction to automate load balancing. The
proposed scheduling method works in the runtime environment layer shown in Figure 1.5
to transparently realize automatic load balancing for an OpenCL program, and each parallel
task in the OpenCL program is automatically assigned to an accelerator that can early com-
plete the task. Then, this dissertation shows that the proposed scheduling method enables to
efficiently use multiple accelerators.




1.4 Organization of the Dissertation

This dissertation is organized as follows.

Chapter 1 describes the background and the objective of this dissertation. In Chapter
1, the difficulties in programming for heterogeneous computing systems are pointed out:
complicated and labor-intensive performance tunings are required to efficiently exploit ac-
celerators of the system. Chapter 1 also describes the objective of this dissertation that is
to establish automatic performance tuning methods used in a programming framework. The
programming framework automatically performs the optimizations, tuning, and task assign-
ment to alleviate the difficulties in programming heterogeneous computing systems. Thus,
this dissertation proposes three useful methods to automate these performance tunings.

Chapter 2 proposes a domain-specific programming language for runtime processor
selection. In Chapter 2, it is demonstrated that a processor is appropriately selected based
on the performance prediction method in the following three chapters.

Chapter 3 describes automatic performance tuning methods for the domain-specific pro-
gramming language proposed in Chapter 2. A program for a GPU must be sufficiently opti-
mized for the architecture to fully exploit the computing capability of the accelerator. Hence,
Chapter 3 proposes automatic optimizing methods to effectively use memory hierarchy in
GPUs, and an execution parameter tuning method that determines the number of threads
assigned to a processing core automatically.

Chapter 4 describes an online task scheduling method for a standard programming lan-
guage, OpenCL, to automatically adjust loads among accelerators. Unlike the proposed
domain-specific language discussed in Chapter 2, the latest standard programming languages
such as OpenCL have high programming flexibility with few constraints. In these languages,
there are difficulties in performance prediction and use of multiple accelerators. To au-
tomate load balancing among multiple accelerators, Chapter 4 proposes three methods: a
highly-accurate performance prediction method, an analysis method to detect dependencies
between parallel tasks, and an online task scheduling method.

Chapter 5 describes conclusions of this dissertation.



Chapter 2

A Domain-specific Language with
Runtime Processor Selection

2.1 Introduction

To exploit the high computing performance of a heterogeneous computing system, program-
mers must appropriately use processors including CPUs and accelerators in the system. As
accelerators such as GPUs especially have strengths and weaknesses about computation due
to their application specific architectures, the sustained performance for a computation task
strongly depends on the combination of the task and the available accelerator. Generally, ac-
celerators work well only for tasks including massive data parallelism without complicated
control flows. There is a case that the performance for a program is degraded by executing
the program on accelerators. Hence, programmers must properly manage different kinds of
processors to achieve a high performance.

The programming for heterogeneous computing systems of CPUs and GPUs, so-called
GPU programmingis generally labor-intensive and error-prone. One of difficulties in GPU
programming is how to determine which processor, either a CPU or a GPU, should be used
for a given task. Even if a task is suitable for GPUs, finding an appropriate processor for the
task is not easy. It is often difficult for a programmer and a compiler to ensure that a certain
GPU in one PC can execute the task faster than its CPU. This is because the difference in
sustained performance between a CPU and a GPU depends on individual tasks and informa-
tion available only at runtime; such as the size of data processed by the task and the loop
length in the task. As a result, the sustained performances of a CPU and a GPU drastically
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change at runtime and are unpredictable even for expert programmers.

For energy-aware computing, GPUs can reduce the energy consumption of executing
a program if GPUs considerably decrease the execution time. The energy efficiency also
changes according to the sustained performance. Therefore, an appropriate processor selec-
tion mechanism is required to achieve high performance and/or energy-aware computing on
a heterogeneous computing system.

CUDA [3] is currently the most popular programming language for GPU computing
with NVIDIA GPUs. In CUDA, programmers defintasksas special functions, called
CUDA kernels that are offloadable parts of a program to GPUs. A CUDA program needs at
least one NVIDIA's GPU for execution, and other processors cannot execute a CUDA pro-
gram. Hence, programmers must decide which processor executes a task and cannot change
it at runtime. However, it is difficult to determine an appropriate processor for a task in
advance of execution, because the appropriate processor may change at runtime. In some
cases, it is needed to develop two programs of the same task for both a CPU and a GPU to
select one of them at runtime, even though considerable efforts are needed to develop two
versions for the task.

To alleviate burdens in programming, therefore, a programming language with runtime
processor selection is useful. This language enables a programmer to describe a program
without considering the processor to execute tasks because the program is automatically
translated into a code for each processor. Then, each task is automatically assigned to an
appropriate processor for performance-aware or energy-aware computing. Moreover, pro-
grammers can avoid unexpected performance degradation by inappropriate processor selec-
tion. Therefore, performance tuning by automatic processor selection is effective to alleviate
one of difficulties in GPU programming.

In this chapter, a programming framework is proposed to realize runtime processor se-
lection in a heterogeneous computing system. This framework consists of a domain-specific
language and its runtime system. This chapter assumes a commodity personal computer
(PC) as a heterogeneous computing system that has a CPU and a GPU. The design objective
of the proposed programming language is as follows.

e To easily describe data-parallel processing that can be efficiently executed by acceler-
ators such as GPUs.

e To easily predict an execution time for each accelerator.

12
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e To select an appropriate processor based on performance prediction.

A lightweight runtime system is built to enable automatic processor selection considering
the runtime information. Moreover, this chapter presents a metric to find the situation where
one processor obviously outperforms another one. Then, this chapter shows that runtime
processor selection can also improve energy efficiency.
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2.2 Related Work

2.2.1 Programming Environments for Heterogeneous Computing Sys-
tems

One research topic in software development for heterogeneous computing systems is how
to abstract different kinds of processors such as CPUs and GPUs. A GPU generally prefers
massive SIMD data parallelism. Hence, a GPU is often usedtfeam processingvhich

is modeled as a computation-intenske¥nelfor processing a londata stream The stream
processing can hide its memory access latency by making memory accesses highly pre-
dictable and overlapping data fetches with computations. Importance of the overlapping is
growing more and more, due to the so-called memory wall problem [9]. The stream process-
ing is suitable not only for GPUs but also for many other processors such as general-purpose
processors [10] and heterogeneous multicore processors [11]; it will be a key technology to
achieve high sustained performance with current and future computing systems.

Many researchers have demonstrated that GPUs can be seen as general-purpose stream
processors [12]. Several high-level programming languages have been proposed to alleviate
the programming efforts required to use the computing power of GPUs for stream processing
applications [13, 14, 15, 16, 17]. However, they do not consider runtime processor selection
for executing a given task in terms of the sustained performance and the energy efficiency.

Brook for GPU (BrookGPU) [13] is the first abstraction of GPUs for GPGPU program-
mers and is a popular programming tool that extends the standard C programming language
to explicitly describe stream processing applications. BrookGPU provides a high-level pro-
gramming language and its runtime backends to facilitate the development of GPGPU ap-
plications. Each of the runtime backends corresponds to a runtime environment supported
by BrookGPU: CPU, OpenGL, and DirectX9. Using the Brook language, a programmer can
explicitly write a kernel code. The Brook compiler is a source-to-source compiler that trans-
lates a Brook code into a standard C++ code. At the translation, a kernel code is translated
into multiple codes respectively corresponding to runtime backends. When the executable
file is launched, it first checks the environmental variaBBRT RUNTIME to decide the
runtime backend. Finally, all the kernels in an application program are executed using one
of available processors calleccamputing engine

There are also many programming tools that realize higher-level abstraction to facili-
tate GPU programming. RapidMind [14] and PeakStream [15] are both commercial software
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Figure 2.1: The hardware architecture assumed in CUDA.

products to describe and execute multi-platform programs in a stream processing manner. In
2008, PGI has announced a commercial C/C++ compiler that defines additional compiler di-
rectives for generating CUDA codes from a standard C/C++ code [18]. HMPP also provides
compiler directives to reduce the difficulties in the GPU programming [19]. However, they
usually assume that a programmer or an application user statically determine the comput-
ing engine of every kernel in advance of the execution, even though appropriate processor
selection clearly depends on various runtime behaviors and system configurations.

CUDA abstracts underlying hardware, and a programmer can describe a single pro-
gram for NVIDIA GPUs even if the hardware configuration such as the number of pro-
cessors in a GPU is different. Figure 2.1 shows the overview of the hardware architecture
assumed in CUDA. In the execution model of CUDA, many threads are organized as arrays
of threads and executed in parallel. A GPU is calledksice and one device has several
Multi-Processors (MPsbhat independently execute an array of threads. One MP consists of
multiple Stream Processors (SPgach of which executes one thread. SPs in a MP coopera-
tively execute threads in an array in a Single-Instruction Multiple-Data (SIMD) [20] manner.

If the branch targets of threads in an array are different, all the SPs in a MP execute both the
paths.

Although Brook, CUDA, and the above libraries provide a high-level abstraction of
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GPU programming, they do not consider that the difference in sustained performance be-
tween a CPU and a GPU depends on the information available only at runtime, such as
the data sizes and GPUs installed in the system. Therefore, appropriate processor selection
clearly depends on various runtime behaviors and system configurations [21]. It is often
difficult even for expert programmers to determine the appropriate processor for a com-
putation, because a programmer does not always know the performance difference when
programming. As a result of inappropriate processor selection, use of GPUs may lead to the
performance degradation rather than acceleration.

2.2.2 Performance Model and Prediction

It is possible to improve performance by changing the processor to execute the kernel if
the execution time of a kernel on one processor is obviously longer than that on another
processor. Based on this idea, the kernel should be executed by the latter processor next time.
Therefore, to select an appropriate processor, it is necessary to estimate the performances of
two processors for each kernel.

There are some studies on performance evaluation and modeling of GPU computing
applications. Since the GPU architectures are not fully disclosed, the GPU performance for
various applications has been experimentally examined [22, 23, 24].

Govindaraju et al. investigated the details on a GPU memory hierarchy. Their memory
model shows that the GPU’s memory bandwidth depends on memory access patterns, and ef-
fective use of the two-dimensional cache memory can maximize the GPU performance [25].
Harrison et al. have assessed the execution time required for the data transfer between the
main memory and the device memory [26]. As the time for the data transfer often becomes
dominant especially in the case that a kernel has a low-arithmetic intensity, performance
evaluation of the data transfer using different APIs is important to predict the total execu-
tion time of a GPGPU application. These experimental studies show that the performance
prediction of GPGPU applications must consider styles of the implementations.

Ito et al. have proposed a model to estimate the execution time of a GPGPU applica-
tion [27]. They assume that the GPU performance is always limited by its memory band-
width, and hence the execution time of a kernel is in proportion to the size of data transferred
between the GPU cores and the device memory. However, the actual memory bandwidth
obviously depends on the memory access patterns. Therefore, He et al. have separately
modeled sequential access performance and random access performance [28].
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Buck et al. have presented BrookGPU with a simple performance model to analyze the
performances of a CPU and a GPU [13]:

Te = n(Tr+ Kg), (2.1)
To = nKe, (2.2)

whereT; andT are execution times of a GPU and a CPU, respectivElyjs the time
associated with downloading and reading back a single stream elefieand K are the
times required to execute a kernel on a single elementpasdhe number of elements in a
data stream. It is obvious that the GPU will outperform the CPU only when

TR < KC — K(;. (23)

This means, only if the performance gain by using a GPU exceeds the data transfer overhead,
the GPU can outperform the CPU.

Transco et al. have reported a comprehensive experimental study of the performance
comparison between a CPU and a GPU [29]. They investigated the execution times of
BrookGPU kernels, changing kernel parameters such as the computation intensity, the data
size and the data format. Their results clearly indicate that the GPU’s superiority in perfor-
mance depends on several parameters determined at runtime.

As the BrookGPU language can describe only stream kernels, it is relatively easy to
model the performance of each kernel. However, it is difficult to automatically generate the
performance model of arbitrary CUDA codes [30] because of its high programming flexibil-
ity. Therefore, one idea to achieve runtime processor selection is to limit the programming
flexibility so that a runtime system can easily predict the performance. Since GPUs ba-
sically are suitable for stream processing, the flexibility-limited programming language can
still describe many significant GPU applications even if it can describe only kernels of stream
processing.

In addition to performance improvement, energy-aware computing also has become
more and more important not only in mobile systems but alsogh-performance comput-
ing (HPC) systems. @ddeke et al. have reported that use of even low-end and out of date
GPUs leads to improvements in both performance- and power-related metrics of a GPU-
accelerated cluster system for FEM applications [31]. Use of GPUs generally increases the
power consumption, however, it does not always increase the performance. As a result,
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it may lead to the increase in energy consumption for the applications, which cannot be
efficiently executed by GPUs. Accordingly, runtime performance prediction is needed to
achieve appropriate processor selection in terms of energy efficiency; GPUs should be used
only if its energy consumption of executing a program is substantially small because of the
performance gain by GPUs.

18
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2.3 A Domain-specific Language with Runtime Processor
Selection

2.3.1 Overview

In this section, a programming framework nangceam Programming with Runtime Auto-
Tuning (SPRAT) [32] is proposed to realize runtime processor selection. This framework
consists of a domain-specific language to describe data-parallel processing, ccHiB&RNE
language and the SPRAT runtime environment for dynamic selection of an appropriate
processor. As with BrookGPU [13], the SPRAT compiler translates a SPRAT code into
multiple codes, each of which is corresponding to one processor. The processor for executing
each kernel is called eomputing enginén SPRAT. According to the runtime behaviors
that are not available for a programmer and a compiler, the SPRAT runtime environment
dynamically switches the computing engine so as to minimize the execution time or the
energy consumption; a GPU is used as a computing engine only if it can accelerate the
kernel execution or reduce the energy consumption.

Without any preknowledge, it is difficult to automatically predict the execution time
of an arbitrary code. To achieve runtime performance prediction of user-defined functions,
hence, the SPRAT language provides special functions, n&erae| functionsin which
a programmer can write only stream processing kernels. As a kernel function is applied
to every stream element, the execution time increases linearly with the number of stream
elements. When a stream is given, therefore, the SPRAT runtime environment can estimate
the execution time of each kernel function with a simple performance prediction model of
linear approximation.

2.3.2 Stream Programming language with Runtime Auto-Tuning (SPRAT)

The SPRAT language is an extension of the standard C language incorporating some special
keywords for description of stream processing tasks. In a stream processingdas&nas
a collection of data processed bkarnel A stream is declared with thegream keyword
and angle-bracket syntax. A kernel function, which operates on individual stream elements,
Is specified by th&ernel qualifier. The syntax of the SPRAT language itself is similar to
the conventional stream programming languages such as BrookGPU [13].

Figure 2.2 illustrates how a SPRAT code is converted into an executable file. A SPRAT
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Figure 2.2: The compiling flow of a SPRAT program.

code written by a programmer is first translated into multiple codes: a standard C++ code
for a CPU and a CUDA code for a GPU. Then, a programmer can manually optimize the
automatically-generated codes if needed. Finally, those codes are respectively compiled and
then linked with the SPRAT runtime library to generate an executable file.

The details on streams and kernels are described as follows.

Streams

In the SPRAT language, a variable declared withsineam keyword is used as a container
of stream data. The number and the variable type of stream elements are specified in the
stream variable declaration.

Since stream elements are directly accessible only within a kernel function, there are
built-in functions to manage stream data. For exangileamRead andstreamWrite
are used for the data transfer between a standard C array and a stream. The former copies
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Listing 2.1: A sample code of a reference stream.

1 |stream <float >& ref = strm[i][jJ(w,h); \

Listing 2.2: An equivalent code for the kernel code.
for (int i=0; i<M; i++)
for (int j=0; j<N; j++)
Zli *N+j] = a oxi * Nyl x N

WN -

each array element to its corresponding stream element. The latter copies each stream ele-
ment onto its corresponding array element.

There are four kinds of qualifiers to specify the access attributes of a stiregraut |,
inout , andgather . A stream specified by the keyword permits sequential read-only
accesses. A stream with tbat keyword permits sequential write-only accesses. A stream
specified byinout is both readable and writable. An element igather stream can be
read using an array index operator to be mentioned later.

In addition, a stream reference to a part of stream elements can be declared as shown in
Listing 2.1. Here, a stream referene# represents the domain of a 2-dimensional stream
strm whose left-upper corner position and size are specifief] [ply and(w,h) , re-
spectively. Note thatef andstrm share the same memory areanfh stream elements.

Kernels

A kernel, which operates on each stream element, is described by a special function specified
by thekernel keyword. A programmer cannot permute the sequence of stream elements;
they may independently be processed in parallel.

A kernel function with themap qualifier takes one or more output streams specified
by theout orinout keyword. The kernel execution is a data-parallel task that logically
computes all the output stream elements. For examplesakey function in Listing 2.3
is implicitly translated by the SPRAT compiler to the multiple codes, each of which has the
same meaning of the nesting loops shown in Listing 2.2. In this lishiapdMindicate the
width and height of streams.

Every input stream element is corresponding to one of elements in an output stream
based on the position in the input stream by default. However, a stream specified by the
gather qualifier can be accessed using an array index operator. A gather stream element
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Figure 2.3: The coordinate in gather access.

is accessed using the array index that indicates the relative position from the corresponding
output stream element. For exampstrm[0][O] of a 2-dimensionabather stream
denotes a stream element whose position is the same as that of the calculated output stream
elementstrm[-1][0] , Strm[1][0] , Strm[0][-1] , andstrm[0][1] indicate the

four neighboring elements strm[0][0] , as shown in Figure 2.3. As a stream processing

task often accesses the neighboring stream elements, the array index operator indicates the
relative position from the corresponding output stream element. If a kernel function must
always refer to the -th element of streans, it can be expressed using a special index
operators[[i]]

Listing 2.3 shows a sample code written in the SPRAT language. In the code, a kernel
functionsaxpy is called with a scalar valya , two input streamsX andsY, and an output
streamsZ. Here, each o§X, sY, andsZ contains the same number of stream elements.
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Listing 2.3: A sample code afaxpy written in the SPRAT language.

kernel  map saxpy(
float ,

in stream <float > x,
in stream <float > vy,
out stream <float > 2)

z=a* X +y,
return ;

OCo~NOURWNE

11 |int main( int argc, char = argv)

13 stream <float > sX(N,M), sY(N,M), sZ(N,M);
14 float  x[N*M], y[N *M], z[N =M], pi=3.14f;

16 init_array( x, y);

17 streamRead (sX, X);
18 streamRead (sY, y);
19 saxpy(pi, sX, sY, sZ);
20 streamWrite  (sZ, z);
21 print_array(z);

22 return  0;

Stream elements at the same position in different streams are corresponding to each other.
Every element o6X is multiplied bypi , and then is added to its corresponding element

of sY. The calculation result is written to the corresponding elemesZofSince a stream
element is accessible only within a kernel function, elements of axaysdy are copied
ontosX andsY usingstreamRead function. Similarly, elements fZ are copied onta
usingstreamWrite  function.

2.3.3 Performance Prediction and Processor Selection

To select an appropriate processor, the SPRAT runtime environment profiles the execution
times of kernels, and builds linear prediction models for each processor using profile data.

The runtime environment automatically selects the processor that can execute a kernel in the
minimum execution time.

Performance Modeling of Kernels

If a programmer directly writes a GPU computing code using graphics APIs and/or CUDA,
styles of the implementations should be considered in performance prediction because they
considerably affect the performance [24, 25, 26]. As SPRAT sacrifices the flexibility of
programming styles to some extent, a kernel code written in the SPRAT language is auto-
matically translated into multiple codes corresponding to a CPU and a GPU. Therefore, by
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taking into account the translation rules, it is needed to consider only one style of the imple-
mentation for performance prediction, which becomes tractable in performance prediction.

In a stream processing task, an identical kernel computation is performed to produce
each element in an output stream. Hence, the execution time of a kernel almost linearly
increases with the number of output stream elements. To restrain the runtime overhead,
a simple model is preferable for runtime performance prediction. Therefore, the SPRAT
framework uses a simple linear performance model to estimate the execution time of a kernel
from the number of elements in an output stream:

Tp(ki) = + Sp(ki)a (2-4)

whereT,(k;) is the execution time required by the procegstwy execute kernél;, D(k;) is
the number of output stream elemert(%;) is the sustained throughput of the procegsor
for kernelk;, andsS,(k;) is the startup time required by the processtw launch kernek;.

Similarly, the data transfer time also increases with the size of the transferred stream

data [23]: b
Tpoyg= "2+ S, 0 (2.5)

e
p—q Bp—>q

whereT, .,, D,—.q, Bp—q, ands,_., are the total time, the data size, the sustained bandwidth,
and the startup time of the data transfer from the processothe processay, respectively.

In general, the linear performance model presented above can precisely estimate the ex-
ecution time of a kernel on a GPU. However, if the execution times are profiled for only the
streams whose sizes are small, it may overestimate the CPU performance without consider-
ing the effects of cache spilling of large streams. One possible approach is to use additional
performance parameters,
nel is called with a large stream whose si2zg exceeds the cache capacity. Accordingly,

r, and S, ., to estimate the CPU performance when the ker-

the modified performance model estimates the execution time required by CPU to execute
kernelk; by

Dy,

< 4 qui if l)k2 < D$
Tog =14 0% / o (2.6)
ﬁ + Sc,  Otherwise

where Dy is the size of the last level cache. The SPRAT runtime environment can get the
value of Dg by using system query API.
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Energy Consumption Modeling of Kernels

In addition to performance parameters, power consumption parameters are also required
for energy-aware computing. In this section, it is assumed that the power consumption is
independent from kernels and depends only on the processor that executes kernels. Then,
power consumption parameters can be regarded as system-specific parameters and need to
be measured once for a system. The validity of this assumption is experimentally discussed
later in Section 2.4.

Let P, be the wattage when using the procegsas a computing engine. Similarly,
P,_., denotes the wattage for the data transfer from procgsgoprocessoy. This allows
even a simple watt meter to measure the wattages suéh lag running a test kernel that
executesaxpy onthe GPU and the CPU for a long time; this does not need an expensive
measuring instrument.P,_,, is also measured by transferring data from the memory of
processop to the memory of processgrfor a long time.

Using these coefficients such BsandF,_,,, power consumption of executing kernels
and data transfer can be indicated by

D(k:) }
E(k)=P,-T,(k;) =P, + S, (ki) ¢, 2.7
) = By Ty(k) = Py { 50+ 5,(0) @)
and
D,
Ep—>q = Pp—>q ) Tp—>q = Pp—>q {# + Sp—>q} ) (2-8)
p—q

whereE,(k;) and E,_., are the amount of energy consumption of executing the késnel

on the processagr and data transfer to ¢, respectively. Moreover, to accurately estimate
the performance of a CPU with cache memory, the modified prediction model estimates the
energy consumption of the CPU executing kerndly

Dy .
Pe(k;) ( e LI Sc,,ﬂ) if Dy, < Ds
Cik;
EC(kz> - PC(kz> TC(kz) = Dk ) (29)
Po(ki) | o— + Scg, | otherwise.
Bey, ’

Measuring Coefficients for Prediction

Performance prediction by SPRAT requires all the parameters in advance. Among the pa-
rameters, the parameters involved in the execution time of the kesedh asB(k;) and
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S(k;) must be obtained for individual kernels; the others are system-specific parameters and
are measured only once for a computing system. For measuring those performance param-
eters, an application user needs to run the program several times in advance. For example,
the performance parameters are obtained by the first 10 executions; five times for the CPU
parameters and the others for the GPU ones. Appropriate data sizes are properly given by
the user to improve the accuracy of the prediction. The parameters of executing the kernel
are measured and are automatically stored in a parameter database.

Strategies of Processor Selection

A CPU can access only the data on the main memory, while a GPU can access only on
the device memory. When a computing engine is switched, the stream data to be accessed
by the kernel function have to be transferred to the memory space of the new processor.
Since the data transfer induces a considerable overhead, the dynamic switching has to be
carefully decided by taking into account the trade-off between the data transfer overhead
and the performance gain by switching.

Similar to Equation (2.3), one may claim that the appropriate processor can be found
by comparing the execution time of a CPU to that of a GPU. That is, in the case where a
CPU is currently selected as a computing engine, a computing engine for executing kernel
k; should be switched to a GPU only if the following condition is met.

Te(ks) > Ta(ki) + Te—a, (2.10)

where processorS andG denote the CPU and the GPU, respectively.

However,T_. is generally larger thafi-(k;) and T (k;) especially ifk; is a user-
defined simple kernel function. Even if a GPU is much faster than a CPU and can reduce the
total execution time, the processor will not be switched from the CPU to the GPU. Accord-
ingly, Equation (2.10) does not always result in appropriate processor selection. Suppose

thatT(k;) is greater thaff(k;) but less tharf (k;) + Tc—. Then, the GPU can reduce
N

the total execution time by almog {Tc(k;) — T(k;)}, if the processor is switched from
=1

the CPU to the GPU and then kernglis called NV times. Accordingly, if V satisfies the
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following condition, a processor should be switched from the CPU to the GPU.
N
Too <Y {To(k) —Talk:)}. (2.11)
i=1

In many cases, however, it is difficult to obtain the actual stream/3izg) used for estimat-
ing 7, (k;) andT,_., in advance of the kernel call.

To solve this problem, thaccumulated time differends introduced to SPRAT for
appropriate processor selection. In the case where progessgsed as a computing engine,
the accumulated time difference of procesg® updated at every kernel call as follows.

AT, = max{AT, + (T, (k) — T,(k;)), 0}. (2.12)

Hence, AT, indicates how much the execution time is shortefi$ used as a computing
engine. SPRAT switches a computing engine froto ¢ if the following condition is met.

T, ., < AT,. (2.13)

When the computing engine is switched frpno ¢, the accumulated time difference of each
processor is cleared to 0,

AT, = 0, (2.14)
and

AT, = 0. (2.15)

In the case of energy-aware computing, disceumulated energy differentsealso intro-
duced to SPRAT. When the procesgas not used as a computing engine, the accumulated
energy difference of processgis updated at every kernel call as follows.

AE, = max{AE, + (E,(k;) — E,(k;)),0}. (2.16)

Hence,AE, indicates how much energy is savediis used as a computing engine and is
used instead oA\, in energy-aware processor selection.
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These metrics assume iterative computations and realize a lightweight runtime environ-
ment that can select an appropriate processor based on the trend of stream sizes in the past.
Thereby, these metrics speculatively customize an application program to common stream
sizes in the future kernel calls. Although this needs the extra execution time or energy of
T,_., or £, ., until switching the computing engine to the other processor, it will be negli-
gible in many cases where a sequence of some kernels is periodically invoked many times.
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2.4 Evaluation

2.4.1 Experimental Setup

This section shows the evaluation results to examine the performance of the proposed run-
time processor selection for performance-aware and energy-aware computing. All of the
evaluation results are obtained using a Linux PC equipped with Intel Core 2 Quad (C2Q)
Q6600 Processor running at 2.4GHz, DDR2 4GB main memory, and one of GPUs listed
in Table 2.1. In the table, # SPs indicates the number of streaming processors in the GPU.
Mem, CFreq, MFreq, and BW indicate the memory capacity, the core clock frequency, the
memory clock frequency, and the peak memory bandwidth, respectively. GFGTX280 means
NVIDIA GeForce GTX280. GF88GTX is the abbreviation of NVIDIA GeForce 8800 GTX,
and the other GPU models are also abbreviated in the same way.

The Linux kernel version is 2.6.18 (CentOS 5 x88) and C++ compiler that compiles
the SPRAT runtime environment and codes for CPUs automatically-generated by the SPRAT
compiler is gcc-4.2.1 with ”-O3” options. The NVIDIA graphics driver version 173.14, the
CUDA version 1.1, and CUDA compiler version 1.1 V0.2.1221 are used. At every execu-
tion of a SPRAT program, a CPU is initially selected as the computing engine for kernel
execution, and then the computing engine is switched according to runtime performance
prediction.

2.4.2 Evaluation of Performance-aware Processor Selection

To clarify the effectiveness of the SPRAT framework for a programmer who does not have
knowledge of GPU programming, the computational fluid dynamics (CFD) simulation code

Table 2.1: Specifications of GPUs used for evaluation.
Processor Abbreviated| # SPs Mem. CFreq. MFreq. BW.
Name Name [MB] [MHz] [MHz] [GBI/s]
GeForce GTX 280 | GFGTX28 240 1024 1296 1107 1417
GeForce 8800 GTX GF88GTX 128 768 1350 900 86.4

GeForce 8800 GT | GF88GT 112 512 1500 900 57.6
GeForce 8600 GTS GF86GTS 32 256 1450 1000 32.0
Core 2 Quad Q6600 C2Q — 4096 2400 800 12.8
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Figure 2.4: Speedup ratio of the CFD simulation.

shown in Listing 2.4 is used for the following evaluation. In this evaluation, the CFD pro-
gram calculates 100 simulation steps of the 2-dimensional cavity flow using the fractional
step method [33]. The Jacobi iteration method is used for the pressure calculation. In the
case where the pressure calculation is performed on GPU, the error is transferred from GPU
to CPU to check the convergence. In this evaluation, a convergence difference is calculated,
but it is not used to exit the loop of pressure calculation.

To measure prediction parameters for each processor, the CFD program is executed for
every kernel with the grid sizes 82 x 32, 64 x 64, 128 x 128, 256 x 256, and512 x 512.
Moreover, the additional prediction parameters of CPU for large streams are measured to
consider the capacity misses with the grid sizes0afl x 1024, 1536 x 1536, 2048 x 2048,

2560 x 2560 and3072 x 3072.

Figure 2.4 shows the speedup ratio of three GPUs measured with changing the data
size. In Figure 2.4, the performance is obtained by counting the number of grid points per
second, and then the speedup ratio of each processor to CPU is computed.
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For the CFD code, all the GPUs significantly outperform C2Q in large grid sizes. How-
ever, in very small grid sizes, GPUs cannot outperform C2Q because there are overheads
for executing kernels on GPUs such as data transfers. Moreover, the cache memories of
C2Q provide a higher memory bandwidth than those of GPUs. Hence the performance is
degraded if the computing engine is fixed to GPUs when the grid size is very small.

If one processor is much faster than the other, SPRAT can easily select the appropriate
processor. In the evaluation results shown in Figure 2.4, all the GPUs are almost always used
as a computing engine, and C2Q is used only when the grid size is approximately equal to or
less thar64 x 64. The evaluation results clarify that even a middle-range GPU, GF86GTS,
has a possibility to achieve a high performance, if the application is well-suited for GPU
computing. In this case, SPRAT enables programmers who do not have knowledge of GPU
computing to appropriately exploit the computing power of a middle-range GPU without
risks of performance degradation.

In most cases, the performance using runtime processor selection is less than the per-
formance especially when a computing engine is fixed to an appropriate processor. This
difference in performance appears when the appropriate processor is a GPU. This is because
a CPU is selected as an initial computing engine, and there is a certain overhead of data
transfers and kernel launch to switch the computing engine from a CPU to a GPU. However,
it would be negligible if the initial overhead becomes small compared to the total execution
time.

2.4.3 Evaluation of Energy-aware Processor Selection

To realize runtime processor selection for energy-aware computing, the power consumption
parameters required to predict energy consumptions are measured in advance. Table 2.2
shows the power consumption of each system configuration under full load. The power
consumption is measured with HIOKI HITESTER 3334 [34] while sapy function in

Listing 2.3 is iteratively running on either a CPU or a GPU.

Table 2.2: Power consumption of each system configuration.
System Configuration Pg [W] | Po [W] | Po—g [W] | Po—c [W]
C2Q + GF88GTX | 251.4 | 204.9 214.6 213.2
C2Q + GFGTX28 | 305.3 | 212.7 210.3 209.2
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In Table 2.2, it can be seen th&t increases with the GPU’s peak power consumption.
Thus, such a high-performance GPU consumes a considerable power even if it does not
compute anything. If a GPU cannot efficiently execute an application, hence, the best way
to save energy for the application is to detach the GPU from the system. However, it is not
practical to change the hardware configuration according to each application. In the cases of
GPUs, the GPU’s power consumption in the idle state is not negligible. However, it is solved
by the GPU that has a more advanced power management capability and can remarkably
reduce the power when it is idle. Accordingly, for such a GPU, runtime processor selection
will become more effective for saving the energy consumption.

In this evaluation, the effect of runtime processor selection on energy-aware computing
is shown. In addition, it is also shown that the intersection point of changing the appropriate
processor is different between performance-aware computing and energy-aware computing
to indicate that high sustained performance does not always lead to high energy efficiency.

Listing 2.5 shows the SPRAT code of no-pivoting LU decomposition, which iterates
normalize  androwop with decreasing the stream size. This benchmark is purposely
implemented to degrade the sustained performance on GPUs to demonstrate that SPRAT
can properly select a CPU as a computing engine when a GPU cannot work well. This code
has been ported from LU-GPU [35]. As the initial address of the input stream is changed at
every kernel call, a GPU cannot perform coalesced memory access [3] in most cases. As a
result, the sustained memory bandwidth of a GPU severely degrades when executing the LU
decomposition.

The prediction parameters of each processor for every kernel in the LU decomposition
are measured with the data sizespfx 32, 64 x 64, 128 x 128, 256 x 256, and512 x 512.
To consider the capacity misses, the additional performance parameters of the CPU for large
streams are measured with the data sizd9d1t x 1024, 1536 x 1536, 2048 x 2048, 2560 x
2560 and3072 x 3072.

Figure 2.5 shows the speedup ratios of C2Q and two GPUs measured with changing
the data size. In Figure 2.5, the sustained performance is calculated based on the number of
floating-point operations per second, and then the speedup ratio of each processor to C2Q is
calculated.

Though the LU decomposition is a typical memory-intensive benchmark, GPUs cannot
efficiently execute the LU decomposition code because of non-coalesced memory accesses;
GF88GTX increases the power consumption, even though it does not reduce the execution
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Figure 2.5: Speedup ratio of the LU decomposition.

time. As a result, the use of those GPUs may decrease the energy efficiency. In some matrix
sizes, there is an obvious trade-off between the performance and the energy consumption
because the execution time is not reduced enough to hide an increase in power consumption
induced by using GPUs. Since the performance improvement depends on the data size often
determined at runtime, the computing engine should also be dynamically selected at runtime.

Figure 2.6 shows the sustained performances of fixed processors and runtime processor
selection for performance-aware and energy-aware policies. In the energy-aware selection,
unlike the processor selection based on the performance-aware policy, the proposed method
selects C2Q even if GF88GTX is somewhat faster than C2Q. Figure 2.7 shows the numbers
of floating-point operations per watt hour [Gflop/s/Wh] of C2Q and GF88GTX. In the cases
of small matrix sizes, as a CPU can effectively use cache memory and does not access off-
chip memory, the energy efficiency of a CPU is higher than that of GPUs. On the other hand,
when the matrix size is sufficiently large, the energy efficiency of the GPU becomes smaller
than that of the CPU because GPUs can reduce the execution time that it is enough to cover
additional power consumption due to GPUSs. In this case, SPRAT uses GF88GTX only if
GF88GTX outperforms C2Q in terms of energy efficiency.
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On the other hand, Figures 2.8 and 2.9 show the sustained performance and energy
efficiency in the system consisting of C2Q and GFGTX28. Even though the LU decompo-
sition causes non-coalesced memory accesses, GFGTX28 is much faster than C2Q because
of its cache memory. In this system, GFGTX280 is an appropriate processor in most ma-
trix sizes for both performance-aware and energy-aware selections. However, in very small
matrix sizes, there are some cases that the energy efficiency of C2Q is higher than that of
GFGTX28 because of the overhead of data transfer. In this case, SPRAT can also select
GFGTX28 only if GFGTX28 is superior to C2Q in terms of energy efficiency.

All the above results were obtained by assuming that the power consumption of each
processor is constant irrespective of the workload. Thus, these results clearly indicate that
SPRAT can properly select the processor by estimating the energy consumption from the
preliminarily-obtained parameters.
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Figure 2.7: Energy efficiency of C2Q and GF88GTX.
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2.5 Concluding Remarks

In this chapter, a programming framework consisting of a domain-specific programming
language and its runtime environment, named SPRAT, is proposed to achieve energy-aware
and performance-aware computing in a heterogeneous computing system of a CPU and a
GPU. The SPRAT compiler translates a SPRAT code to a C++ code for CPUs and a CUDA
code for GPUs, respectively. Then, the proposed mechanism can automatically select the
appropriate processor at runtime by taking into account the difference in energy efficiency
or sustained performance between a CPU and a GPU.

The evaluation results clearly indicate that the SPRAT framework enables programmers
who do not have knowledge of GPU computing to exploit GPUs without risks of perfor-
mance degradation. Moreover, the proposed processor selection can further increase the
overall performance. The evaluation results also demonstrate that SPRAT can use GPUs
only if the performance per watt hour of the GPU exceeds that of the CPU, even though
SPRAT employs a rough approximation scheme to estimate the energy consumption.

From the evaluations, it is demonstrated that the proposed programming framework
can automate runtime processor selection and solve one of the difficulties in programming
heterogeneous computing systems. By using this framework, programmers can describe
programs without careful processor selection. The proposed method will be applicable for
various heterogeneous computing systems because it does not use architecture-specific pre-
diction models. Even if a processor has cache memories, the proposed runtime environment
can accurately predict the execution time by using different prediction models correspond-
ing to the size of data. Therefore, if the execution time and the stream size are available, the
proposed method can select an appropriate processor based on the linear prediction models.

To achieve a higher performance, the SPRAT compiler has to support some architecture-
aware optimizations to generate more efficient kernels for GPUs. Hence, the next chapter
deals with automatic optimization methods employed in the SPRAT compiler.
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Listing 2.4: The CFD program written in the SPRAT language.

1 | kernel map calc_u_mid(

2 out stream <float > u_mid,

3 gather stream <float > u,

4 gather stream <float > v,

5 float U_t, float U_b, float dt, float invRe)

6 |{

7 float u_c = u[0][0];

8 float  u_r = u[O][1];

9 float u_l = ( kernel .index_d [0] == 0) ? 0.0f : u[O][-1];

10 float u_t = ( kernel .index_d [1] == kernel .size d [1] - 1)

11 ? (2 *Ut-uc):u[l][O]

12 float u_b = (kernel .index_ d [1] == 0) ? (2 * Ub - uc): u-1]0o];
13 float  v_tr = v[O][1];

14 float  v_tl = v[0][O];

15 float v_br = ( kernel .index_d [1] == 0) ? 0.0f : v[-1][1];

16 float v_bl = ( kernel .index_d [1] == 0) ? 0.0f : v[-1][0];

17

18 float A = (((u_r + u_c) *(u_r + uc) - ((uc + u_l *(u_c + u_l) +
19 ((ut + uc) *(v_tr+ v i) - ((uc + u_b) *(v_br + v_bl)))/4.0f;
20 float B=ur+ul+ut+ub-4 * U_C;

21

22 umid = uc +dt = (-A + invRe = B);

23 return

24|}

25

26 | kernel  map calc_v_mid(

27 out stream <float > v_mid,

28 gather stream <float > u,

29 gather stream <float > v,

30 float V_r, float V_l, float dt, float invRe)

31 |{

32 float  u_tr = u[1][O];

33 float u_tl = ( kernel .index_d [0] == 0) ? 0.0f : u[1][-1];

34 float  u_br = u[0][0];

35 float u_bl = ( kernel .index_d [0] == 0) ? 0.0f : u[O][-1];

36 float v_c = Vv[0][O];

37 float v_r = ( kernel .index_d [0] == kernel .size_d [1] - 1)

38 ? 2 * V_r-vge: v[O][l],

39 float v_I = ( kernel .index_d [0] == 0) ? (2 * V_| - v_c) : v[0][-1];
40 float  v_t = v[1][0];

41 float v_b = (kernel .index_d [1] == 0) ? 0.0f : v[-1][0];

42

43 float A = (((v_t + v.c) *(v_t + v c)) - ((v.c + v_b) *(Vv_Cc + v_b)) +
44 ((v_r + v_c) =(u_tr + u_br)) - ((v_c + v_I) *(u_tl + u_bl)))/4.0f;
45 float B=vr+vIl+vt+vb-4 * V_C;

46

47 v.md=vc+dt +* (-A+ invRe = B);

48 return

49 |}

50

51 | kernel map calc_div_u(

52 out stream <float > div_u,

53 gather stream <float > u,

54 gather stream <float > v,

55 float  dt)

56 | {

57 float  u_r = u[0][0];

58 float u_| = ( kernel .index_d [0] == 0) ? 0.0f : u[O][-1];

59 float v_t = v[0][0];

60 float v_b = ( kernel .index_d [0] == 0) ? 0.0f : v[-1][0];

61

62 div_u = (u_r - u_l + v_t - v_b) / dt

63 return

64 |}

65

66 | kernel  map calc_p_next(

67 out stream <float > p_next,

68 gather stream <float > p,

69 in stream <float > div_u)

70 | {

71 float p_c = p[O][O];

72 float p_r = ( kernel .index_d [0] == kernel .size_d [0] - 1) ? p_c : p[O][1];
73 float p_l = ( kernel .index_d [0] == 0) ? p_c : p[O][-1];

74 float p_t = ( kernel .index_d [1] == kernel .size d [1] - 1) ? p_c : p[1][0];
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75 float p_b = (kernel .index_d [1] == 0) ? p_c : p[-1][0];
76

77 p_next = 0.25f * (p_r + p_l + p_t + p_b - div_u),
78 return

79 |}

80

81 | kernel map calc_p_error(

82 inout stream <float > p_next,

83 in stream <float > p)

84

85 float tmp = p_next - p;

86 p_next = (tmp >= 0.0f) ? tmp : -tmp;

87 return

88 |}

89

90 | kernel  reduce calc_max_error(

91 out float error,

92 in stream <float > p_error)

93 | {

94 error = (p_error.R > p_error.L) ? p_error.R : p_error.L;
95 return

96 |}

97

98 | kernel map calc_u_next(

99 out stream <float > u_next,

100 in stream <float > u,

101 gather stream <float > p,

102 float  dt)

103 |{

104 u_next = u - dt * (p[O][1] - p[O][OD);

105 return

106 |}

107

108 | kernel  map calc_v_next(

109 out stream <float > v_next,

110 in stream <float > v,

111 gather  stream <float > p,

112 float  dt)

113 |{

114 v_hnext = v - dt * (p[1][0] - p[O][OD);

115 return

116 |}

117

118 |int  main()

119 [{

120 stream <float > u_cur(SIZE_X, SIZE_Y);

121 stream <float > v_cur(SIZE_X, SIZE_Y);

122 stream <float > p_cur(SIZE_X, SIZE_Y);

123 stream <float > u_mid(SIZE_X, SIZE_Y);

124 stream <float > v_mid(SIZE_X, SIZE_Y);,

125 stream <float > p_mid(SIZE_X, SIZE_Y);

126 stream <float > div_u(SIZE_X, SIZE_Y);

127 int outer_loop, inner_loop;

128 I - (snip) --

129

130 TimerStart();

131 for (outer_loop = 0; outer_loop < 100; outer_loop++) {
132 calc_u_mid(u_mid(0,0,(SIZE_X-1),SIZE_Y), u_cur, v_cur, 0, U, dt, invRe);
133 calc_v_mid(v_mid(0,0,SIZE_X,(SIZE_Y-1)), u_cur, v_cur, 0, 0, dt, invRe);
134 calc_div_u(div_u(0,0,SIZE_X,SIZE_Y), u_mid, v_mid, dt);
135 error = FLT_MAX;

136

137 for (inner_loop = O; inner_loop < 4; inner_loop++){
138 calc_p_next(p_mid, p_cur, div_u);

139 calc_p_next(p_cur, p_mid, div_u);

140 calc_p_error(p_mid, p_cur);

141 calc_max_error(error, p_mid);

142 }

143 calc_u_next(u_cur(0,0,(SIZE_X-1),SIZE_Y), u_mid, p_cur, dt);
144 calc_v_next(v_cur(0,0,SIZE_X,(SIZE_Y-1)), v_mid, p_cur, dt);
145 }

146 TimerStop();

147

148 /I - (snip) --

149 return

150 |}
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Listing 2.5: The LU decomposition written in the SPRAT language.

kernel  map rowop(
gather stream <float > gath,
out stream <float > ostr)

ostr=gath[0][0]-gath[[-1]][] * gath[O]([-1]];
return

}

kernel map normalize(
gather stream <float > gath,
out stream <float > ostr){
ostr=gath[0][0]/gath[[-1]][O];
return

int  main( int argc, char = argv){
stream <float > str(N,N);
float  origMat[N *NJ;
int i;
Il - (snip) --
streamRead (str,origMat);

for (i = 0; i < N-1; i++){
stream <float >& s=str[i][i+1](1,N-i-1);

normalize(s, s); /I I kernel invocation
stream <float >& s=str[i+1][i+1](N-i-1,N-i-1);
rowop(s, S); /I I kernel invocation

}

Il - (snip) --

return  0;




Chapter 3

Automatic Performance Tuning for the
Domain-specific Language

3.1 Introduction

To achieve high performance in CUDA, it is needed to indicate sexeeution parameters

to execute tasks, and to optimize programs to effectively use architecture-specific features.
These optimizations and tuning for a particular architecture are necessary to exploit the
capability of accelerators.

Execution parameters are related to tdoenputational granularitywhich is the size
of Cooperative Thread Arra36], called theCTA configuration As the optimal CTA con-
figuration depends on both the computation of a program and the GPU hardware archi-
tecture, it is required to select an appropriate CTA configuration for individual GPUs and
programs [24]. Thus, a programmer has to take care of many CTA configurations in an
error-prone trial-and-error manner for every application program.

Optimization of memory access patterns is necessary to hide the latency of memory
accesses and also to improve the sustained memory bandwidth. In this optimization, use
of a low-latency on-chip memory is a key feature to optimize the memory access patterns.
However, optimization of memory access patterns is not easy because the overhead of inef-
ficient memory accesses depends on the architecture of GPUs. Moreover, as the size of an
on-chip memory is limited, programmers must carefully extract highly-reusable data blocks
to store on the on-chip memory. Thereby, programmers have to modify programs for each
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GPU, which may cause making bugs and performance degradation by inappropriate opti-
mizations.

As described above, since those performance tunings in CUDA are complicated and
labor-intensive, it is difficult even for expert programmers to appropriately optimize and
tune CUDA programs. Therefore, it is strongly required to automate these optimizations
and tuning to easily exploit the capability of GPUs.

To alleviate difficulties in GPU programming, the SPRAT programming framework has
been proposed in Chapter 2 to automate runtime processor selection. The SPRAT compiler
outputs aCPU codewritten in the C++ language for a CPU and a CUDA code for GPUs,
respectively. Several automatic optimization methods are implemented in the compiler for
CPUs, and it can be expected that those methods are automatically applied to the CPU code.
On the other hand, a compiler for a GPU cannot sufficiently optimize a CUDA code because
CUDA assumes that programmers explicitly apply these optimizations and tuning.

As a SPRAT program is automatically translated into multiple codes, it is impossible to
describe a highly optimized SPRAT program for a particular GPU. This problem arises not
only in SPRAT, but also in another high-level programming framework such as hiCUDA [37]
and HMPPJ[19]. Therefore, when a CUDA code is automatically generated by the compiler,
it is needed to automatically apply those optimizations and tuning for the CUDA code to
improve the sustained performance.

In this chapter, to automate architecture-specific optimizations and tuning in CUDA, au-
tomatic performance tuning methods are proposed to improve performance of automatically-
generated CUDA programs. Firstly, this chapter shows architectural restrictions and features
of GPUs. The scope of promising CTA configurations and effective use of memory hierarchy
in GPUs are shown based on those restrictions and features. On that basis, two optimiza-
tion methods of memory access patterns and a tuning method of the CTA configuration are
proposed. Finally, it is demonstrated that these proposed optimizations and tuning can auto-
matically improve the performance of a CUDA program.
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Figure 3.1: The thread hierarchy in CUDA.

3.2 Related Work

3.2.1 Performance Tuning in CUDA

CUDA is a programming framework for GPU computing provided by NVIDIA [3]. To ex-
ploit the GPU potential, CUDA requires careful code optimizations and parameter tunings.
Therefore, a programmer often needs to explore several optimizations and many parameter
configurations in a trial-and-error fashion to find the optimal one. To achieve high perfor-
mance in CUDA, it is especially important to optimize memory access patterns and adjust
the execution parameters.

Figure 3.1 illustrates the thread hierarchy in CUDA. A grid is a term to denote a set
of all threads launched for one kernel execution. A grid is decomposed into several CTAs
of the same size, and every CTA is assigned to a MP for parallel execution. In the current
GPUs, a CTA is further decomposed into warps each consisting of 32 threads. Each warp is
executed on a MP in an SIMD manner.

The configuration of a CTA determines the granularity of a computing task. Although
the CTA configuration is one of important factors that affects the sustained performance
of GPU computing, the optimal parameter configuration depends on both a program and a
GPU architecture. Therefore, it is difficult and labor-intensive even for expert programmers
to optimize those parameters according to both a computation and a GPU architecture.
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One key to achieve high performance is to exploit the memory hierarchy in the hardware
architecture, as shown in Table 3.1. In the CUDA programmingloaal memoryand a
shared memorgre generally used. The global memory has the largest memory space in the
memory hierarchy, but a global memory access needs a long access latency. In addition, the
memory bandwidth strongly depends on its memory access pattern. 16 threads in a warp,
called ahalf-warp, simultaneously access the global memory. These memory accesses are
coalesced and executed as one efficardlesced memory accessly if some hardware-
generation-dependent conditions are met.

The shared memory has only a small capacity, but its access latency is much shorter
than the global memory access latency. The data on the shared memory can be accessible
from threads in the same CTA. Hence, the shared memory is usually used to cache reusable
data.

Since each of the global memory and the shared memory has advantages and disad-
vantages, it is required to appropriately use both of them. Memory coalescing and data
prefetching [24] are two important optimization techniques always used to improve the per-
formance of CUDA applications. Therefore, there is a strong demand for automation of
those techniques.

The other key is to adjust CUDA execution parameters, i.e. the CTA configuration.
When the number of threads in a CTA, calle€ @A sizeis too large, the shared memory
capacity required by each CTA also becomes large. In this case, the number of CTAs per MP
becomes small. As a result, the number of CTAs executed in parallel decreases, resulting in
performance degradation.

Naruse et al. have reported that tuning of the CTA configuration is important to achieve
high performance [38]. They apply several optimizations and tuning to the Himeno bench-
mark [39] and investigate the effects of the optimizations and tuning. In their work, it is

Table 3.1: The memory hierarchy in CUDA.

Memory Type placement Memory Size Access Delay(cycle) Read/Write
Global memory | Off-chip  <6GB 200 R/W

Local memory Off-chip < Global = Global R/W

Shared memory | On-chip 16 or 48 KiB/SM = Registers R/W

Constant memory On-chip 64 KiB/chip = Registers Read Only
Texture memory | On-chip < Global 100< Read Only
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| Active (Running) | | Ready H Waiting / STALL | II Warp Switching Cycles:
MP state |Active (Running) |
CTA Warp .0 !Waltlng | Ready. !Wamng.. .
1 { Warpl Ready ;Wamng IReady 4Wa1tmg
CTA { Warp.2  |Ready ‘Wamng TReady ;Waltmg
2 Warp 3 Ready ;Wamng | Ready ;
CTA { Warp4 Ready Waiting. Ready
3 Warp .5 |Ready aiting...

(a) The number of warps assigned to one MP is enough to hide memory access latency.

| Active (Running) | | Ready || Waiting / STALL | l Warp Switching
Cycles
MP state |Active (Running) ]STALL IActive (Running) | STALL |
CTA { WarpO !Waltmg ’Wamng
1 Warp 1 Ready ;Wamng #Wamng
CTA Warp.2 Ready Waiting... Waiting...
2 { Warp3 Ready ; |Waiting # |Wa1t1ng

(b) The number of warps assigned to one MP is not enough to hide memory access latency.

Figure 3.2: Warp switching execution in CUDA.

demonstrated that tuning of the CTA configuration affects the sustained performance and is
as important as the optimizations of memory access.

In a GPU architecture, when threads are stalled at accessing the global memory, the MP
hides the latency by switching the stalled threads to another ready thread [36]. Figure 3.2
shows the cases that the number of warps assigned to one MP is enough and not enough
to hide the global memory access latency. If the number of warps assigned to a MP is
sufficiently large, the MP can fully run. Although a warp is stalled at every memory access,
the MP switches the warp to another warp that is ready to be executed. The stalled warps
wait for data to come when the another warp is executed. However, if the number of warps
assigned to a MP is not enough, the MP cannot hide the memory access latency and is stalled.

This technique to hide the latency is calkiitch-on-event multithreadirand is adopted
also in Sun Ultra SPARC T1 architecture [40]. Since the switch-on-event multithreading
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needs massive threads, the CTA size should be sufficiently large, and a small CTA results
in decreasing the number of the warps assigned to a MP and thereby degrading the perfor-
mance. Accordingly, in parameter tuning of the CTA configuration, both the shared memory
usage and the number of threads in a CTA must be carefully considered [24].

3.2.2 Optimization Tools for GPU computing

Ueng et al. have proposed CUDA-lite to assist writing a code with efficient memory access
patterns [41]. In CUDA-lite, a programmer inserts special annotations to specify reusable
data blocks in a code, and a compiler translates the annotated code into a standard CUDA
code using the shared memory for caching the reusable data. Therefore, a programmer does
not need to write a different code for each GPU hardware generation to achieve efficient
memory accesses.

Han et al. have proposed hiCUDA that generates a CUDA code from a sequential C code
with special annotations [37]. In hiCUDA, spec@bhgma annotations, “#pragma hicuda,”
are inserted into a C code to indicate the code blocks. The code blocks are translated into
CUDA codes and are executed on a GPU. In a similar approach, Oshima et al. have proposed
OMPCUDA that translates a C code with OpenMP [42] annotations to a CUDA code [43].
PGI compiler [18] and HMPP [19] are software products that provide compilers to translate
C or FORTRAN codes with special annotations to CUDA codes. These approaches provide
some special annotations to optimize data transfer, memory usages, the CTA configuration,
and so on. To achieve high performance in these approaches, a programmer must insert
appropriate annotations. Hence, it is required for a programmer to have knowledge of those
special annotations and GPU architectures.

All the above programming environments can relax the programming efforts required to
develop CUDA applications. However, they still expect that a programmer properly specifies
appropriate annotations corresponding to memory accesses and the CTA configuration. For
example, in the case of HMPP, the CTA configuration is set to a certain default value if a
programmer does not specify the value. Therefore, programmers have to manually adjust it
by some special annotations to maximize the sustained performance.

To achieve completely-abstracted programming for GPU computing, a programming
framework, named Stream Programming with Runtime Auto-Tun8®RAT [32, 44] has
proposed in Chapter 2. However, a SPRAT program is neutral to processor architectures
and is not optimized for GPU architecture. Thus, it may not exploit the full potential of a

46



3.2. RELATED WORK

GPU. Thereby, this chapter deals with automatic performance tuning methods for a CUDA
program automatically-generated from a SPRAT program.
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3.3 Optimizing Methods Based on Architectural Features

3.3.1 Optimization Methods for Memory Accesses
Reusable Data Prefetching

A programmer can use several types of memories in a GPU. The global memory is most
commonly used because of its large capacity. However, the latency of access to the global
memory is long, and the bandwidth of the global memory tends to be insufficient to exploit
the high floating-point operating rate of a GPU. Therefore, to exploit the computing capabil-
ity of GPUs, it is needed to find reusable data blocks and to store those blocks on the shared
memory. By using the shared memory for reusable data, the number of global memory ac-
cesses can be reduced. Reading data from the shared memory instead of the global memory
can increase the sustained memory bandwidth of a program.

The shared memory has a high bandwidth. However, its capacity is limited such as only
16 or 48KiB. Although there are many reusable data blocks in an application, the shared
memory cannot hold all of them due to the capacity shortage. In reusable data blocks, there
are data blocks accessed by multiple threads many times that areleghédreusable data
blocks Hence, to efficiently use the shared memory, it is needed to identify highly-reusable
data blocks and to preferentially place those blocks on the shared memory. In this section,
areusable data prefetchingethod is proposed to estimate highly-reusable data blocks by
analyzing a SPRAT program and to copy those data from the global memory to the shared
memory.

In the SPRAT language, reusable data blocks can be found omgjgithrer streams
because these blocks are accessed multiple times by contiguous threads in the same CTA.
An element ingather streams can be accessed by neighbor threads. Figure 3.3 shows the
memory access by using an absolute indexing operator, and all threads read one element in
the input stream. Figure 3.4 shows the memory access by using a relative indexing operator,
and each thread reads its corresponding element and neighbor elements in the input stream.
In these figures, a box and a cylinder mean an element in streams and a thread of a kernel,
respectively. These elements are reusable in multiple threads, and the memory accesses
to the same element by multiple threads are redundant. Hence, these redundant memory
accesses can be reduced by using the shared memory as a cache memory.

An elementinn /out /inout streams, calledequential access streanmsrelated to a
particular thread, and only the thread can access the element. Figure 3.5 shows the memory
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The coordinate of an input stream

The coordinate of threads

The coordinate of an output stream

Figure 3.3: The memory access pattern gather stream by an absolute index.
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Figure 3.4: The memory access pattern gbther stream by a relative index.

The coordinate of an output stream

The coordinate of an input stream

=
>

The coordinate of threads

P e e e e e e e e——

The coordinate of an output stream

Figure 3.5: The memory access pattermofandout streams.
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Listing 3.1: The sample code using an absolute indexing operator.

kernel map func2( gather stream <float > X,

out stream <float > y)

y = x[[0]};

AR WNEF
—~

Listing 3.2: The sample code using relative indexing operators.

kernel ~map func3( gather stream <float > x,

out stream <float > y)
{

}

GRrWNE

y = x[-1] + x[0] + x[1];

accesses for sequential access streams, and each thread reads only the corresponding element
in the input stream. Therefore, as an elementin sequential access streams cannot be accessed
by neighbor threads, there is no access to this or the element by multiple threads.

Generally, it is difficult to analyze the pattern of random memory accesses. However,
in the SPRAT language, it is relatively easy to analyze memory access patterns because
of relative and absolute indexing operators provided by SPRAT. These operators enable
programmers to indicate accessed elements by constant values with relative and absolute
indexing operators. The SPRAT compiler can statically figure out the access pattern to
gather streams if programmers use these operators with constant values. As a result, the
SPRAT compiler can determine highly-reusable data blockgther streams and gener-
ate a CUDA program in which those blocks are copied to the shared memory in advance of
memory accesses.

In the func2 function shown in Listing 3.1, an absolute indexing operator is used
with a constant value. The SPRAT compiler can estimate that all threads read the 0-th
element in thegather streamx, as shown in Figure 3.3. In the case of Listing 3.1, the
SPRAT compiler determines that the 0-th element inghther streamx is accessed N
times, where N is the number of threads in a CTA. Hence, the SPRAT compiler optimizes a
program so as to prefetch the 0-th element ingather streanx to the shared memory.

In thefunc3 function shown in Listing 3.2, three relative indexing operators are used
with constant values. The SPRAT compiler can estimate that each element is accessed three
times from neighbor threads as shown in Figure 3.4. In this case, it is possible to improve the
sustained memory bandwidth by prefetching the elements whose index numbers are between
I, —1andl, + N + 1, wherel, and N are the index number of the first thread and the CTA
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Figure 3.6: Estimation for the histogram of memory access counts.

size, respectively.

The SPRAT compiler finds absolute and relative indexing operators in a program and
estimates the elements accessed by the operators. As the SPRAT compiler knows the CTA
size when a program is compiled, the accessed elements and their access counts can be
completely estimated. Then, the SPRAT compiler merges the access counts of the elements
into one histogram of access counts, as shown in Figure 3.6. The SPRAT compiler can find
highly-reusable data blocks from the histogram and optimize a program to copy those data
blocks to the shared memory in advance.

Adjusting Access Patterns

In CUDA, to achieve high memory bandwidthmemory coalescin{] is required when a

GPU accesses its global memory. Memory access requests dispatched from threads in the
half-warp can be coalesced to one memory operation if the following conditions are met in
the case of GeForce 8800 GTX.

(1) The size of the element accessed by the threads must be 4, 8, or 16 bytes.

(2) If the element size is:
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Figure 3.7: Examples of a global memory access in CUDA.

e 4, all 16 elements must lie in the same 64-byte segment,
¢ 8, all 16 elements must lie in the same 128-byte segment,

e 16, all 8 elements must lie in the same 128-byte segment.

(3) Threads must access the elements in sequence: The k-th thread in the half-warp must
access the k-th element.

In CUDA, these coalescing conditions depend ondabpute capability3] of a GPU. The
coalescing condition (1) can be met if the data type of elements in a streain j$loat
or double . Moreover, in a SPRAT program, the coalescing condition (3) can be naturally
met because the stream programming model adopted by SPRAT already assumes this con-
dition exceptgather streams. Irgather streams, it is difficult to meet the coalescing
condition (3) because it cannot be ensured that elements read by threads are continuous. Ac-
cordingly, all the conditions are met for sequential access streams in SPRAT if the condition
(2) is met by optimizing the access pattern.

Figure 3.7 shows examples of coalesced and uncoalesced memory access patterns in a
CUDA program automatically-generated from a SPRAT program. If the first thread in a CTA
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Figure 3.8: The overview of the proposed method to adjust the access pattern.

accesses the element on a segment boundary, as shown in Figure 3.7(a), the other threads in
the half-warp also access elements in the same segment, and the coalescing condition (2) is
met. However, if the first thread in a CTA accesses the element with a certain offset from

a segment boundary, as shown in Figure 3.7(b), the other threads in the half-warp cannot
access the elements in the same segment, and the coalescing condition (2) is not satisfied.
As a result, this degrades the sustained bandwidth of the kernel.

However, the position of an element read by the first thread is not always on a seg-
ment boundary. If it is possible to ensure that the first thread accesses the element on a
segment boundary, the memory access pattern can satisfy the coalescing condition (2) and
the sustained bandwidth is improved.

To automatically optimize memory access patterns, the SPRAT compiler uses the shared
memory as a read buffer. Figure 3.8 shows the overview of the proposed method. The
SPRAT compiler adopts a buffering mechanism for emchstream in a SPRAT program.

In the buffering mechanism, all accesses to elements in astream are buffered on a read
buffer in the shared memory. In this method, one uncoalesced memory access is replaced
to two coalesced memory accesses. At the beginning of a kernel code, all threads in a half-
warp cooperatively load the data blocks including necessary data by two coalesced memory
accesses, and store those blocks to the read buffer. The load operations on the elements in
the global memory are changed to the operations on the elements in the read buffer. In this

53



CHAPTER 3.
AUTOMATIC PERFORMANCE TUNING FOR THE DOMAIN-SPECIFIC LANGUAGE

way, inefficient uncoalesced memory accesses are not used, and the efficiency of memory
accesses can be improved.

The proposed method causes redundant memory accesses because neighboring unnec-
essary data are loaded with necessary data in two coalesced memory accesses. Hence, it is
important to check if the proposed method improves the sustained bandwidth. The condition
that the proposed method can improve the sustained bandwidth is clarified in the following
calculation. The bandwidths of coalesced and uncoalesced memory accesses are assumed
B coalesced 8N By uncoalesceds €SpeCtively. The sustained memory bandwigithis defined
using thekEfficient of Data Usage as

B, =n- By, (3.1)
and
Dnecessary
— necessaty 3.2
1 Dloaded ( )

where D ecessary @Nd Dioageq @re the size of necessary data and loaded data from the global
memory, respectively. Here, the latency of the shared memory is ignored because it can be
negligible compared with that of the global memory.

In an unoptimized code, the sustained memory bandwidth of astreamB, ;;,0pt Can
be calculated by

Thunopt — 17 (3 3)

and

Be,unopt = Tunopt * Bg,uncoalesced = Bg,uncoalesced- (34)

On the other hand, in an optimized code, the sustained memory bandwidthirof an
streambB, .« can be calculated by

Be,opt = Topt 'Bg,coalesced- (35)
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Table 3.2: The bandwidths ratios between coalesced and uncoalesced memory accesses for
several GPUs.

B coalesce
GPU name Bg,coalesced Bg,uncoalesced B&#

g,uncoalesced
GeForce 8600 GTS 20.0 GB/s 2.9 GB/s 6.84
GeForce 8800 GT | 46.0 GB/s 4.9 GB/s 9.38
GeForce 8800 GTX 66.2 GB/s 6.8 GB/s 9.73
GeForce GTX 280 | 112.2 GB/s 61.6 GB/s 1.83

Therefore, the condition that the optimized code can outperform the unoptimized code

Is shown as
Be,opt o nopth,coalesced S| (3 6)
Be,unopt Bg,uncoalesced ’
therefore
Bg,coalesced > 1 . (37)
Bg,uncoalesced Topt

In the proposed method, the size of loaded data is the double size of necessary data
because two redundant memory accesses are needed to load necessary data. leace,
be calculated as

Dopt necessary 1
opt = ——————— = —. 3.8
g Pt D, opt,loaded ( )

Table 3.2 indicates the ratios of the coalesced memory access bandwidth to the uncoa-
lesced one. This table shows that the bandwidth ratio depends on the GPU, and the proposed
method is not always effective. The condition for the proposed method to improve the band-
width is given by

Bg,coalesced > 1 —9. (39)

B g,uncoalesced Topt

In Table 3.2, GeForce 8600 GTS, GeForce 8800 GT, and GeForce 8800 GTX meet
the condition of Equation (3.9). However, GeForce GTX 280 does not meet that condi-
tion. Hence, it is better to adopt the proposed method only if the GPU meets the condition.
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The SPRAT framework runs a simple benchmark in advance to measure the bandwidths;
Be coalesced @NA Be uncoalesced, @Nd can determine whether a compiler should apply this opti-
mization or not. The SPRAT compiler also has a compiler option to disable this optimization.

3.3.2 Automatic Performance Tuning of the CTA configuration

In the CUDA language, a programmer must determine execution parameters that indicate the
number of threads in a three-dimensional CTA and the number of CTAs in a two-dimensional
grid. When a kernel is invoked, each CTA in a grid is assigned to a MP. There is the upper
bound for the number of CTAs per MP determined by the GPU architecture. The number
of CTAs running on a MP is also restricted when the total amount of hardware resource
such as registers and the shared memory exceeds the given hardware resources of a MP.
A decrease in the number of threads running on a MP causes the inefficiency of switch-on-
event multithreading. Consequently, a programmer must determine the execution parameters
considering the hardware resources required by a CTA.

For tuning the execution parameters, NVIDIA defines an indicator cattedpancy45],
which is the ratio of the number of actually-assigned warps to the number of architectural
maximum warps on a MP. A higher occupancy results in a higher computing performance.
Although the occupancy depends on the amount of hardware resource used by a CTA, the
amount of hardware resource drastically depends on CUDA codes and their optimization
levels.

If a programmer stores too many reusable data on the shared memory, the size of
reusable data might exceed the shared memory capacity. Due to the shortage of the shared
memory, the occupancy decreases, resulting in performance degradation. However, the oc-
cupancy is not always an absolute indicator to find the optimal execution parameters. If a
programmer applies the reusable data prefetching, the occupancy decreases even though the
prefetched data are provided to the MP at a short latency and hence the computing perfor-
mance is generally improved.

The CTA configuration consists of its shape and size, which are the number of threads
in each dimension and the total number of threads in a CTA, respectively. The CTA shape is
as important as the CTA size to achieve a high sustained performance. A programmer can
independently indicate the number of threads in each dimension. The gird size is generally
calculated by the size of processing data with the CTA configuration.
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Listing 3.3: The code of the saxpy kernel.

kernel  map saxpy(
float ,

in stream <float > x,
in stream <float > vy,
out stream <float > 2)

z=a* X +y,
return ;

OCo~NOURWNE

The Space of Parameter Exploration

In the SPRAT framework, a programmer does not need to consider execution parameters
because the SPRAT compiler automatically decides the grid size and the CTA configuration.
The SPRAT compiler always defines the default configuration of a CT as16 x 1, and

the grid size is calculated with this CTA configuration. The CTA configuration predefined
by the SPRAT compiler is empirically decided and is adequate in many cases. However, it
is obvious that there is room to further improve the performance of the codes automatically
generated by the SPRAT compiler.

To explore an optimal parameter configuration, this section presents an automatic pa-
rameter tuning mechanism based on performance profiling with various parameter combina-
tions. As it is impractical to explore the whole tuning space, the proposed mechanism limits
the exploration space using the following conditions.

1. Reducing the exploration space based on the characteristics of GPU hardware.

There is an explicit relationship between sustained performance and the CTA con-
figuration. Figure 3.9 shows the sustained memory bandwidth obtained by changing
the CTA configuration of a simple data copy kernel. Figure 3.10 shows the sustained
performance of @axpy kernel shown in Listing 3.3. In these figures, the two axes
indicate the numbers of threads in two dimensiati$Ax and CTAy, respectively.
These results clearly indicate that the performance of each kernel becomes high when
CTAz is amultiple number of 16. This is because of an architectural reason as follows.
When a CTA is executed on a MP, the CTA is decomposed into warps. The threads
in a half-warp dispatch memory access requests to the global memory at the same
time. These requests can be coalesced if the coalesced conditions are met. Hence, the
efficiency of memory accesses is improved wii€RAz is only a multiple of 16.

Therefore, the proposed mechanism assumegthdt: is a multiple of 16 in order to
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limit the exploration space.

2. Reducing the exploration space based on the CUDA specification.

The CUDA specification defines the lower bound and the upper bound for the num-

ber of threads per CTA; the lower bound is 64 threads and the upper bound is 512
threads for a GPU whose compute capability is 1.x. Therefore, the proposed mecha-
nism searches the CTA configuration between those bounds.

In addition, the number of threads in the z dimension cannot exceed 64 and is not
flexible compared to those in the other dimensions. Hefl@&: is fixed to 1 and the other
dimensions are tuned.

The parameter exploration space in the proposed mechanism is summarized as follows

CTAx = 16N (N is an integer), (3.10)
64 < OTAz - CTAy - CTAz < 512, (3.11)

and
CTAz = 1. (3.12)

The grid size is calculated by

I , X
gridDim.x = ceil (C’TAx) , (3.13)
and
dDi = 1 T (3.14)
gridDimy = ceil | = Ay ) .

where X and Y are the width and height of antput stream to be computed by stream
processing in the kernel, respectively.

Auto-Tuning Mechanism

In the SPRAT compiler, the profiling system and the profile data analyzer work together
to find an appropriate CTA configuration. Algorithm 1 shows a pseudo code of the automatic
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Algorithm 1 Pseudo code of automatic tuning.
1. CTAz=1
2. for CTAy =1to512do
3. for CTAx =1to512do

4 if (CTAz mod 16 =0)and(64 £ CTAx - CTAy - CTAz < 512) then
5: Compile the program with@QT Az, CTAy, CTAz).

6 Profile the program with sample data.

7 end if

8: end for

9: end for

10: Analyze profiling data and output the optimal CTA configuration.
11: Compile with the optimal CTA configurationC(I’Ax, CTAy, CTAz).

tuning to explore the optimal CTA configuration under the reduced exploration space. Once

a programmer specifies a kernel name and input data, the mechanism automatically generates
kernels with various CTA configurations (Line 5 in Algorithm 1), profiles their performances
(Line 6), and looks for an optimal parameter configuration (Line 10). HéfE4x and

CTAy are changed from 1 to 512.

In data-parallel processing, the execution time of a kernel is in proportion to its data
size in many cases. Thus, the linear performance prediction model made from small-size
data sets can be used to predict the execution time of an arbitrary data size. The proposed
mechanism can find the optimal CTA configuration by using the small-size data sets in a
much shorter time than the profiling time with large data sets. The validation of this strategy
to reduce the tuning time is evaluated in Section 3.4.3.

To select an appropriate CTA configuration, the performance of the kernel for the data
size that is not given by a programmer must be predicted. The proposed mechanism firstly
obtains the performance data from several execution times using various data sizes and gen-
erates a linear performance prediction model based on the least square approximation [46],
as shown in Figure 3.11. Thus, the performance of a kernel for an arbitrary data size is
predicted by the slope and the intercept. In the proposed mechanism, these parameters such
as the slope and the intercept of a prediction model are calculated for each CTA configura-
tion. The optimal CTA configuration can be automatically found in the candidates of CTA
configurations by analyzing these parameters.

As the angle of a slope is dominant in predicted execution times for large data, the
proposed mechanism selects the CTA configuration with the minimum slope as the optimal
one. For example, in Figure 3.12, three prediction models are obtained. In this case, the
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CTA configuration 3 is the optimal configuration because its slope is the smallest in all the
CTA configurations.

61



CHAPTER 3.
AUTOMATIC PERFORMANCE TUNING FOR THE DOMAIN-SPECIFIC LANGUAGE

The execution time of kernel

The execution time of kernel

>

measured points -
by profiling with sample data

The size of processing data

Figure 3.11: The method of building a prediction model by profiling.

A
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Figure 3.12: The policy of selecting the optimal CTA configuration.
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3.4 Evaluation

3.4.1 Benchmarks for Evaluations

In the evaluation, two benchmark programs are used. One is the Himeno benchmark that is a
three-dimensional single-precision Jacobi kernel with various sizes [39]. Listing 3.4 shows
the main kernel of the Himeno benchmark implemented by the SPRAT language. This
kernel is a typical stencil processing code that updates every element of an array by using
its neighboring elements. Each elemengather streamp is accessed 18 times in one
iteration of the kernel. The SPRAT compiler detects those reusable data blocks and generates
a code that prefetches elements in the stream to the shared memory. Since the SPRAT
compiler converts a three-dimensional array into a two-dimensional array, it optimizes the
kernel code to reuse each fetched element 9 times.

The other benchmark is the LU decomposition that is often used in scientific applica-
tions. The LU decomposition consists of two kernels. Listing 3.5 shows the kernels of the
LU decomposition implemented by the SPRAT language. As the start address of data blocks
passed to the kernel varies in each iteration, many uncoalesced memory accesses occur in
executing the LU decomposition. In this case, adjusting the access pattern is effective to
improve the sustained performance. In these kernels, as the execution timer@ivtge
kernel is dominant, only theowop kernel is used for evaluation.

3.4.2 Evaluation of Optimization Methods for Memory Accesses

To demonstrate the effect of the optimization methods for memory accesses proposed in Sec-
tion 3.3.1, two benchmarks are evaluated under the experimental setup shown in Table 3.3.

To clarify the performance improvement by reusable data prefetching, the evaluation
using the Himeno benchmark is conducted. The problem size of the Himeno benchmark
is set toMIDDLE?256 x 128 x 128). In this evaluation, the performances of six programs
are compared; CUDA(baseline), CUDA(xy-reus€}UDA(no-reuse)l SPRAT (baseling)
SPRAT (auto)) and SPRAT (auto+manual).

The CUDA(baseline) implementation is a hand-tuned code by an expert programmer.
It efficiently uses the shared memory for highly-reusable data blocks. The CUDA(xy-reuse)
implementation is also a hand-tuned code without considering data reusability of thp array
for the z-direction. This is the same condition of a CUDA code automatically-generated by
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Listing 3.4: The main kernel of the Himeno benchmark implemented by SPRAT.

1 | kernel map jacobi(

2 gather stream <float > p,

3 in stream <float > a0, In stream <float > al,
4 in stream <float > a2, in stream <float > a3,
5 in stream <float > b0, in stream <float > bl,
6 in stream <float > b2, in stream <float > cO,
7 in stream <float > c1, in stream <float > c2,
8 in stream <float > bnd, in stream <float > wrkl,
9 out stream <float > wrk2, out stream <float > gosa)
10

11 float  ss, sO;

12 sO =

13 + a0 * p[+1][ O] Q]

14 + al = p[ O][+1][ O]

15 + a2 = p[ O][ O][+1]

16 + b0 * ( p[*+1][+1][ O] - p[+1][-1][ O]

17 - Pl O] + p[-1][-1][ O] )

18 + bl * ( p[ O][+1][+1] - p[ O][-1][+1]

19 - pl OI(+1][-1] + p[ O][-1]-1] )

20 + b2 ( p[+i][ 0][+1] - p[-1][ O](+1]

21 - pl+1][ OJ-1] + p[-1][ OI-1] )

22 + ¢c0 = p[-1][ O][ O]

23 + cl « p[ O][-1][ O]

24 + c2 * p[ O][ O][-1]

25 + wrk1;

26 ss = ( sO = a3 - p[O][0][0] ) * bnd;

27 gosa = SS * Ss;

28 wrk2 = p[0][0][0] + O.8f * SS;

29 return

30|}

Listing 3.5: The main kernel of the LU decomposition implemented by SPRAT.
kernel map rowop( inout stream <float > x, gather stream <float > y)

x_-= y[[-1]][0] * y[OJ[-11n;
return”

kernel map normalize( out stream <float > x, gather stream <float >y, )

X r%'[0].[0] I yl[-11][0;

retur

RPOOOO~NOUIRWNE
-~ —~ -~

e
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the SPRAT compiler with reusable data prefetching. The CUDA(no-reuse) implementation
is a simple code without considering any data reusabillty in the grray

The SPRAT(baseline) implementation is a simple CUDA code that is not optimized
and is translated directly from a SPRAT program. The SPRAT(auto) implementation is an
automatically-optimized CUDA code with reusable data prefetching. The SPRAT (auto+manual)
implementation is also an automatically-optimized CUDA code, but memory accesses to
non-reusable sequential access streams are adjusted by hand to meet the coalesced condi-
tions. In all implementations, the CTA configuration is fixed 6éox 16 x 1.

Figure 3.13 shows the sustained performance of the Himeno benchmark on GeForce
8800 GTX and GeForce GTX 280. In this figure, the performance is measured in floating-
point operations per second. The evaluation results clearly indicate that reusable data prefetch-
ing improves the performance of an automatically-generated CUDA program on both GeForce
8800 GTX and GeForce GTX 280. Especially, the performance improvement on GeForce
8800 GTX s 2.08 times of the SPRAT (baseline) implementation. As the bandwidth degrada-
tion of an uncoalesced memory access on GeForce 8800 GTX is larger than that on GeForce
GTX 280, reusable data prefetching is effective on GeForce 8800 GTX. On the other hand,
the performance improvement by reusable data prefetching is not so large on GeForce GTX
280.

The CUDA(baseline) implementation outperforms all SPRAT implementations because
it exploits data reusability of the array even in the z-direction. The SPRAT compiler does
not consider data reusability in the z-direction because of its specification. Hence, the max-
imum performance of the SPRAT implementations is expected to the performance of the
CUDA(xy-reuse) implementation.

Table 3.3: Experimental setup in Section 3.4.2.

Components | Specifications

CPU Intel Core 2 Quad Q6600 2.4GHz

Main Memory | DDR2-800MHz 4 Ghytes

GPU NVIDIA GeForce 8800 GTX, GeForce GTX 280
(0N Linux 2.6.18 x8664

Compiler gcc version 4.1.2 with “-O2” option

Video driver | NVIDIA driver version 180.44

CUDA version 2.0
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Figure 3.13: Evaluation results with the Himeno benchmark.

However, the performance of the SPRAT(auto) implementation is less than that of the
CUDA(xy-reuse) implementation because of uncoalesced memory accessestteams.
A simple implementation of the Himeno benchmark cannot meet the coalesced conditions,
and many uncoalesced memory accesses cause the serious performance degradation, espe-
cially on GeForce 8800 GTX. Hence, the SPRAT (auto+manual) implementation that manu-
ally adjusts memory accessesrto streams achieves higher performance than other SPRAT
implementations. The performance difference between the SPRAT(auto+manual) imple-
mentation and the CUDA(xy-reuse) one is caused by the memory accessesito stneam.
In CUDA(xy-reuse) implementation, memory accesses towtn stream are manually ad-
justed.

The effects of two memory access optimizations can be evaluated with the LU decom-
position. Figures 3.14 and 3.15 show the sustained performance in several matrix sizes on
GeForce 8800 GTX and GeForce GTX 280, respectively. In these figures, the horizontal and
vertical axises indicate the sizes of square matrices and the sustained performances of the
corresponding matrix sizes, respectively.
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Figure 3.14: Evaluation results with the LU decomposition. (GeForce 8800 GTX)

From the evaluation results shown in Figure 3.14, it is obvious that two memory access
optimizations can improve the sustained performance by 2.95 times compared to an unopti-
mized code on GeForce 8800 GTX when the matrix siZ@9¥ x 4096. In the kernel of the
LU decomposition, there is a high reusability iy &tream because tlyestream is accessed
by using absolute indexing operators and memory accesses from threads are concentrated to
a few elements in that stream. Hence, reusable data prefetching is effective to improve sus-
tained bandwidths of the kernel in the LU decomposition. Moreover, as the bandwidth ratio
between coalesced and uncoalesced memory accesses is large, adjusting the access pattern
is also effective on GeForce 8800 GTX.

On the other hand, adjusting the access pattern degrades the sustained performance on
GeForce GTX 280 because the bandwidth ratio between coalesced and uncoalesced memory
accesses on GeForce GTX 280 is smaller than the threshold ratio required by the proposed
method to work well. For those GPUs, adjusting the access pattern should be disabled to
avoid performance degradations.
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Figure 3.15: Evaluation results with the LU decomposition. (GeForce GTX 280)

3.4.3 Evaluation of the CTA Configuration Tuning

To clarify the effect of automatic performance tuning of the CTA configuration, this section
evaluates the proposed tuning method with two benchmarks. The experimental setup of this
evaluation is shown in Table 3.4.

The evaluation with the Himeno benchmark uses five input data sets for profiling and
one input data set for performance evaluation. The grid sizes of the five data sets used in
profiling are64 x 32 x 32, 128 x 64 x 64, 192 x 96 x 96, 256 x 128 x 128 and320 x 160 x 160.

The proposed tuning mechanism automatically generates CUDA codes with various
CTA configurations and carries out performance profiling with the five data sets. Figure 3.16
shows the performance model of each CTA configuration. In this figure, “Automatically Op-
timized” and “Not Optimized” indicate the predicted performance with and without reusable
data prefetching optimization, respectively. “Selected CTA configuration” is the selected
one by the proposed mechanism. Using these performance models, the proposed mecha-
nism decides the optimal CTA configuration @S7T'Azx, CTAy) = (16, 6) whose slope of
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the performance model is the smallest.

Next, the performance of the CTA configuration determined by the proposed tuning
mechanism is evaluated with a test data set which is not used in profiling. The grid size
of the test data set 812 x 256 x 256 that is larger than the profile data sets. For the test
data set, Figures 3.17 and 3.18 show the predicted and actual execution times of each CTA
configuration, respectively. In the case@Ay = 1, as the number of gridDim.y of the
code exceeds its upper bound, the code cannot be executed on a GPU. The execution times
of such CTA configurations are not shown in the Figure 3.18. By the same reason, the
experimental results in the case@7'Ay = 1 are not shown in the Figures 3.19 and 3.20.
However, the performance of such a parameter configuration is always low and hence this is
not a problem in practical uses.

These execution times in these figures are normalized by the minimum one. The maxi-
mum difference and the average difference are 0.411 and 0.079 in the normalized execution
times, respectively. The correlation coefficient between the predicted and actual execution
times is 0.969. The correlation coefficient between the predicted and actual rankings is
0.821. These two distributions explicitly show the correlation between the predicted and
actual execution times.

In Figure 3.19, all the CTA configurations are sorted in ascending order of the actual
execution time. The actual execution time of the selected CTA configuration is marked with
a circle. These results clearly indicate that the selected CTA configuration can achieve high
performance for the test data set. The selected CTA configuration is a suboptimal CTA
configuration whose performance is almost the same as the optimal one. The difference in
execution time between the automatically-selected CTA configuration and the optimal one

Table 3.4: Experimental setup in Section 3.4.3.

Components | Specifications

CPU Intel Core i7 920 2.66GHz

Main Memory | DDR3-1066MHz 12 Gbytes

GPU NVIDIA Tesla C1060

(0N Linux 2.6.18 x8664

Compiler gcc version 4.4.0 with “-O2” option
Video driver | NVIDIA driver version 190.29
CUDA version 2.3
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Figure 3.16: The performance model of each CTA configuration on the Himeno benchmark.

is less than 1%.

Figure 3.20 shows the correlation between the predicted and the actual rankings of CTA
configurations. Each circle in Figure 3.20 corresponds to one CTA configuration. Its two
coordinates are the predicted ranking and the actual ranking of the CTA configuration in
execution time, respectively. This figure illustrates that there is a strong correlation between
the predicted and the actual rankings, resulting in the accurate prediction of an appropriate
CTA configuration for the Himeno benchmark.

In the evaluation with the LU decomposition kernels, five matrices and one matrix are
used for profiling and for performance evaluation, respectively. The sizes of five matrices
used in profiling ard6 x 16, 32 x 32, 64 x 64, 128 x 128 and256 x 256. The size of a
matrix used for evaluation )96 x 4096.

Figure 3.21 shows the performance model of each CTA configuration constructed from
the profile data. The CTA configuration selected by the proposed mechaniSffids:, CTAy) =
(32,9) because its slope is the smallest. For the test matrix, Figures 3.22 and 3.23 show the

70



3.4. EVALUATION

32w 3.0
]
]
| |
28 —+m=
]
]
= 2.6
24 +m
]
n Z
[ g
= 20 = o B
g u <R
B=i ™ [=N
g = o
S 16 mm I}
L | I £
% | J | o
g ] 1.8 z
]
(¢l
1.4
N
---;---;
EEENEEENEEENEEENEEENEER
LT

192 256 320 384 448 512
CTAx (blockDim.x)

Figure 3.17: The predicted execution time of each CTA configuration on the Himeno bench-
mark.
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Figure 3.18: The actual execution time of each CTA configuration on the Himeno bench-
mark.
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Figure 3.21: The performance model of each CTA configuration on the LU decomposition.

predicted and actual execution times of each CTA configuration, respectively. The maximum
difference and the average difference are 0.582 and 0.187 in the normalized execution times,
respectively. The correlation coefficient between the predicted and actual execution times is
0.627. The correlation coefficient between the predicted and actual rankings is 0.729. These
two distributions show the emphatic correlation between the predicted and actual execution
times.

In Figure 3.24, all the CTA configurations are sorted in ascending order of the actual
execution time. In this figure, the actual execution time of the selected CTA configuration is
marked with a circle. The proposed mechanism can also find the suboptimal CTA configu-
ration for the LU decomposition program. Unlike in the case of the Himeno benchmark, the
selected CTA configuration is the 13-th in the actual performance ranking, because there are
many CTA configurations whose performances are comparable to the optimal. The selected
CTA configuration is the first in the predicted performance ranking. Since the actual per-
formance ranking in suboptimal CTA configurations frequently varies by measuring errors,
the difference in execution time is important. Figure 3.25 shows that the prediction of the
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Figure 3.22: The predicted execution time of each CTA configuration on the LU decompo-
sition.
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Figure 3.23: The actual execution time of each CTA configuration on the LU decomposition.
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Figure 3.24: The ranking of actual execution time on the LU decomposition.
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Figure 3.25: The correlation between the predicted and the actual rankings of CTA configu-
rations on the LU decomposition.

75



CHAPTER 3.
AUTOMATIC PERFORMANCE TUNING FOR THE DOMAIN-SPECIFIC LANGUAGE

mechanism is not so accurate in terms of the correlation between the predicted ranking and
the actual ranking of the CTA configurations. However, the difference in execution time
between the selected CTA configuration and the optimal one is still small and only 1.7%,
of the total execution time. In this evaluation, the difference in execution time between the
worst CTA configuration and the optimal one is 47%, and the average difference is 15%.

The evaluation results demonstrate that the proposed mechanism can find the appropri-
ate CTA configuration for the Himeno benchmark and the LU decomposition based on the
profile data obtained with smaller-size data sets. When only a few CTA configurations can
achieve the comparable performance with the optimal one, the proposed method can easily
find an appropriate CTA configuration. In addition, it is also shown that the prediction ac-
curacy decreases because there are many suboptimal configurations. In this case, although
it may be difficult to find the optimal configuration, the proposed mechanism can select a
suboptimal one and avoid inappropriate CTA configurations. It is acceptable in many cases
because the performance difference between the selected and the optimal ones is sufficiently
small.
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3.5 Concluding Remarks

In CUDA, to improve sustained performances of programs, it is required to optimize those
programs for a particular architecture of a GPU. In this chapter, two performance tuning
strategies are proposed for automatically-generated CUDA programs.

One of the performance tuning strategies is optimization of memory accesses that con-
sists of reusable data prefetching and adjusting access patterns. These optimizations can
improve sustained memory bandwidths of a program by efficiently using the shared mem-
ory. The reusable data prefetching method finds highly-reusable data blocks in streams and
stores those blocks on the shared memory in advance. As the latency of the shared memory
is very short, threads in a CTA can access at high memory bandwidths. The adjusting access
patterns method uses the shared memory as a low-latency read buffer to avoid inefficient
memory access.

The other is automatic tuning of CTA configuration that determines the number of
threads executed on a MP. In GPUs, to hide the global memory access latency, a suffi-
cient number of threads must be assigned to one MP. However, too many threads cause the
shortage of hardware resource. Since the optimal CTA configuration depends on both the
computation of a program and a GPU, it is labor-intensive even for expert programmers to
find the optimal CTA configuration. The proposed tuning mechanism automatically finds
the optimal CTA configuration from certain candidates that are derived from architectural
features of GPUs. To find the optimal one, the proposed method uses the slope of a lin-
ear performance model. If the angle of the slope is the smallest, the corresponding CTA
configuration is selected as the optimal one.

Evaluation results with the Himeno benchmark and the LU decomposition indicate that
two performance tuning strategies effectively improve the sustained performance of their
CUDA programs. From the evaluation results, it is demonstrated that reusable data prefetch-
ing can improve sustained memory bandwidth irrespective of GPU architectures, especially
for programs that have absolute indexing operators in the SPRAT language.

The CTA configuration tuning method can automatically find the optimal or suboptimal
CTA configuration based on the profiling data. In the case of the Himeno benchmark, there
are a few suboptimal configurations. In this case, the proposed method selects the second
optimal configuration whose difference in execution time to optimal one is less than 1%. In
the case of the LU decomposition, there are many suboptimal configurations. The proposed
method selects the appropriate one and avoids inappropriate configurations. Hence, the CTA
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configuration tuning method reduces the labor-intensive performance tunings.

As described above, the proposed methods for automatic performance tuning are ef-
fective to alleviate burdens of programming in CUDA. Although these methods use some
architecture-specific features, the proposed methods are applicable to other accelerators.
Since these methods exploit the features of the SPRAT language to extract useful infor-
mation such as the position of highly-reusable data blocks and memory access patterns of
the kernels, these methods can optimize programs based on the information even if any other
accelerators are utilized. Moreover, it can always be assumed that the execution time of a
SPRAT program is proportional to the size of output data if an accelerator can execute stream
processing. Therefore, the proposed method can find the optimal execution parameters of
such an accelerator in a short time by using the performance prediction model of SPRAT.



Chapter 4

Online Task Scheduling in Standard
Programming Environments

4.1 Introduction

OpenCL [4] has been proposed as a standard programming interface that can use various
accelerators in a unified manner. Currently, there are OpenCL implementations for major
accelerators such as NVIDIA GPUs [47], AMD GPUs [48], Cell Broadband Engine [49],
and multi-core CPUs [50]. Moreover, OpenCL can utilize accelerators in other nodes via a
network by using Virtual OpenCL [51]. An OpenCL program can run with various accelera-
tors without modification of the source code. Therefore, OpenCL alleviates the difficulty of
runtime processor selection among various processors for programmers. However, it does
not solve the task assignment problem, and a programmer has to explicitly assign each task
to one of processors in the system.

An OpenCL program needs to be linked with an appropriate runtime library when it is
launched. This means that the user should select an appropriate accelerator to exploit the full
potential of the heterogeneous computing system, as shown in Figure 4.1(a), even though an
application user may not know the details of the program. As the sustained performance of
a program strongly depends on the combination of a computation and an accelerator, inap-
propriate task assignment results in severe performance degradation. This problem becomes
more serious when multiple accelerators are available in a heterogeneous computing system.

If a heterogeneous computing system has multiple accelerators and an application has
manyparallel tasks the sustained performance can be improved by assigning parallel tasks
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Figure 4.1: The problem of (a) appropriate task assignment and (b) the proposed solution.

for different accelerators. Ideally, the sustained performance is proportional to the number
of used accelerators if appropriate load balancing is performed among multiple accelerators.
Hence, load balancing is a key feature to exploit the high potential of the heterogeneous com-
puting system. However, programmers may not know the number of available accelerators
and the execution times on each accelerator in the user’s system. Moreover, the execution
times of tasks often depend on the argument values passed to the tasks and the size of input
data. Therefore, it is difficult even for expert programmers to determine the optimal task as-
signment in advance of execution. On the other hand, it is impractical to delegate appropriate
task assignment to application users.

To alleviate these difficulties in OpenCL, online task scheduling is useful to automate
appropriate task assignment according to the computations at runtime. If programmers de-
scribe programs without considering the number of available accelerators in the system and
their individual performance, the runtime environment has to assign each task to an appropri-
ate accelerator. Hence, an online task scheduling method is needed to appropriately assign
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tasks, as shown in Figure 4.1(b). For online task scheduling in OpenCL, three key technolo-
gies are necessary: a performance prediction method, a data and event dependency analysis
method, and a task scheduling method.

Highly-accurate performance prediction is needed for online task scheduling in OpenCL.
Since OpenCL has high programming flexibility and enables a programmer to implement
various algorithms and data structures as with the standard C language, it is impossible
to assume the explicit correlation between the execution time and the number of launched
threads. Hence, simple prediction models that assume the correlation are not available in
the performance prediction of OpenCL programs. There are two major approaches in per-
formance prediction: analytic approaches [52, 53] and empirical approaches [44, 29]. The
former approaches require a particular hardware model of each accelerator and its parameters
that characterize the behavior of a program. These analytic approaches are not applicable to
accelerators whose hardware details are not disclosed because the accurate hardware models
cannot be built. On the other hand, the empirical approaches can predict the performance
based on profile data and are applicable to any accelerators. However, a naive empirical
method such as averaging past execution times may not achieve accurate prediction when
the execution times vary drastically. Therefore, a new history-based method to predict the
performance of OpenCL programs is required for online task scheduling.

To execute tasks in parallel, it is required that there are many parallel tasks in an ap-
plication. When there are a few parallel tasks, it is impossible to improve performance
even if multiple accelerators are available. Hence, programmers have to describe programs
that have many parallel tasks. However, it is generally labor-intensive to find promising
tasks that can potentially run in parallel. In this chapter, a data dependency analysis method
is proposed to find parallelisms among tasks to facilitate task parallelization. In addition,
an event dependency analysis method is also proposed to find unnecessary synchronization
points that prevent the performance improvement. These methods enable programmers to
optimize their programs without labor-intensive analyses.

Finally, an online task scheduling method based on performance prediction is proposed.
The proposed scheduling method usedMim@mum Completion TimgMCT) algorithm [54]
and tasks are assigned to an appropriate accelerator that can early complete executing the
task. The performance evaluation is conducted using benchmarks that have parallel tasks.
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Figure 4.2: The platform model of OpenCL.

4.2 Related Work

4.2.1 OpenCL

OpenCL is a programming interface to use different accelerators in a unified manner. Fig-
ure 4.2 shows the platform model assumed in OpenCL. The platform model of OpenCL is
similar to that of CUDA. One host manages multiple accelerators, catlegbute devicedn

a compute device, there are seve@npute unitshat run blocks of threads. A compute unit
consists of severagdrocessing elementand each processing element executes one thread.

In the OpenCL programming model, a part of an application program running on accel-
erators is defined askarnel which is duplicated and executed by many threads in parallel.
Figure 4.3 shows the thread hierarchy of OpenCL. When a kernel is launched, a program-
mer should set executing parameters according to the thread hierarchy of OpenCL. A thread
called awork-itemis the smallest unit in the thread hierarchy to execute a kernglork-
group consists of some work-items and is a unit to be assigned to a compute unit. The
number of work-items in a work-group is called twerk-group sizeor thelocal work size
which is an important parameter that determines the granularity of computations to be as-
signed to each compute unit. AfDRangeconsists of several work-groups and is assigned
to a compute device when a kernel is launched. The number of work-items in an NDRange
is called theNDRange sizer theglobal work size

Figure 4.4 shows the queuing model of OpenCLcédnmands dispatched to transfer
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data and to execute kernels. A command that executes a kernel corresponds to one task of the
kernel. To execute tasks in OpenCL, a programmer enqueues kernels to a waiting list corre-
sponding to a compute device, called@mmand queueCommands in a command queue

are asynchronously executed from a host thread on a CPU. Commands in each command
queue are independently executed each other. To exploit multiple accelerators, programmers
take care of multiple command queues corresponding to each compute device.

When a command is enqueued to a command queue, explicit dependencies to other
commands can be set by usinge@rent object An event object is an object related to the
state of a particular command and is created at enqueuing the command. For example, when
a command to execute a kernel K1 is enqueued, a programmer can get the event object
E1l related to that command. Next, when a command to execute a kernel K2 that has a
dependency to a kernel K1 is enqueued, a programmer can explicitly indicate the dependency
by passing an event object E1. Thus, a programmer can give an order constraint to execute
kernels K1 and K2.

In OpenCL, there are two types of functions to enqueue commands to a command
gueue; anon-blockingfunction and ablocking function. When a non-blocking function
is called, the host thread does not wait for the completion of the command, and the com-
mand is executed asynchronously. On the other hand, when a blocking function is called,
the host thread waits for the completion of the command. The blocking function call creates
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implicit order constraints because the subsequent command enqueued after this call cannot
be enqueued until the preceding command is completed.

All data accessed by kernels are allocated on the device memory and managad-as
ory objects Only data transfer APIs and kernels can read and write data in memory objects.
When a memory object is created, flags of access modes such as read-only, write-only, and
read-write are specified. Hence, accesses to a memory object, cBkatlANrite relation
can be roughly analyzed by using these flags. However, one kernel might need to read the
object written by another kernel. In this case, the Read/Write relations of the kernels are not
read-write even if read-write flag is set. Therefore, it is needed to analyze a kernel to figure
out the Read/Write relation between a kernel and a memory object.

4.2.2 Performance Prediction Methods

There are several analytic methods that build a prediction model by considering the charac-
teristics of a given target architecture and an application program.

Baghsorkhi et al. have proposed an adaptive performance prediction model for GPUs[52].
Their work focuses on the NVIDIA GPU execution model, in which threads are grouped to
a unit called awvarp and executed in &ingle-Instruction, Multiple-ThreadSIMT) man-
ner [36]. This prediction model can achieve a high accuracy by precisely analyzing the
execution flow of a program with considering the warp execution mechanism. However, this
model cannot be applied to the hardware of a different execution mechanism.
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Hong et al. have also proposed an analytic performance prediction model for GPUs[55].
In their work, a model that can achieve highly-accurate performance prediction is derived
from the numbers of memory accesses, operations, and active warps of the target architec-
ture. However, the accuracy would be low when the performance is predicted for unexpected
architectures. In addition, it is difficult to predict the performance if the compute device used
in execution of a kernel is decided at runtime.

The simplest empirical method to predict execution time of a kernel is to average all
past execution times under the assumption that the execution time of a kernel does not sig-
nificantly change. This simplest method is the most light-weight method. However, the
accuracy of this prediction method is degraded if the execution time varies drastically.

Some researches use runtime information to further improve the accuracy of the pre-
dicted execution time. If there is a relationship between runtime information and execution
time, the accuracy of the predicted execution time can be improved by using the runtime
information. Trancoso et al. have reported that the difference in performance between CPUs
and GPUs varies depending on the size of processed data and the number of operations on the
data [29]. As the size of data determined by the problem size is usually decided at runtime,
it is impossible to statically estimate the speedup ratio obtained by using GPUs.

In runtime environments adopting a so-called SPMD (Single-Program, Multiple-Data)
programming model such as CUDA and OpenCL, there is a correlation between the number
of threads and the execution time in many cases. Therefore, in the SPMD programming
model, the execution time of a kernel is roughly modeled by

T reas N reas
Texecution = 0 ;}X thread + overheads, 4.1)

parallel

whereT...cution 1S the total execution time of a kernél,,...q IS the execution time of each
thread, andVip,eaqa @aNd Np,rane are the number of threads and the number of processing el-
ements in the underlying hardware, respectively. Equation (4.1) is a linear prediction model
with the global work size.

Since the execution time of each thread is almost unchanged, it is possible to achieve
accurate prediction by Equation (4.1). For simple kernels such as computation without
loops and branches, this simple approach can achieve sufficiently-accurate prediction. In
SPRAT [44], this performance model is used for the prediction of execution times. SPRAT
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assumes a linear relationship between the size of a memory object to be written computa-
tion results and the execution time, and it builds a performance model by using the size of
the memory object. Evaluation results in Chapter 2 show that this performance model can
achieve accurate prediction enough for stream processing in SPRAT.

However, in the case wheft,,..q depends on runtime parameters, the simple approach
cannot accurately predict the execution time of a kernel. One effective approach is to use
General Linear Least Square(GLLS) [56]. This approach assumes that there are relations
between the execution time and multiple runtime parameters such as the global work size,
the local work size, and argument values of a kernel. Thus, this approach can build a linear
model with these runtime parameters. Although GLLS is an effective method to build such
a linear model, the accuracy of the performance prediction is degraded if there is a non-
linear relationship between some runtime parameters and the execution time. Therefore, it
is necessary to identify useful runtime parameters to improve the accuracy of a prediction
model built by GLLS.

For online task scheduling, a history-based performance prediction method is proposed
in this chapter under the assumption that a compute device to execute a kernel is decided
at runtime. The purpose of the proposed prediction method is to accurately predict the
execution time of an OpenCL program without changing the OpenCL programming model.
To improve the accuracy of the prediction, the proposed method uses not only the time of
the past kernel execution, i.e. profile data, but also runtime parameters given at the kernel
launch. It does not assume any particular architecture for performance prediction. Therefore,
it enables to predict the performance of even an unknown processor if the profile data of the
processor are available.

4.2.3 Methods for Dependency Analysis

Data dependency analysis is fundamental to get important information for optimizing pro-
grams, and many methods have been proposed. In compilers, data dependency analysis
among instructions is performed to schedule instructions [57]. Moreover, in C or FORTRAN
languages, it is important to finghrallel code blockshat can be independently executed on
different processors. There are many researches to find parallel code blocks in high-level
programming languages.

Kasahara et al. proposed an automatic parallelization method for a FORTRAN pro-
gram [58]. This method extracts parallel basic blocks, iterative blocks, and subroutine blocks
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from a program. In this method,raacro-flow graptthat shows data dependencies and con-
trol dependencies between basic blocks is generatednagro-task graptthat indicates
parallel blocks is also created from a macro-flow graph by uBeugjest Executable Condi-
tion analysis [59]. Then, this method automatically inserts OpenMP directives to FORTRAN
programs based on the macro-task graph.

Diamos et al. have proposed a method to perform speculative execution of kernels in or-
der to exploit task-level parallelism [60]. Their proposed method statically analyzes data and
control dependencies in a program written by using the Harmony framework. In addition,
this method shows the maximum limit of kernel-level parallelism in a program and the esti-
mated performance improvement by speculative kernel execution. This method assumes that
programmers can appropriately insert special annotations to a program. Therefore, program-
mers must modify a program to insert annotations in order to indicate accurate Read/Write
states of a kernel. If a programmer inserts inappropriate annotations, dependency analysis
and speculative execution are failed. Hence, programmers must have sufficient knowledge
of annotations provided by the Harmony framework.

Dependency analysis methods without adding any annotations are proposed in this
chapter to facilitate task parallelization. The proposed method records memory accesses
from kernels and API function calls. It analyzes these histories to extract data and event de-
pendencies. Programmers can optimize a program based on the analysis results and modify
it to effectively exploit multiple accelerators.

4.2.4 Methods for Task Scheduling

In task scheduling, there are two approaches; offline scheduling and online scheduling.
Topcuoglu et al. have proposed two offline task scheduling algorithms for heteroge-
neous processorsieterogeneous Earliest Finish TiEFT) andCritical Path on a Pro-
cessol(CPOP) [61]. In the HEFT algorithm, a task that has a long path of upward dependen-
cies is given a high priority, and that task is preferentially scheduled to the processor that can
finish executing early. The CPOP algorithm is similar to the HEFT algorithm, but it finds a
critical path of dependencies among tasks, and then all tasks in the critical path are assigned
to acritical-path processor.
llavarasan et al. have proposPdrformance Effective Task Schedul{i®RETS) algo-
rithm for scheduling in heterogeneous computing environments [62]. Their proposed method
performs static scheduling based on a data dependency graph. In the PETS algorithm, tasks
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are sorted based on their data dependencies, and a priority is given to each task according
to its average execution time, the cost of data transfer, and the rank of predecessor task.
Then, a task with the highest priority is scheduled to a processor that can early complete
the execution of the task; this scheduling is applied to all tasks in order of priority. How-
ever, as these methods assume that the execution times of tasks are already known and are
not changed at runtime, these methods cannot perform in the case where the execution time
varies dynamically according to the runtime parameters such as the argument values.

Grewe et al. have proposed a static task partitioning approach in OpenCL [63]. They
suppose that experimental task partitioning cannot achieve maximum performance, and in-
appropriate task partitioning causes performance degradation. Hence, their proposed method
determines task partitioning by usiSgipport Vector MachingSVMs) based on the charac-
teristics of programs. However, this method cannot deal with three or more processors, and
its accuracy of task partitioning depends on the quality of machine learning. Therefore, this
method needs a sufficient number of benchmarks for machine learning. Moreover, as this
method assumes only 11 classes of task partitioning, it is impossible to finely adjust the ratio
of task partitioning.

As these offline scheduling approaches assume that the execution time is already known,
offline scheduling methods are not suitable for the case where the execution time varies at
runtime. Therefore, online scheduling is needed to perform automatic load balancing in
OpenCL.

Minimum Execution TIm@ET) is a simple online scheduling algorithm. The sched-
uler based on the MET assigns a task to a processor that can minimize the execution time
of the task. In the MET algorithm, the execution tinfe/} of a taskj is estimated for each
processof. Then, the task is assigned to a processor Wtﬂjsie minimum. In the MET al-
gorithm, if there is the difference in performance between processors, tasks are concentrated
on the faster processors.

Minimum Completion TIm@MCT) is another scheduling algorithm proposed by Mah-
eswaran et al. for heterogeneous computing systems [54]. In the MCT algorithm, the com-
pletion time of the task on the processaris calculated by

Cl =W, + 17, (4.2)

whereV; is the total execution time of assigned tasks on the processord 7/ is the

)

execution time of the task on the processar Then, the task is assigned to a processor
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whoseC? is minimum. The MCT algorithm is superior to the MET algorithm because it can
avoid the concentration of tasks on a particular processor.

As these algorithms need the accurate execution times of tasks, they are often used for
offline scheduling based on profiling. However, if the execution time of a task varies at run-
time depending on input data and available accelerators, it is difficult to obtain the accurate
execution times of the tasks by only a profiling. Hence, the proposed online task scheduling
method adopts the MCT algorithm for online scheduling based on the performance predic-
tion with profiling.
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4.3 Online Task Scheduling Based on Performance Predic-

tions

4.3.1 History-based Performance Prediction with Profile Data Classifi-
cation

In OpenCL, several runtime parameters are necessary, and some of the parameters affect the
execution time. If the value of a runtime parameter has an effect on the execution time of a
kernel, the effect can further be categorized into a linear or non-linear effect. The parameters
with linear effects include the number of threads, the length of a loop in the kernel, and so
on. The parameters with non-linear effects include a flag that changes the execution path of
a kernel code, an index that changes the memory address accessed in the kernel, and so on.

In Section 4.3.1, a performance prediction method is proposed to improve the accuracy
of the prediction by profile data classification. The proposed method can eliminate param-
eters with non-linear effects from the explanatory variables for GLLS to build an accurate
prediction model. This section describes

e runtime parameters that are available at runtime in OpenCL,

e runtime parameter types and how to categorize runtime parameters into three types,
and

¢ the procedure of the proposed prediction method.

Figure 4.5 shows the overview of the proposed prediction mechanism. The proposed
method categorizes runtime parameters into three types according to the effect of each run-
time parameter on the execution time, and classifies profile data according to the values of
the non-linear parameters. Then, the proposed method builds multiple linear prediction mod-
els with classified profile data to eliminate the effect of non-linear parameters and predicts
the execution time of a kernel with one of the prediction models.

Runtime parameters in OpenCL

The proposed method uses all the runtime parameters available when a kernel is launched in
OpenCL. There are four groups of available runtime parameters.
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(1) The memory address of an API call to launch a kernel, i.e. the memory address of
calling clEnqueueNDRangeKernel.

(2) The global work size, which is the number of threads in a NDRange.
(3) The local work size, which is the number of threads in a work-group.
(4) Argument values given to a kernel.

From the memory address of a caller, the proposed performance predictor can detect
that a kernel is called at different positions in a program. This is important for accurate
performance prediction because a kernel might be called in different ways depending on the
caller positions. The global and local work sizes usually affect the execution time because
they change the number of threads working in parallel and sharing data. The values of
kernel arguments may or may not affect the execution time of a kernel because they are used
in various ways, e.g., to determine the length of a loop, the target of a branch, the address of
processed data, and so on. If a pointer of a memory object is passed to a kernel, the execution
time of a kernel depends not on the value of the pointer itself but often on the size of the
pointed memory object. Therefore, the size of the memory object is recorded and used for
performance prediction.

Profile data classification

As GLLS [56] used in the proposed method assumes that there is a strong correlation be-
tween explanatory variables and an objective variable, its accuracy of the model might de-
crease if a parameter with non-linear effects is included in the explanatory variables. Hence,
to clarify the effect of each parameter on the execution time, runtime parameters are catego-
rized into three types, N-type, W-type, and S-type.

N(No effect)-type parameters do not have any effects on the execution time of a ker-
nel. N-type parameters include constant values and variables that do not vary during the
execution. Use of parameter values in this type may degrade the accuracy of the predic-
tion and increase the prediction time. Hence, these parameters are not used for performance
prediction.

W(weak correlation)-type parameters have non-linear and/or irregular effects on the
execution time of a kernel. W-type parameters include a flag to determine a branch target
and an index of a memory array accessed in the kernel. As these parameters are only weakly
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correlated with the execution time of a kernel, the accuracy of the prediction is degraded if
these parameters are used to build a performance model. However, the execution time of a
kernel sometimes drastically changes depending on these values. Therefore, the proposed
method builds a different performance model for each value of a W-type parameter. The pro-
file data that have the same values of W-type parameters are used to build one performance
model. As a result, the proposed method uses multiple linear performance models to predict
the execution time of one kernel.

S(strong correlation)-typeparameters are strongly correlated with the kernel execution
time. Therefore, the execution time can be predicted with a linear prediction model of these
parameters built by GLLS. S-type parameters include the length of a loop and the global
work size.

In the proposed method, every runtime parameter is categorized into one of the three
types based on the correlation value between the parameters and the execution time of a
kernel. If a correlation value cannot be calculated, the parameter is categorized into N-
type and is not used for prediction. If a correlation value is less than a threshgldhe
parameter is categorized into W-type. Otherwise, it is categorized into S-type.

In this dissertation, the threshol@y, is empirically defined. The performance model
Is robust to the threshold value. Therefore, unless the threshold value is set to an extreme
value, it hardly affects the prediction results.

The procedure of the proposed method

The prediction mechanism is performed when a sufficient amount of profile data has been
obtained. At launching a kernel, as all the runtime parameters used for prediction are avail-
able, the mechanism records necessary parameters. The proposed prediction mechanism
consists of four phases, as shown in Figure 4.5.

In the first phase, a correlation value is calculated to decide the type of each runtime
parameters. As a result, each runtime parameter is categorized into one of N-type, W-type,
and S-type.

In the second phase, profile data classification is performed. Based on the values of
W-type parameters, profile data that have been obtained with the same values of W-type
parameters are grouped and are used to build a linear prediction model. For example, param2
in Figure 4.5 is a W-type parameter, and hence a linear model is derived from some of the
profile data that are obtained with a particular value of param2. As a result, param2 can be
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considered a constant value when the linear model is selected for prediction in the fourth
phase. Therefore, non-linear and/or irregular effects of param2 are removed from prediction
models.

In the third phase, a linear prediction model for particular values of W-type parameters
is built by GLLS with only S-type parameters. To build the prediction model, the proposed
method determines model parametens Equation (4.3) by GLLS. GLLS is an arithmetic
method to find the parameters of a linear model that conduct an objective variable such as
execution time from explanatory variables such as runtime parameters. Hence, GLLS can
minimize the difference between the predicted execution time and the actual execution time.

Tp'redicted = oo + Z aiSia (43)
i=1

whereT),.q4i.eq 1S the predicted execution timg; is the value of thé-th S-type parameter,

andn is the number of S-type parameters, respectively. For example, paraml1 and param3
in Figure 4.5 are S-type parameters and are used as explanatory variables of a linear pre-
diction model. However, if there is a strong correlation between two explanatory variables,

it is failed to properly build a linear prediction model because of multicollinearity. In the
proposed method, if a strong correlation between two explanatory variables is detected, the
mechanism uses only one of these parameters that has a large correlation value to avoid mul-
ticollinearity. In addition, if two runtime parameters have the same correlation value, the
mechanism selects one runtime parameter according to a predetermined order.

In the fourth phase, the execution time is predicted by using the values of runtime pa-
rameters. The values of W-type parameters are used to select a linear prediction model.
Then, the values of S-type parameters are used with the selected model to predict the execu-
tion time.

Since performance prediction models must be built for individual compute devices,
the proposed method has to execute a kernel on every available device. The prediction
mechanism does not work until a statistically-sufficient amount of profile data is obtained.
Until the mechanism works, the average execution time of past kernel executions is used as
the predicted execution time.
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4.3.2 Data and Event Dependency Analysis Methods

Since a program should have many parallel tasks to effectively use multiple accelerators, a
data and event dependency analysis method is proposed in Section 4.3.2 to facilitate task
parallelization. A data dependency analysis method detects data dependencies among tasks.
It visualizes these dependencies for programmers to support optimizing programs. An event
dependency analysis method detects event dependencies that are constraints of parallel exe-
cution such as unnecessary synchronization points.

The dependency analysis method uses the histories of memory accesses from tasks and
API calls to enqueue commands. As a result, three graphs are created to visualize dependen-
cies in a program; a data dependency graph, a memory access graph, and an event depen-
dency graph. A data dependency graph indicates intrinsic data parallelism in a program. A
memory access graph indicates the memory objects that cause false data dependencies and
enables programmers to easily find these memory objects. An event dependency graph in-
dicates the synchronization points and explicit/implicit dependencies among commands that
execute tasks. By using these graphs, programmers can find optimizing points described
below;

¢ the parallel tasks that can be executed in parallel,

e unnecessary order constraints and synchronization points, and

e wrong flags of access modes indicated at creation of the memory object.

Table 4.1: The types of data dependencies among tasks.

Dependency type | the preceding the subsequent
task task
Read after Write (RaW) Write Read true data dependencies
Write after Write (WaW) Write Write false data dependencies
Write after Read (WaR) Read Write false data dependencies
Read after Read (RaR Read Read ignorable dependencies
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Figure 4.6: Examples of data dependencies among tasks.

Data dependency analysis based on memory access histories

There are four kinds of data dependencies among tasks that access the same memory object,
as shown in Table 4.1. In Figure 4.6, data dependencies are illustrated by nodes and direc-
tional edges that indicate tasks and dependencies, respettikayre 4.6 shows different
dependencies by different colors and labels. In this figure, RaW is the abbreviation of a
Read after Write dependency, and the other dependencies are also abbreviated in the
same way.

For parallel execution of tasks, it is required to kéeye data dependenciesd to elim-
inatefalse data dependenciés increase parallel tasks. The dependenciRedd after
Write is a true data dependency. On the other hand, the dependen¥ikgefafter
Write andWrite after Read are generally false data dependencies. Hence, these de-
pendencies can be removed by duplication of the memory object. However, in elimination of
the Write after Write dependencies, it is needed to ensure that the subsequent task
rewrites the whole of the memory object because there may be a true data dependency if
the subsequent task writes only a part of the memory object. In this case, this false data
dependency cannot be eliminated by duplicating the memory object.

The proposed analysis method records the history of memory accesses from tasks and
can analyze all data dependencies by tracing this history. As a result, the proposed method
outputs anemory access grafhat indicates the read/write relations among tasks and mem-
ory objects.

If a kernel code is compiled at runtime by invoking an API function of clBuildProgram,
the runtime environment of the proposed method implicitly parses the code to know the
Read/Write states of each memory object. The analysis is performed as described below.

o If the left term of an expression is a pointer variable to a memory object, the pointer

1Graphviz[64] is used for visualization of graphs.
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Figure 4.7: Examples of (a) a memory access graph and (b) a data dependency graph for
matrix multiplication.

variables in the right term of the expression are related to the pointer variable in the
left term.

e When an array indexing expression is foundead flag is set to the pointer variable
if it is in right term of an expression. Similarly, &rite flag is set to the pointer
variable if it is in left term of an expression. If the pointer variable has related pointer
variables, the same flags are set to those related pointer variables.

This analysis is recursively performed on all kernel functions. If a kernel calls another
function, the Read/Write states of the callee kernel are merged into those of the caller kernel.
The runtime environment refers to the history of memory accesses and the Read/Write states
of kernels. Then, it determines data dependencies among tasks. If it is failed to parse a
kernel code, all memory objects passed to the task are estimated as the memory object is
both read and written by the kernel.

Figure 4.7(a) shows a memory access graph dftagixMultiplication bench-
mark in ATl Stream SDK 2.3 [65]. In a memory access graph, octagon and ellipse nodes
indicate the tasks and the data in memory objects, respectively. Write and read accesses
to a memory object are shown by blue and red edges, respectively. The numbers in nodes
indicate the count of kernel execution and the generation of data in a memory object that
increase when a task is executed and data in a memory object are updated. For example,
Figure 4.7(a) shows the relations;

e theWriteBuffer  task writes the memory objects 0 and 1,
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e themmmkKernel_local task reads the memory objects O and 1,

e themmmKernel_local task writes the calculation results to the memory object 2,
and

e theReadBuffer task reads the results of multiplication from memory object 2.

Next, a data dependency graph is created from the memory access graph. In Fig-
ure 4.7(a), th&read after Write data dependency can be found by tracing the update
history of the memory objects. For example, the first generation of data in the memory
object O is read from thenmmKernel_local task after theNriteBuffer task writes.
Thereby, the data dependency between those tasks becomes obvious, and the dependency
edge is output in a data dependency graph. This procedure is applied to all generations of
data in all memory objects. Then, a data dependency graph is created. Figure 4.7(b) shows
a data dependency graph of thatrixMultiplication benchmark.

A data dependency graph drawn by the proposed method visualizes the tasks that are
potentially executed in parallel. Therefore, programmers can easily optimize programs to
increase parallel tasks by using the graph.

Event dependency analysis based on histories of API function calls and event objects

For effective parallel execution, it is also important to remove unnecessary synchronization
points in a program. Hence, an event dependency analysis method is also proposed to easily
find unnecessary synchronization points. The proposed method outpusrardependency
graphthat visualizes synchronization points in a program.

Event dependencies are the relations among commands that constrain the execution
order. There are two kinds of event dependencies: explicit dependencies and implicit depen-
dencies. An explicit event dependency is specified through an event object by programmers.
On the other hand, an implicit event dependency is caused by calling a blocking function.

The proposed method uses the history of API function calls and event objects to analyze
event dependencies. The history of API function calls includes the type of the command
and whether it is enqueued by a blocking function or not. In an event dependency graph,
a command that is enqueued by a blocking function is callbtbeking commandand a
command that is enqueued by a non-blocking function is calledrablocking command
The proposed method analyzes this history and outputs event dependency edges according
to the rule described below.
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¢ If the subsequent command is a blocking command, the analysis method outputs the
edge of implicit dependencies between the subsequent command and all the preceding
non-blocking commands. Moreover, the analysis method outputs the edge of implicit
dependency between the subsequent command and its immediately-preceding block-
ing command.

¢ If the subsequent command is a non-blocking command, the analysis method outputs
the edge of implicit dependency between the subsequent command and its immediately-
preceding blocking command.

¢ If dependency is specified by using an event object, the analysis method outputs the
edge of explicit dependency between the commands of creating the event object and
of using the object.

e If a pair of commands has both explicit and implicit dependencies, the proposed
method outputs only the edge of explicit dependency.

e The API functions that just wait the completion of its preceding commands are cer-
tainly blocking functions and cannot be changed to non-blocking functions. Hence,
the analysis method outputs the edges of implicit dependencies that connect the com-
mands of such API function calls to their subsequent commands.

Figure 4.8 shows the event dependency graph d¥idueixMultiplication bench-
mark. In an event dependency graph, nodes indicate the commands to execute tasks, to
transfer data, and to wait for the completion of its preceding commands. The explicit and
implicit dependencies are expressed by black and blue edges, respectively. Moreover, the
frame color of a blocking command is red, and that of a non-blocking command is black.
The number in a node indicates the count of function calls.

By using this event dependency graph, programmers can easily find unnecessary syn-
chronization points in a program. Figure 4.8(a) shows an event dependency graph of un-
optimized program. There are unnecessary event dependencies due to unnecessary use of
blocking functions. In this case, it is needed to specify necessary dependencies by using
event objects and to convert blocking commands to non-blocking command. Then, unnec-
essary dependencies can be removed based on the event dependency graph. The program is
optimized as shown in Figure 4.8(b).
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Figure 4.8: Examples of event dependency graphs for matrix multiplication. (a) The graph
of unoptimized program. (b) The graph of optimized program.

4.3.3 Online Task Scheduling Based on the MCT Algorithm

In a conventional execution model of OpenCL shown in Figure 4.9(a), each command queue
is directly bound with one compute device. In this case, programmers need to manage
multiple command queues to use multiple accelerators. However, if programmers explic-
itly manage multiple command queues, the number of compute devices to execute tasks is
fixed. Hence, it is impossible to fully exploit available devices if there are more devices in a
heterogeneous computing system.

To use available accelerators efficiently, a new execution model with online task schedul-
ing is proposed in Section 4.3.3. The proposed execution model binds a command queue to
multiple compute devices. The command that is enqueued to the extended command queue
is automatically assigned to an appropriate device by an online task scheduler shown in
Figure 4.9(b). The proposed execution model enables programmers to describe programs
without any consideration of the number of available accelerators and the performance dif-
ference among accelerators.

This online scheduling method assumes a program that is optimized based on the de-
pendency graphs proposed in Section 4.3.2. The commands enqueued by non-blocking func-
tions are considergolarallel commandshat execute parallel tasks.
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Figure 4.9: The conventional and proposed execution models in OpenCL.

The proposed scheduler works based on the MCT algorithm. Figure 4.10 shows the
overview of the proposed online task scheduling method. First, when the command is en-
gueued, the scheduler predicts the execution time of each compute device to complete the
command, as shown in Figure 4.10(a).

If a device does not have the valid data required by a task, it is needed to transfer the data
from another device. In this case, the completion time of the device for the task is calculated
with considering the overhead of data transfer, as shown in Figure 4.10(b). The overhead of
data transfer can be easily estimated from the data size because that overhead is proportional
to the size. Hence, the scheduler builds a simple linear prediction model to estimate the
overhead. If the data transfer cannot start until the preceding command is completed due to
the data dependency, the overhead of waiting for the completion is also required to predict
the completion time of the subsequent command.

Finally, the command is assigned to an appropriate device that has the earliest comple-
tion time, as shown in Figure 4.10(c).

In this scheduling, once a task is assigned to a compute device, it is not rescheduled any
more. In addition, the subsequent command does not overtake its preceding command: in-
order scheduling is assumed in the proposed scheduling method. This is because compute
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Figure 4.10: The procedure of the proposed online scheduling method based on the MCT

algorithm.

devices work asynchronously with the host and a considerable synchronization overhead
IS required to migrate assigned tasks. Moreover, since the task assumed in this section is
executed in a short time, the execution of the task may already be completed when the

scheduler reschedules the task.
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4.4 Evaluations

4.4.1 Evaluation of the Performance Prediction

In the following evaluation, four well-known benchmark suites are used to demonstrate the
advantages of the proposed prediction method. AM® SDK benchmarkand theNVIDIA

SDK benchmarksare included in software development kits provided by accelerator ven-
dors. TheSHOC benchmark sui@6] and theParboil benchmark suifé7] contain many
fundamental and practical benchmarks. As all the programs in the Parboil benchmark suite
are written in CUDA, three of them have been ported to OpenCL,; the ported programs are
CP, MRI-FHD, and MRI-Q. 126 kernels in these benchmark suites are used to evaluate the
proposed prediction method.

Table 4.2 shows the experimental setup to evaluate the proposed prediction method.
Each benchmark program is executed 40 times to obtain profile data and 10 times to evaluate
the accuracy of the prediction. For several benchmark programs whose problem sizes can
be adjusted without any source code modification, those programs are executed 10 times
with four problem sizes for profiling, and then 10 times with the maximum problem size for
evaluation. The threshold to discriminate between W-type and S-type paramateisset
to 0.8.

Figure 4.11 shows the breakdown of N-type, W-type, and S-type parameters categorized
by the proposed method. Generally, in OpenCL, the global work size and the local work size
significantly affect the execution time. However, in the 97.6% of the kernels, the local work
size is set to a constant value. Hence, the local work size does not help improving the
accuracy of the prediction. On the other hand, the global work size and argument values
of a kernel change when the kernel is launched in different ways. Therefore, differences in

Table 4.2: Experimental setup to evaluate the proposed prediction method.

Components| Specifications

CPU Intel Core i7 920 2.66GHz
GPU NVIDIA Tesla C1060
(ON) CentOS 5.5 (Linux 2.6.18)

Video Driver | NVIDIA Video Driver 260.19.21
OpenCL version 1.1
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Figure 4.11: Usage of runtime parameters.

those parameters are worth considering to improve the prediction accuracy. The 18.3% of
the global work size and the 17.6% of argument values of the kernels are categorized into
S-type, respectively. Thus, it is important to use the global work size and argument values
to build a linear model.

In the kernels used in this evaluation, the values of many runtime parameters are always
the same at every kernel invocation. Hence, those parameters are categorized into N-type.
As these N-type parameters do not contribute to the accuracy of the prediction, they should
not be included in explanatory variables of a linear prediction model. The percentages of N-
type parameters in the return address, the global work size, the local work size, and argument
values are 94.4%, 73.0%, 97.6%, and 71.7%, respectively. These results indicate that there
are many runtime parameters categorized into N-type. The proposed method can detect these
N-type parameters and exclude them from prediction models.

The following evaluation compares the four prediction methods described below.

e proposal: The proposed method that builds a prediction model by GLLS using all the
available runtime parametensth profile data classification.

e glls: Theglls method that builds a prediction model by GLLS using all the available

104



4.4. EVALUATIONS

100%T =

90%+
80% T
70%+
60%‘;

40%T

30%T — proposed
glls

C — global ws

10%+ — average

20%F

Percentage of kernels within tolerable ARPE

0%+ ey ey
0.001 0.01 0.1 1

Tolerable ARPE

Figure 4.12: Percentage of kernels within tolerable ARPE.

runtime parametensithout profile data classification.

¢ global ws: Theglobal wsmethod used in SPRAT[44] that builds a prediction model
by GLLS usingonly the global work size.

e average: The averagemethod that uses the average value of past execution times
without considering the effects of runtime parameters.

The accuracy of the prediction is evaluateddwerage Relative Prediction Err¢gARPE)
defined by

n
j : |Tactual,7ﬁ — 4 predicted,i

- Tactual,z‘
ARPE = , (4.4)

n

whereT,wual,; andT edictea,; are the actual execution time and the predicted execution time,
respectively, and is the number of prediction trials.

Figure 4.12 shows the percentage of kernels predicted within a tolerable ARPE. This
figure indicates the relationship between a tolerable ARPE and the percentage of kernels

105



CHAPTER 4.
ONLINE TASK SCHEDULING IN STANDARD PROGRAMMING ENVIRONMENTS

whose ARPEs are in a tolerable range. In every method, the percentage of kernels increases
with the tolerable ARPE. There are two kernels, for which no method can achieve accurate
prediction even if the tolerable ARPE is setto 1.0. For all the predictable kernels, the average
ARPEs ofproposal glls, global ws andaverageare 1.03%, 1.29%, 26.24%, and 55.99%,
respectively. The average deviationgodposal glls, global ws andaverageare 0.000349,
0.000596, 7.30, and 13.5, respectively. Thus, the proposed method can achieve a low ARPE
more steadily. Furthermore, the percentages of kernels whose ARPEs are less than 10% in
proposal glls, global ws andaverageare 97.6%, 96.0%, 92.9%, and 77.8%, respectively.
Accordingly, the proposed method can predict more kernels more accurately.

In many kernels, runtime parameters do not significantly vary even if their problem
sizes are changed. In these cases, there is no difference in accuracy between the predic-
tion methods, and all the methods can achieve highly-accurate prediction. However, for the
kernels whose runtime parameters change with the problem sizes, the accuaaeyagje
remarkably degrades. Even in such situations, the other methods can achieve high prediction
accuracies.

Unlike SPRAT, Ti1reaa @Nd Nipnreaq iN Equation (4.1) do not always depend on the prob-
lem size in OpenCL programs. As aresglgbal wscannot achieve as accurate prediction as
glls andproposal For example, in théitonicSortLocal kernel of the oclSortingNet-
works benchmark, there is a loop whose length is decided by an argument value passed to
the kernel. In this kernel, the execution time varies according to those argument values even
though the global work size does not change. Therefore, it is obviougltitzl wscannot
achieve accurate prediction. On the other hand, gyis@ndproposalcan find the correla-
tion between the argument value and the execution time, they can predict the execution time
based on the argument value.

Even for some kernels whose execution times are not accurately predictgid, lilie
proposed method can achieve accurate prediction. For example, in the daisesioSort ,
fastWalshTransform , andreorderData  kernels, there are W-type runtime param-
eters. Thus, it is difficult to build an accurate model if those parameters are included in
the explanatory variables. Consequently, the proposed method can outpglfofan the
prediction of those kernels.

Figure 4.13 shows the comparison results in ARPE where the proposed method out-
performs the others. In the figure, the horizontal and vertical axes indicate the benchmarks
and ARPE, respectively. Based on profile data classification, the proposed method can use
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Figure 4.13: Comparison results of ARPE in the cases where the proposed method outper-
forms the others.

multiple prediction models, each of which is corresponding to one of profile data classes.
When a kernel is invoked in a different way, it switches the prediction model so that the
most appropriate model is used for prediction. For example, if a W-type parameter changes
the memory access pattern in a kernel, the proposed method can select the prediction model
of the same access pattern. This is effective to predict the execution time of a kernel running
on a GPU, because its performance strongly depends on the pattern. Therefore, the proposed
method can achieve more accurate prediction than the others for the benchmark programs.

Classifying profile data is effective to improve the accuracy of any prediction method
based on GLLS, because it can remove harmful parameters for GLLS. Accordingly, it is
clear that the proposed method is superior to the others from the viewpoint of the accuracy
of the prediction in most cases. The superiority will become more remarkable in the cases
of practical kernels with more complicated control flows because they usually have more
W-type parameters.

The accuracy of the proposed method becomes low in some cases such as the
recalculateEigenintervals kernel whose execution time varies irrespective of the
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Figure 4.14: Comparison results of ARPE in the cases where the accuracy of the proposed
method is less than those of the others.

runtime parameters. This is because the length of a loop in the kernel depends on a value
in a memory object. In such a case, runtime parameters do not help the prediction at all.
Since it is not practical to look for such a value in a memory object, developing an effective
prediction method for such a kernel remains an open problem.

All the methods including the proposed one cannot accurately predict the execution
time of thepeak kernel in the MaxFlops program. This is because the MaxFlops program
rewrites and recompiles the source code offieak kernel several times during the execu-
tion. Although the function name of a kernel does not change, the computation in the kernel
has changed by recompilation. As a result, all the methods fail in the performance predic-
tion. This problem can be solved if a different prediction model is used when a program
object[4] is replaced with a new one.

For the above two kernelsecalculateEigeninterval andpeak , the ARPE
values of all the prediction methods exceed 100%; no method can accurately predict their
performances. In the cases where the proposed method cannot reduce the ARPE for a given
kernel, it aborts using GLLS for prediction and uses the simplestagemethod to save the
prediction time.
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Figure 4.14 shows the comparison results where ARPE of the proposed method is less
than those of others. In this figure, the horizontal and vertical axes indicate the benchmarks
and ARPE, respectively. For the programs in the figure, the proposed method is less accurate
thanglls and global ws This is mainly because the proposed method is affected by the
measurement errors more sensitively. However, the difference in accuracy among those
three methods is small. Therefore, this will not be a serious problem in practical uses.

4.4.2 Evaluation of the Performance Improvement by Online Task Schedul-
ing

The MonteCarloAsian benchmark in ATIStream SDK][65] is first used to evaluate the effect
of online task scheduling among multiple accelerators. This program has many parallel tasks
and is optimized by using the proposed dependency analysis method to remove unnecessary
synchronizations among commands and false dependencies among tasks. The number of
parallel tasks corresponds to the number of steps in the simulation, and it is set to 60 steps
in the evaluation.

Table 4.3 shows the experimental setup to evaluate the proposed online task scheduling
method. Two different GPUs are used for load balancing, and there is a significant difference
in performance. The average execution times of the taskioimeCarloAsian  are 14.9

ms on GeForce GTX 480 and 32.3 ms on Tesla C1060. Therefore, the optimal ratio of loads
between these GPUs must satisfy the following condition.

NGeForceGTx480 * T GeForceGTX480 = NTeslaC1060 * L TeslaC1060; (4.5)

where NgerorceaTxago @NA Nresiaciogo @re the numbers of assigned tasks to the GPUs, and

Table 4.3: Experimental setup to evaluate the proposed online task scheduling method.

Components| Specifications

CPU Intel Core i7 920 2.66GHz
GPU GeForce GTX 480, NVIDIA Tesla C1060
0S CentOS 5.5 (Linux 2.6.18)

Video Driver | NVIDIA Video Driver 290.10
OpenCL version 1.1
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TaerorceaTxaso anNd Trreqaci060 @re the average execution times of the tasks on the GPUs,
respectively. Hence, the optimal ratio of loads between those GPUs is calculated by

NGeForceGTX480 : NTeslaClOGO = TTeslaClOSO : TGeForceGTX480

— 323:14.8 (=0.685:0.315). (4.6)

Then, the ideal performance improvement with the optimal ratio is calculated by

Tiingl

Speedup: _ Asingle
al

idea ﬂoad—balancing

TGeForceGTX480 X Ntasks

TGeForceGTX480 x 0.685 - Ntasks
= 1.46, (4.7)

Whereli,ad—balancing aNUT5ingle are the total execution time of a program with load-balancing
between the GPUs and that with a single GPU, respectively; is the number of parallel
tasks in the benchmark.

To evaluate the effect of automatic load balancing by online task scheduling, several
implementations described below are used.

e Automatic A program that is described to exploit the proposed online task scheduler.
In this program, commands to execute tasks are enqueued to a special command queue
with online task scheduling.

e Single A program that uses only a single GPU. This program is the same program
with Automatic but online task scheduling is disabled.

e Hand-selectThis is a set of programs in which the ratios of loads between the GPUs
are fixed to 11 patterns. In this programs, it is assumed that a user runs these programs
and selects the one whose execution time is the shortest.

As the sustained performance of GeForce GTX 480 is higher than that of Tesla C1060,
GeForce GTX 480 is always used in tBangleimplementation.

Figure 4.15 shows the evaluation results of these implementations. The ratios of loads
between the two GPUs are also indicated in this figure. The execution time is normalized by
the execution time of th&ingleimplementation. These results indicate that the execution
time of theAutomatiadmplementation is the shortest, and the ratio of loads is almost optimal.
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Figure 4.15: The evaluation results of the MonteCarloAsian.

The effect of load balancing can be seerHand-selecimplementations. A®utomatic
implementation can accommodate to accidental delay due to device synchronization, the
execution time ofAutomaticimplementation is slightly shorter than that of the bidand-
selectimplementation.

Moreover, these results show the performance degradation caused by inappropriate load
balancing. As there is a big performance difference between GeForce GTX 480 and Tesla
C1060, the performance with multiple GPUs degrades if their performance difference is not
considered and the GPUs simply execute the same number of parallel tasks. The proposed
scheduling method enables a programmer to exploit multiple accelerators without risks of
performance degradation even if the programmer does not know the number of available
accelerators and the difference in performance among the accelerators.

The ideal performance improvement from tBmgleimplementation is 46.0%. How-
ever, the actual performance improvement byAlsomaticimplementation is 32.8%. Fig-
ure 4.16 shows that the operating times of the GPUs. In the figure, the operating time of the
CPU for thread scheduling is also shown. The overhead of scheduling is 6.06% and causes
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Figure 4.16: The operating rates of GPUs and a scheduling thread. @Gintiieimplemen-
tation. (b) theAutomaticimplementation.

stalls of GPUs. The operating rate of a GPU can be calculated by
n =t (4.8)

whereTy,s, andT;., are the busy time of a GPU and the total execution time of the comput-
ing, respectively. In th&utomatiamplementation, the operating rates of GeForce GTX 480

and Tesla C1060 are 94.4% and 87.9%, respectively. On the other hand, in the Single imple-
mentation, the operating rate of GeForce GTX 480 is 99.9%. These operating rates indicate
that online task scheduling method can efficiently use these two GPUSs. In this evaluation,
42 tasks and 18 tasks are assigned to GeForce GTX 480 and Tesla C1060, respectively. The
speed-up ratio of thAutomaticimplementation in this case is calculated by

Tiingle X
Slngle NSingle

Speedupactual 1

T Automatic

7—wloamdfbalamcing X

1
TGeForceGTX480 X Ntasks X 0.999

TGeForceGTX480 >< Nmsks 0,;44
= 1.35, (4.9)

wherenginge andnauimatic are the operating rates of GeForce GTX 480 in $ivegleand
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Automaticimplementations, respectively.

This theoretical value is almost the same as the actual speedup ratio observed in the
evaluation. In this evaluation, the overhead of online task scheduling affects the sustained
performance because the execution time of each task is considerably short. For a practical
application of time-consuming tasks, the scheduling overhead will become relatively small.
Therefore, the overhead will be negligible in practical use.

The two practical benchmarks are next used to demonstrate the effectiveness of the
proposed online task scheduling method. One is a benchmark Biitdihg Cube Method
(BCM) [68, 69]. The BCM method divides a computational domain into cubes that can be
processed in parallel. Hence, the program using the BCM method has massive parallelism
and is promising to be accelerated by multiple GPUs. The benchmark used in this evaluation
is only a computation-intensive kernel of tBE€Mbenchmark to calculate the pressure of a
fluid by theRed-Black successive over-relaxati®ed-Black SOR) method. There are 20
parallel tasks in the benchmark that execute two kinds of kernels: 10 parallel tasks execute
the Red kernel, and the other tasks execute Black kernel. Each task calculates 256
cubes, and thBCMbenchmark handles 2560 cubes in total.

The other is a benchmark of tlihase-Only CorrelatiofPOC) method [70] for im-
age matching. The POC method finds corresponding points between two stereo images to
estimate the positions of objects in three-dimensional space. In this program, there are two
parallel tasks. Since these tasks are dominant in the execution time of the benchmark, the
execution time reduces by executing the tasks in parallel. The size of input images used in
the following evaluation ig280 x 960.

Figure 4.17 shows evaluation results of two benchmarks. In this figure, two execution
modes are shown: théinglemode and théutomaticmode. In theSinglemode, the pro-
grams use only GeForce GTX 480. On the other hand, iktltiematicnmode, the programs
use multiple accelerators with online task scheduling. The execution time is normalized by
that in theSinglemode.

The execution time of thBCMbenchmark in thé&utomaticmode is 14.2% shorter than
that in theSinglemode. The average execution times of the tasks are 0.837 ms on GeForce
GTX 480 and 2.066 ms on Tesla C1060, respectively. Hence, the optimal ratio of loads
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Figure 4.17: Evaluation results of the POC and BCM benchmarks.

between those GPUs and ideal performance improvement is calculated by

NGeForceGTX480 : NTeslaClO60 - TTeslaClO6O : TGeForceGTX480
— 2.066:0.837 (=0.712:0.288),  (4.10)

and

Speedup _ Tnge
ideal ﬂoad—balancing

TGeForceGTX480 X Ntasks

TGeForceGTX480 x 0.712 - Nmsks
= 1.40. (4.11)

However, unlike theMonteCarloAsian  benchmark, th& CMoenchmark has a syn-
chronization point between thiRed andBlack kernels. Moreover, since tlisdack -kernel
tasks use the calculation results of fRed-kernel tasks, data transfer is needed to execute
theBlack -kerneltasks on the other GPU. As a result, the operating rates of GPUs decrease.
The operating rates of GeForce GTX 480 and Tesla C1060 are 85.2% and 70.2%, respec-
tively. On the other hand, in th&inglemode, the operating rate of GeForce GTX 480 is
99.5%. In this evaluation, 15 tasks and 5 tasks are assigned to GeForce GTX 480 and Tesla
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11.48 ms
Execution time 10.64 ms
GeForce GTX 480 Task O
(a)
Tesla C1060 Task 1
GeForce GTX 480 Task O Task 1
(b)
Tesla C1060

Figure 4.18: Task assignment in the POC benchmark. (a) The case of balancing loads. (b)
The case of using only a GPU.

C1060, respectively. From these parameters, the speed-up ratioBEMeenchmark in the
Automaticmode is conducted.

T5; X ——
single NSingle

Speedupactual 1

Toad— ing X
load—balancing N Automatic

1
TGeForceGTX48O X Ntasks X 0.995

TGeForceGTX480 X % ’ NtaSkS X ();W
= 1.142. (4.12)

This theoretical value is equivalent to the speedup ratio observed in the evaluation. From
these results, it is demonstrated that the online task scheduling can work to exploit multiple
accelerators even if the program has a synchronization point among parallel tasks.

The execution time of thEOCbhenchmark in thdutomaticmode is longer than that in
the Singlemode. ThePOCbenchmark has only two parallel tasks and the average execution
times of the tasks are 5.32 ms on GeForce GTX 480 and 11.48 ms on Tesla C1060, respec-
tively. Hence, the execution time when the two tasks are executed on GeForce GTX 480 is
shorter than the execution time when the loads are balanced, as shown in Figure 4.18. In
this case, the online task scheduling method assigns the parallel tasks to only GeForce GTX
480, and the scheduling overhead increases the execution time of the program. Therefore,
if there is a certain difference in performance of GPUs, a sufficient number of parallel tasks
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are needed for load balancing by the proposed online task scheduling method.
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4.5 Concluding Remarks

This chapter has proposed an online task scheduling method to realize automatic load bal-
ancing among multiple accelerators. In addition, two methods required in the scheduling
methods have been proposed: a performance prediction method and a data-dependency and
event-dependency analysis method.

Since OpenCL has high programming flexibility and an OpenCL program can be exe-
cuted on several accelerators, performance prediction of arbitrary OpenCL programs is dif-
ficult. The proposed performance prediction method uses the argument values passed to the
kernel to classify profile data. Then, the proposed prediction method can remove the harm-
ful effects on linear prediction models, and it can improve the prediction accuracy. Since
this prediction method is independent of the architecture of GPUs, it is applicable to any
accelerators.

A data and event dependency analysis method is proposed to facilitate task paralleliza-
tion by visualizing several dependencies among tasks. The proposed analysis method en-
ables programmers to easily find unnecessary data dependencies and synchronization points
among tasks. As a result, the proposed method can increase the number of parallel tasks and
improve the sustained performance of a program using multiple accelerators.

An online task scheduling method based on performance prediction is then proposed.
In this method, a new execution model of OpenCL is proposed to bind a command queue to
multiple accelerators. The proposed scheduling method estimates the completion time of an
enqueued task for each accelerator. Then, it automatically assigns a task to the accelerator
that is expected to complete the task earliest.

The accuracy of performance prediction is evaluated using 126 kernels in several bench-
mark suites, and it is demonstrated that the proposed prediction method can achieve the
highest accuracy in the other evaluated methods. Although the execution time of the task
nonlinearly depends on the argument values passed to a task, the proposed method can ac-
curately estimate the execution time by using multiple prediction models.

The effect of online task scheduling is evaluated usingMbateCarloAsian ,BCM
andPOCbenchmarks. The evaluation results show that the proposed scheduling method can
appropriately adjust the load balance. As a result, it enables to exploit multiple accelerators.
Moreover, the evaluation results of tiR®©OCbenchmark indicate that the proposed online
scheduling method needs many parallel tasks in a program to balance loads among multiple
accelerators.
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The proposed online task scheduling method enables programmers to exploit multiple
accelerators without risks of performance degradation. In the future, when the number of
available accelerators increases, the proposed scheduling methods will become more impor-
tant.



Chapter 5
Conclusions

In this dissertation, automatic performance tuning methods are explored to exploit the com-
puting power of heterogeneous computing systems. Although heterogeneous computing
systems can achieve high performance and high energy efficiency, it is difficult for program-
mers to appropriately exploit the computing capability of the system without labor-intensive
performance tunings. Therefore, this dissertation proposes automatic performance tuning
methods to easily exploit heterogeneous computing systems.

A GPU is one of accelerators widely used in heterogeneous computing systems. Al-
though a GPU has a high computing capability, unsuitable task assignment causes serious
performance degradation. Moreover, GPUs have architecture-specific features and execu-
tion parameters that must be given at execution. Programmers have to perform performance
tunings with considering these features to achieve a high performance. However, these per-
formance tunings require knowledge of the GPU architecture. Hence, these performance
tunings are difficult and labor-intensive even for expert programmers.

To alleviate difficulties in performance tunings, it is effective to abstract hardware con-
figurations and to automate performance tunings. To this end, a programming framework
should automatically apply some optimizations and tuning to a program. Such a framework
realizes programming without consideration of the system configuration. Therefore, this dis-
sertation proposes automatic performance tuning methods according to the three following
approaches.

e To alleviate the difficulty of appropriate processor selection, this dissertation designs
the SPRAT framework consisting of a domain-specific programming language and its
runtime environment to automatically select an appropriate processor based on linear
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performance prediction.

e To improve performance of an automatically-generated program from a program writ-
ten in high-level programming languages such as the SPRAT language, this disserta-
tion proposes the two automatic optimization methods to effectively use the memory
hierarchy of GPUs and an automatic parameter tuning method to determine the opti-
mal CTA configuration.

e To exploit multiple accelerators without consideration of the number of available ac-
celerators and the difference in their performance, this dissertation proposes an online
task scheduling method based on highly-accurate performance prediction.

In Chapter 2, appropriate processor selection is automated to alleviate one of the dif-
ficulties in programming for heterogeneous computing systems. To this end, the SPRAT
framework is proposed. A SPRAT program is translated to a CPU code and a CUDA code
for GPUs, respectively. The SPRAT language enables a programmer to easily write stream
processing without considering which processor is used for execution. The SPRAT runtime
environment automatically selects an appropriate processor for a task based on performance
prediction. As the correlation between the output data size and the execution time can be as-
sumed in the execution model of SPRAT, a linear prediction model is built for each SPRAT
program. This prediction model can be also used for energy-aware computing. From the
evaluation results, it is clarified that the SPRAT framework enables even a non-expert pro-
grammer to benefit from the use of GPUs without performance degradation. Moreover, the
SPRAT runtime environment can select an appropriate processor based on energy-aware pol-
icy and can optimize energy efficiency by a simple prediction model of energy consumption.

In Chapter 3, architecture-specific optimizations and tuning are automated for high-
level programming languages. Firstly, key features to achieve high performance in CUDA
are pointed out based on the specification of CUDA and the architecture of GPUs. In CUDA,
efficient use of memory hierarchy and the optimal CTA configuration are important to ex-
ploit the potential of GPUs. The proposed automatic optimization method finds highly-
reusable data elements in streams by exploiting the features of the SPRAT language. An
automatically-generated CUDA program is optimized to copy those highly-reusable data el-
ements into the shared memory to improve sustained memory bandwidth. Moreover, an in-
efficient memory access is converted to two coalesced memory accesses by using the shared
memory as a read buffer. A method to automatically find the optimal CTA configuration
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based on profiling data is also proposed. Evaluation results indicate that the two perfor-
mance tuning strategies are effective to improve sustained performance of CUDA programs.
Itis also demonstrated that the proposed tuning method can automatically find the optimal or
suboptimal CTA configuration. Therefore, the two strategies for automatic performance tun-
ings enable programmers to improve performance without knowledge of GPU architectures
and the constraints in CUDA.

In Chapter 4, load balancing among multiple accelerators is automated by online task
scheduling based on performance prediction. By using a standard programming framework
such as OpenCL, a single program can run on any accelerators. Itis more important to assign
each task for an appropriate accelerator to efficiently use various accelerators. In practical
situations, although there may be big differences in performance between accelerators, it is
difficult for programmers to know the number of available accelerators and the differences
in their performance. Hence, it is necessary to automate load balancing among multiple ac-
celerators in order to exploit the computing capability of a heterogeneous computing system
without performance degradation. For online task scheduling, it is required to accurately
predict the execution time of an OpenCL program. To improve the prediction accuracy, the
proposed performance prediction method uses not only past execution times but also the
execution parameters and argument values passed to the tasks. In the execution parameters
and/or argument values, there are non-linear parameters whose values are not proportional
to the execution time, and the non-linear parameters are harmful for performance prediction
by using GLLS. The proposed prediction method uses multiple prediction models to remove
the harmful effects of the non-linear parameters. As a result, the proposed prediction method
can accurately predict the execution times.

In the online task scheduling method, a task in a program is automatically assigned to
an appropriate accelerator that can complete the task earliest. In addition, a data and event
dependency analysis method to facilitate removing unnecessary dependencies and synchro-
nization points is proposed. Evaluation results show that the proposed prediction method
can improve the accuracy of the prediction even for a program that has non-linear param-
eters. Evaluation results of online task scheduling indicate that the proposed scheduling
method can appropriately adjust the ratio of loads assigned to the GPUs and can improve
the sustained performance of the OpenCL programs. Accordingly, it is demonstrated that
an automatic load balancing method by online scheduling is effective to exploit multiple
accelerators.
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In conclusion, this dissertation establishes the proposed automatic performance tuning
methods that enable programmers to exploit the computing power of heterogeneous comput-
ing systems without labor-intensive performance tunings and performance degradation. The
accomplishment of this dissertation opens up the way for programmers to easily use different
types of processors in the heterogeneous systems. Moreover, this dissertation indicates the
importance of automatic performance tunings for efficient use of heterogeneous computing
systems.

Finally, the future work is summarized as follows.

¢ Efficient use of accelerators in other nodes via a network

The number of accelerators in a single node is limited by several reasons such as power
budget. Itis impractical to increase available accelerators in only a single node. Hence,
use of accelerators in other nodes via a network is promising to increase available ac-
celerators. Virtual OpenCL [51] has been proposed to use accelerators in other nodes
and partially realizes this strategy. However, since the network overhead is too big,
the proposed simple method cannot achieve high performance when the remote accel-
erators are used. Accordingly, online scheduling based on the prediction of network
delays is needed to hide the network overheads.

e An extension of the queuing model of OpenCL to improve the quality of scheduling
In some cases, the quality of online scheduling is degraded because of the constraint
that only one command can be enqueued at every API function call. Hence, if a pre-
ceding parallel task is already scheduled on an accelerator, a subsequent parallel task
cannot overtake the preceding task even if the execution time of the subsequent task
can be more reduced on the accelerator than that of the preceding task. In OpenCL
specification, the out-of-order scheduling mode is defined but it is not practically real-
ized because of this constraint. To overcome this situation, an extension of the queuing
model of OpenCL is needed to enable multiple commands to be enqueued at one API
function call. Moreover, a new out-of-order scheduling algorithm is required for the
extended queuing model.
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