
TOHOKU UNIVERSITY
Graduate School of Information Sciences

Security Mechanisms for
Distributed Computing Systems

(分散計算システムのためのセキュリティ機構に関する研究)

A dissertation submitted for the degree of

Doctor of Philosophy (Information Sciences)

Department of Computer and Mathematical Sciences

by

Ling XU
January 16, 2012

Acknowledgments

I would like to sincerely thank Professor Hiroaki Kobayashi for giving me the

opportunity to study at Tohoku University, persuading me to finish my PhD,

instructing my research, accompanying me to international conferences, intro-

ducing me to internships and job opportunities, and patiently tolerating all my

caprice and faults.

My deepest thanks must also go to Professor Hideaki Sone and Professor

Takuo Suganuma for their instructions on my dissertation.

Associate Professor Hiroyuki Takizawa has guided me along my journey to

Tohoku University. He spent days helping me arrange my accommodation, drove

me to my entrance examination, provided me with sagacious advice each time

I encountered problems in my research, and consoled me when I felt confused

about my future. For these I am very grateful.

I would like to thank assistant Professor Ryusuke Egawa sincerely for solv-

ing my apartment crisis, spending precious time in proof-reading my papers and

kindly providing me valuable advice on my life direction.

I am indebted to Dr. Yun Yang who accommodated me in Osaka University

during the Great East Japan Earthquake and warmly encouraged me to pursue

my dreams.

i

I would like to thank Dr. Yoshitomo Murata for accompanying me to inter-

national conferences, discussing with me on my master thesis and doctoral dis-

sertation when I encountered problems, and kindly helping me to prepare my

graduation oral defense.

Ms. Takako Shibayama at the Industry-University-Government Collabora-

tion Division, Office of Cooperative Research and Development, Tohoku Univer-

sity has provided me with warm hearted help for which I am eternally grateful.

But above all I thank her for treating me like her son.

I would like to thank Professors Toshikatsu Asai, Tomio Takahashi and Yukio

Watanabe at the Innovative Leaders Platform in Tohoku University for provid-

ing me precious instructions and help on my career and life.

Also, one thing that you do need during your research is friendship, and I

would like to thank all of my friends. In particular I would like to thank Ye

Gao, Hong Wang, Qin Chen, Chao Qu, Jiali Yao, Lei Zhong for sharing their

friendship with me and endowing me with many memories that I will cherish.

I would also like to thank my peers Katsuto Sato, Masayuki Sato, Yoshiei

Sato and my tutor Yusuke Funaya, for all their warm hearted help and friend-

ship over the past six years.

Finally, I would like to express my heart-felt gratitude to my mother, as I

would not have made it to this point without her continued vast support.

ii

Security Mechanisms for Distributed Computing Systems

Ling Xu

Abstract

Distributed computing systems (DCSs), such as peer to peer (P2P) systems and volunteer

computing systems, are playing important roles in industry and our daily life. However, DCSs

are vulnerable to the false result attack and the Sybil attack. In a DCS, under the false result

attack, malicious worker nodes deliberately send incorrect results of computing tasks to host

nodes. Under the Sybil attack, malicious users control many Sybil nodes to interfere the system.

To ensure the application and the development of DCSs, it is necessary to address these two

attacks.

The existing solutions to the false result attack are either inefficient or impractical. Existing

mechanisms for resisting the false result attack are based on two techniques: Replication and

Quiz. The Replication-based solutions enable hosts to distinguish correct results from incorrect

ones. For a host and its workers, the host dispatches each task to multiple workers. Having

received the results, the host chooses a result as being correct using a majority vote. The ef-

ficiency of the false result resisting mechanisms is defined as the percentage of unique tasks

computed by workers among all the tasks computed by workers. Replication-based solutions

face the problem of being inefficient, because each task is repeatedly computed multiple times.

On the other hand, the Quiz-based solutions enable hosts to distinguish malicious workers from

honest workers. For each host and its workers, the host sends to each worker a task set. Each

task set contains some special tasks termed quizzes. Having received the results from workers,

the host can judge a worker to be malicious if any result to the quizzes returned by this worker

is incorrect. To implement Quiz-based solutions, however, it is required that quizzes satisfy cer-

tain special properties. How to generate quizzes that satisfy these properties is still an open

problem.

Meanwhile, existing solutions to the false result attack are also problematic. Today, Sybil

detecting algorithms that are based on the social network model (SNM) are the representative

Sybil resisting solutions. This dissertation denotes these algorithms the SSD algorithms. SNM

iii

is a model that depicts the network topologies of DCSs. In a DCS, the edges that connect nodes

of different types (honest nodes and Sybil nodes) are called the attack edges. SNM assumes that

the number of attack edges in the system is small. SSD algorithms aim to enable each honest

node to judge the types of other nodes. In SNM-based DCSs, since the number of attack edges

is small, the attack edges form a bottleneck that weakens the communication between nodes

of different types. Hence, it is easier for honest nodes to communicate with other honest nodes

than with Sybil nodes. Utilizing this property, honest nodes can distinguish honest nodes from

Sybil nodes. The performances of SSD algorithms are evaluated by two metrics: honest accept

rate (har) and Sybil accept rate (sar). har represents the average probability that honest nodes

accept each other, and sar represents the average probability that honest nodes accept Sybil

nodes. Here, two nodes accepting (rejecting) each other means that these two nodes regard each

other to be honest (Sybil). The existing SSD algorithms face the problem of being inaccurate –

they have high sar and low har. The bottleneck formed by the attack edges cannot completely

prohibit the communication between nodes of different types. Hence, nodes make many incorrect

judgments.

The objective of this dissertation is to create more effective mechanisms to resist the false

result attack and the Sybil attack. To this end, this dissertation aims to design false result

attack resisting mechanisms that are both efficient and quiz-free, and to create accurate SSD

algorithms to resist the Sybil attack.

Chapter 2 proposes Mutual Spot Checking (MSC), an algorithm that enables hosts to detect

malicious workers. The key idea is to use normal tasks, instead of quizzes, to check the types

of workers. In MSC, hosts dispatch checking tasks (normal tasks) to each worker to compute.

Then, hosts increase the reliabilities of workers that return correct results to the checking tasks.

Since honest workers return more correct results, the reliabilities of honest workers will be

higher than those of malicious workers. This enables hosts to distinguish honest workers from

malicious ones. In MSC, quizzes are replaced with normal tasks, and only the checking tasks

are repeatedly computed. Therefore, MSC is more practical than the Quiz-based solutions, and

more efficient than the Replication-based solutions.

The performance of MSC is evaluated from three aspects: reliability gap, efficiency, and

convergence. Theoretical analysis and simulations reveal that the reliabilities of honest workers

are averagely higher than those of malicious workers in reasonable DCSs: 1). all DCSs when

malicious worker do not collude, and 2). DCSs with malicious workers less than honest workers

iv

when malicious workers can collude. Additionally, the theoretical efficiency of MSC is near

optimal. Finally, simulation results show that the reliability of each worker converges to a stable

value within ten rounds, which means that hosts can quickly identify malicious workers before

accepting many incorrect results. These evaluation results validate that MSC is an efficient and

practical solution to the false result attack.

Chapters 3 and 4 aim to create accurate SSD algorithms to resist the Sybil attack. To

increase the accuracy of SSD algorithms, it is necessary to further prohibit the communication

between nodes of different types. For this aim, the basic idea is to detect and cut the attack

edges. Hence, the core innovation of Chapters 3 and 4 is an attack edge detecting technique – to

enable honest nodes to distinguish the attack edges in the system.

Specifically, Chapter 3 proposes an attack edge detecting-based SSD algorithm called SybilDe-

tector for authorized DCSs – DCSs that contain trustful authorities. The basic idea of SybilDe-

tector is as follows. In a DCS, the shortest paths between nodes of different types have to pass

the attack edges. Hence, in SybilDetector, two nodes accept each other only if the shortest paths

between these two nodes do not pass the attack edges. In this way, honest nodes can accept each

other and reject Sybil nodes.

The core of SybilDetector is an attack edge detecting mechanism based on the shortest path

edge betweenness (SPEB), called SPEB-AED. In SybilDetector, nodes need to judge whether or

not a certain edge is an attack edge. SPEB-AED is designed to realize this aim. The SPEB

is a kind of edge betweenness metrics – metrics that measure certain properties of edges. In

a DCS, for each pair of nodes and each shortest path between these two nodes, a message is

transmitted along this shortest path. Then, the SPEB of each edge is defined as the number

of messages passing through this edge. Previous research revealed that the SPEB satisfies

a detecting property – the SPEBs of attack edges are higher than those of non-attack edges.

Therefore, the problem of detecting attack edges is equal to the problem of detecting the edges

with high SPEBs. Specifically, SPEB-AED has two steps. First, each node computes the SPEBs

of the edges. Each node then computes a detecting threshold and regards the edges with SPEBs

higher than its detecting threshold as attack edges. In this way, each honest node can detect

attack edges and thus distinguish Sybil nodes from honest ones.

To evaluate SybilDetector, its accuracy is compared with that of SybilLimit on real world and

synthetic network topologies. Here, SybilLimit is an existing representative SSD algorithm. The

har of SybilDetector is comparable with that of SybilLimit. However, the sar of SybilDetector is

v

at least 4x and 10x lower than the sar of SybilLimit in the real world network topology and the

synthetic network topology, respectively. These results not only confirm that SybilDetector is an

accurate SSD algorithm, but also clarify the potential of the attack edge detecting technique in

resisting the Sybil attack. It is expected that more effective Sybil resisting algorithms can be

created using the attack edge detecting technique in the future.

Chapter 4 designs an attack edge detecting algorithm called Random walk and SNM-based

Clustering (RSC) for unauthorized DCSs – DCSs that do not contain trustful authorities. In

order to create accurate SSD algorithms, it is crucial to detect the attack edges. In authorized

DCSs, it is feasible to detect the attack edges by computing the SPEBs of edges. In unauthorized

DCSs, however, computing the SPEB is impossible because of the interference of Sybil nodes.

The goal of Chapter 4 is to create an algorithm that enables each honest node to identify the

possible attack edges among its incident edges in unauthorized DCSs. This algorithm can then

be used to create accurate SSD algorithms for unauthorized DCSs.

To create this attack edge detecting algorithm, Chapter 4 takes two steps. The first step

is to choose an edge betweenness metric that satisfies two properties: 1). this metric satisfies

the detecting property, and 2). this metric can be securely computed in unauthorized DCSs

under malicious interference. Such an edge betweenness metric is called a detecting metric.

The second step is to enable each node to compute the betweennesses of its edges securely in

a distributed manner. After these two steps, since the attack edges have high betweennesses,

each node can identify the attack edges among its incident edges.

Specifically, Chapter 4 first chooses the random walk edge betweenness (RWEB) as the de-

tecting metric for unauthorized DCSs. Like the SPEB, the RWEB is an edge betweenness metric

defined by previous research. In a DCS, each pair of nodes disseminates a message to each other,

where the message is transmitted between these two nodes in a random walk manner. Then,

the RWEB of an edge is the expected number of messages passing through this edge. As all

the messages between nodes of different types have to pass the attack edges, this dissertation

expects that the RWEB satisfies the detecting property. Moreover, the RWEB is computed based

on the information of random walk messages in the system. It is harder for Sybil nodes to inter-

fere the computing of the information of random walk messages than to interfere the computing

of shortest path information. This makes it possible to compute RWEBs in unauthorized DCSs.

Based on these two observations, this dissertation uses the RWEBs as the detecting metric.

Then, RSC is designed to enable each node to securely compute the RWEBs of its incident

vi

ABSTRACT

edges under malicious interferences. Representative attacks are discussed, and resisting mech-

anisms to these attacks are designed. Having obtained the RWEB knowledge, each node can

now probabilistically distinguish the attack edges from its incident edges.

The performance of RSC is evaluated by the gap between the attack edge betweenness (aeb)

and the honest edge betweenness (heb). Here, aeb (heb) represents the average of the between-

nesses of attack edges (non-attack edges) computed by RSC. The gap should be large, so that the

attack edges can be clearly differentiated from the non-attack edges. Simulations on real world

and synthetic networks reveal that aeb is notably higher than heb. This result shows that RSC

is a feasible attack edge detecting algorithm for unauthorized DCSs.

Chapter 4 then provides an example showing how RSC can be used to create accurate SSD

algorithms. That is, RSC is embedded into SOHL – an existing SSD algorithm, to reduce the sar

of SOHL. The new SSD algorithm is called RSC-based Sybil Resisting (RSSR). In SOHL, two

nodes accept each other if and only if their random walk messages reach each other. Because

of the existence of the bottleneck formed by the attack edges, the probability that messages of

honest nodes reach Sybil nodes is low. Accordingly, honest nodes can distinguish Sybil nodes

from honest ones. In RSSR, honest nodes first detect the attack edges using RSC. Then, honest

nodes prevent their random walk messages from traversing the attack edges. Accordingly, it

is expected that RSSR achieves a lower sar compared to SOHL. Simulation results show that

the sar of RSSR is 5x and 13x lower than the sar of SOHL in the real world network topologies

and synthetic network topologies, respectively. These results confirm the potential of RSC in

creating accurate SSD algorithms.

The algorithms designed in this dissertation can effectively address the false result attack

and the Sybil attack. Hence, this dissertation makes a stable contribution in promoting the

application and development of DCSs.

vii

CONTENTS

Contents

Acknowledgments i

Abstract iii

1 Introduction 1

1.1 Background . 1

1.2 Objective of the Dissertation . 11

1.3 Organization of the Dissertation . 13

2 MSC: a Practical Spot Checking Mechanism 14

2.1 Introduction . 14

2.2 Resisting Mechanisms to False Result Attack 17

2.3 Mutual Spot Checking . 19

2.3.1 Basic Idea . 19

2.3.2 The Way to Form Task Sets 21

2.3.3 Reliability Metric . 22

2.4 Analysis . 23

2.4.1 Scenario 1 (Non-Collusion DCS) 24

2.4.2 Scenario 2 (Nts · w − Np · Pf · Pc · Nct ≤ 0) 25

2.4.3 Scenario 3 (Nts · w − Np · Pf · Pc · Nct > 0) 26

viii

CONTENTS

2.5 Evaluation . 28

2.5.1 Reliability Gap . 28

2.5.2 Convergence Performance . 31

2.6 Conclusion . 35

3 SybilDetector: an Attack Edge Detecting-Based Sybil Detecting

Algorithm 36

3.1 Introduction . 36

3.2 Related Work . 41

3.2.1 Sybil Attack Resisting Mechanisms 41

3.2.2 Social Network Model . 42

3.2.3 SNM-Based Sybil Detecting Algorithms 43

3.2.4 Betweenness Metrics . 45

3.2.5 Sybil Resisting Network Clustering 47

3.3 SybilDetector . 49

3.3.1 Compute the Shortest Paths 49

3.3.2 Compute the Bottlenecks of Shortest Paths 50

3.3.3 Compute the Bottleneck Bound 50

3.3.4 Overhead . 52

3.3.5 Analysis . 52

3.4 Evaluation . 57

3.4.1 Evaluation Configuration . 57

3.4.2 Results and Analysis . 60

3.5 Discussion . 65

3.6 Conclusion . 66

4 RSC: an Attack Edge Detecting Algorithm for Sybil Resisting 67

ix

CONTENTS

4.1 Introduction . 67

4.2 Related Work . 70

4.2.1 Random Walk-based DCSs . 70

4.2.2 Random Walk Betweenness 70

4.3 RSC – Detecting Attack Edges . 72

4.3.1 Choice of Detecting Metric . 72

4.3.2 Distributed Computing of the RWEB 74

4.3.3 Distinguish Attack Edges . 79

4.4 RSSR . 80

4.4.1 Sybil Resisting One Hop Lookup 80

4.4.2 Incorporating RSC into SOHL 80

4.5 Evaluation . 81

4.5.1 Network Construction . 82

4.5.2 Simulation Results . 82

4.6 Conclusion . 90

5 Conclusions 91

Bibliography 94

x

LIST OF TABLES

List of Tables

2.1 Networks for evaluation . 19

2.2 Three scenarios to study . 23

3.1 Important denotations . 39

3.2 Changes as g increases (corresponding to Figure 3.3) 53

3.3 Changes as snn increases (corresponding to Figure 3.4) 54

3.4 Networks used for creating honest and Sybil regions 58

3.5 Networks used for evaluation . 58

4.1 Important denotations . 75

4.2 Networks used for creating honest and Sybil regions 83

4.3 Networks used for evaluation . 83

xi

LIST OF FIGURES

List of Figures

1.1 A volunteer computing system . 2

1.2 False result attack in volunteer computing systems 5

1.3 Model of the false result attack . 6

1.4 Sybil attack . 9

1.5 A distributed system obeying SNM 9

2.1 An example of three task sets . 20

2.2 Instance of the checking task dispatching pattern 21

2.3 Simulation results of Scenario 1 . 29

2.4 Simulation results of Scenario 2 . 30

2.5 Simulation results of Scenario 3 . 31

2.6 Convergence performance of honest workers in Scenario 1 32

2.7 Convergence performance of conspirators in Scenario 1 32

2.8 Convergence performance of honest workers in Scenario 2 33

2.9 Convergence performance of conspirators in Scenario 2 34

2.10 Convergence performance of non-conspirators in Scenario 2 34

3.1 SybilLimit . 44

3.2 Attack edges have higher betweennesses 46

3.3 Influence of g on har and sar . 53

xii

LIST OF FIGURES

3.4 Influence of snn on har and sar . 54

3.5 Changes of har as snn increases . 59

3.6 Changes of sar as snn increases . 61

3.7 Changes of har as g increases . 62

3.8 Changes of sar as g increases . 63

4.1 Influence of network change on shortest paths and random walks . 73

4.2 Attack 2 . 77

4.3 First-type ARWs pass attack edges odd times 77

4.4 Influence of air on the betweenness 83

4.5 Influence of first-type ARWs on df 85

4.6 Influence of g on heb and aeb . 86

4.7 Influence of g on har . 87

4.8 Influence of g on sar . 89

xiii

Chapter 1

Introduction

1.1 Background

With the development of network topology, distributed systems like Facebook[1]

and Skype[2] have been widely used in industry and our daily life. Specifically, a

distributed system organizes multiple nodes together via networks. Each node

v is incident (i.e., connected) to one or multiple nodes according to certain con-

nection protocols. The nodes (edges) incident to v are called the incident nodes

(incident edges) of v. v can only communicate with its incident nodes, and v

knows nothing about the rest of the system. Nodes communicate with each

other to finish certain goals.

Distributed Computing Systems

Distributed computing systems (DCSs) is a category of distributed systems that

emphasize the sharing of computing power among nodes. DCSs are highly use-

ful, where representative DCSs include grid computing systems[3], volunteer

computing systems[4, 5], P2P systems[6], sensor network systems[7] and ad hoc

1

Figure 1.1: A volunteer computing system

systems[8].

For example, grid computing systems are DCSs that gather computing power

of multiple administrative domains together to solve computing intensive prob-

lems. In industry and academia, many computing tasks, such as the develop-

ment of new medicines, need significant computing power. Meanwhile, many

computers in universities and companies are idling. Grid computing systems

organize the computing power of these idling computers together to finish com-

plicated computing tasks.

Similar to grid computing systems, volunteer computing systems organize

idling computers on the Internet to finish computing tasks. Normally, nodes in

grid computing systems belong to credible institutes such as universities. In

contrast, nodes in volunteer computing systems are arbitrary computers on the

2

Internet. In a typical volunteer computing system such as BOINC[4], some

nodes, denoted by host nodes, have computing tasks that need to be computed.

Some nodes, denoted by worker nodes, have idling computing power. Hosts dis-

patch their tasks to workers to compute. In this way, idling computing power can

be utilized. The most famous volunteer computing system today, SETI@home,

is utilizing the computing cycles of millions of computers to search for extra-

terrestrial intelligence[5]. Figure 1.1 shows an example of volunteer computing

systems.

P2P systems denote the DCSs that are constructed in the decentralized model.

Conventionally, DCSs are organized in the centralized model. In a centralized

DCS, nodes are divided into two types: servers and clients. Servers provide re-

sources to clients. Communication occurs only between servers and clients, and

no communication occurs among clients. In contrast, in a pure P2P/distributed

system, there is no server, and all nodes have equal privilege. Nodes communi-

cate with each other and provide resources to each other to maintain the system.

For example, P2P file-sharing systems like BitTorrent[9] enable nodes to share

files with each other. In such a system, each file is located at a certain node. To

fetch the file, a file-requesting node sends its request to a node that is “closer”

to the file-holding node. The node receiving the request sends the request to

another node that is even closer to the file holder. Finally, the request can reach

the file holder.

To simplify the expression, this dissertation classifies DCSs into the follow-

ing categories.

1. Centralized DCSs, decentralized DCSs, and hybrid DCSs: central-

ized DCSs and decentralized DCSs are DCSs that obey the centralized

model and the decentralized model, respectively. In a hybrid model-based

3

DCS, most nodes have equal privilege and can communicate with each

other. However, this system also contains servers that provide resources to

other nodes. The online calling service Skype[2] is a representative hybrid

DCS. In Skype, most nodes are equal, and they exchange messages with

each other to ensure the quality of the communication. However, Skype

also contains some “super nodes” that provide services to other nodes.

2. Open DCSs and closed DCSs: open DCSs do not set strict credibility

criteria for member nodes. Any node of any organization can join these

systems. Therefore, malicious nodes may exist in open DCSs and will

launch attacks against the systems. Most volunteer computing systems

and P2P systems are open DCSs. In contrast, closed DCSs only accept

credible nodes. As introduced above, most grid computing systems belong

to this category.

3. Authorized DCSs and unauthorized DCSs: this dissertation regards

the servers in centralized DCSs and hybrid DCSs as trustful authorities,

and calls DCSs that contain trustful authorities (no authority) the autho-

rized (unauthorized) DCSs. Namely, centralized and hybrid DCSs are au-

thorized DCSs, while decentralized DCSs are unauthorized DCSs. It is

more difficult to resist attacks launched by malicious nodes in unautho-

rized DCSs than in authorized DCSs.

This dissertation concentrates on open DCSs, where security is a key prob-

lem. Especially, the false result attack[10, 11] and the Sybil attack[12] are two

critical threats to open DCSs.

4

Figure 1.2: False result attack in volunteer computing systems

5

Figure 1.3: Model of the false result attack

False Result Attack

In the false result attack, malicious nodes deliberately disseminate incorrect

data to honest nodes. For example, in a volunteer computing system, malicious

workers can deliberately return incorrect results to hosts. Figure 1.2 shows an

example of the false result attack in volunteer computing systems. In a file-

sharing P2P system, malicious nodes can provide incorrect location information

of files to the requester[13, 14].

Specifically, for a DCS, this dissertation discusses the false result attack in

the following model. Each node v is considered as a host node, and the nodes

that communicate with v are considered as the workers of v. Each host commu-

nicates with its workers by round. In each round, the host dispatches tasks to

6

workers. Workers compute their respective tasks and return the results to the

host. Workers are divided into two types: honest workers and malicious work-

ers. Honest workers always return correct results, while malicious workers may

return incorrect results. Malicious workers are further divided into two types:

conspirators and non-conspirators. Honest workers and non-conspirators can

only communicate with the host, while conspirators can communicate with each

other (collude). Figure 1.3 shows an example of this model. To simplify the ex-

pression, in the following discussion of the false result attack, this dissertation

concentrates on the communication between a certain host v and its workers.

Additionally, it is assumed that all nodes in the system are workers of v. Obvi-

ously, this assumption does not contradict the model of the false result attack.

Henceforth, “the host” is used to denote node v, and “workers” is used to denoted

the workers of v.

Existing false result attack resisting solutions are based on two core tech-

niques: Replication[15] and Quiz[11]. The Replication-based solutions enable

the host to distinguish correct results from incorrect ones. The host dispatches

each task to multiple workers. Having received the results, the host chooses a

result as the correct result using a majority vote. The efficiency of the false re-

sult resisting mechanisms is defined as the percentage of unique tasks computed

among all the tasks computed. Replication-based solutions face the problem of

being inefficient, because each task is repeatedly computed multiple times.

The Quiz-based solutions enable the host to distinguish malicious workers

from honest ones. The host sends a task set to each worker. Each task set

contains some special tasks termed quizzes. After receiving the results, the

host can judge whether or not a worker w is malicious by checking whether

the results of the quizzes in the task set of w are correct. Quiz-based solutions

7

are more efficient than Replication-based solutions. However, quizzes need to

satisfy certain special properties, and how to generate quizzes is still an open

problem[10, 11].

Sybil Attack

The Sybil attack is another security threat to DCSs, where a few malicious users

control many malicious nodes to break the system protocols. In an open DCS, it

is easy for a malicious user to create many malicious nodes. In the discussion of

the Sybil attack, these malicious nodes are called Sybil nodes. Malicious users

can control their Sybil nodes to defeat the system[16]. For example, when the

number of Sybil nodes in the system is large, Sybil nodes can easily break the

Replication-based false result attack resisting mechanisms. Figure 1.4 shows

an example of the Sybil attack to the volunteer computing system.

Specifically, under the discussion of the Sybil attack, this dissertation con-

siders a DCS that obeys the following social network model (SNM)[17]. Nodes

in the system are divided into two types: honest nodes and Sybil nodes. Each

honest node belongs to an honest user. There exists an undirected social net-

work among honest nodes. An edge between two honest nodes reflects the trust

relationship between these users in the real world. Call each edge that connects

two nodes of different types an attack edge. The number of the attack edges is

small. Hence, the attack edges largely separate the whole network into two re-

gions: the honest region of honest nodes and the Sybil region of Sybil nodes. A

DCS that obeys SNM is shown in Figure 1.5.

To resist the Sybil attack, SNM-based Sybil detecting (SSD) algorithms are

drawing enormous attention from researchers[18, 19, 20]. For a DCS, SSD algo-

rithms enable each honest node to judge the types of other nodes. In SNM-based

8

Figure 1.4: Sybil attack

Figure 1.5: A distributed system obeying SNM

9

DCSs, since the number of attack edges is small, the communication between

nodes of different types is weakened. Hence, it is easier for honest nodes to

communicate with honest nodes than with Sybil nodes. Utilizing this property,

honest nodes can distinguish honest nodes from Sybil nodes.

The performances of SSD algorithms is measured by their accuracy. For the

simplicity of expression, for two random nodes v and u, it is said that v accepts

(rejects) u if v regards u to be honest (Sybil). The performances of SSD algo-

rithms are measured by the honest accept rate (har) and the Sybil accept rate

(sar). har represents the average probability that v accepts u, where v and u are

both honest. sar represents the probability that v accepts u, where v is honest

and u is Sybil. SSD algorithms should have high har and low sar.

The problem of existing SSD algorithms is that their accuracy is low. Al-

though the attack edge bottleneck can weaken the communication between nodes

of different types, it cannot entirely stop the communication between nodes of

different types. Accordingly, it is possible for honest nodes to make incorrect

judgments.

To ensure the secure application and the development of DCSs, it is neces-

sary to design more effective mechanisms to address the false result attack and

the Sybil attack.

10

1.2 Objective of the Dissertation

The objective of this dissertation is to design more effective mechanisms to resist

the false result attack and the Sybil attack on DCSs.

Specifically, to resist the false result attack, this dissertation aims to design a

practical and efficient algorithm that enables the host to detect malicious work-

ers. Here, “practical” means that no quizzes are used. In this algorithm, the

host computes the reliability of each worker. The performance of this algorithm

is mainly evaluated by the gap between the reliabilities of honest workers and

malicious workers. The reliabilities of honest workers should be notably higher

than those of malicious workers, enabling the host to detect malicious workers.

To resist the Sybil attack, this dissertation aims to create accurate SSD algo-

rithms by utilizing an attack edge detecting technique. Here, for a DCS, attack

edge detecting means to enable honest nodes to judge whether or not a certain

group of edges are attack edges. This dissertation observes that attack edge de-

tecting plays an important role in creating accurate SSD algorithms. Hence, a

SSD algorithm should contain two components: an attack detecting mechanism

and a distinguishing mechanism. For each honest node v, the attack edge de-

tecting mechanism enables v to detect the attack edges in the system. Then, the

distinguishing mechanism enables v to decide whether or not node u is Sybil.

Specifically, this dissertation discusses authorized DCSs and unauthorized

DCSs separately. For authorized DCSs, an attack edge detecting-based SSD al-

gorithm is to be created, which is expected to have high har and low sar. For

unauthorized DCSs, an attack edge detecting algorithm is to be designed. This

algorithm enables nodes to compute the betweennesses of edges. It is expected

that the betweennesses of attack edges are notably higher than those of non-

attack edges, which enables nodes to detect the attack edges. This attack edge

11

detecting algorithm can be used to create accurate SSD algorithms for unautho-

rized DCSs.

The mechanisms proposed above can more effectively address the false result

attack and the Sybil attack. Accordingly, this dissertation can further promote

the application and development of DCSs.

12

1.3 Organization of the Dissertation

This dissertation contains five chapters. Chapter 1 introduces the background

knowledge and the objective of this dissertation. Chapter 2 proposes Mutual

Spot Checking (MSC), a false result attack resisting algorithm that enables the

host to distinguish malicious workers from honest ones. Chapter 3 and Chapter

4 deal with the Sybil attack. Chapter 3 designs SybilDetector, an attack edge

detecting-based SSD algorithm for authorized DCSs. Chapter 4 designs Ran-

dom walk and SNM-based Clustering (RSC), an attack edge detecting algorithm

for unauthorized DCSs. Finally, Chapter 5 concludes this dissertation.

13

Chapter 2

MSC: a Practical Spot Checking

Mechanism

2.1 Introduction

The false result attack is a key threat to DCSs, where malicious workers return

incorrect results of tasks to the host deliberately. This attack is even harder to

resist when conspirator workers cooperate with each other to break the system

protocols.

To resist the false result attack, many existing solutions are based on the

technique of Replication[15]. In existing Replication-based solutions, the host

dispatches each task to k = 2m + 1 workers. After receiving the results, the

host accepts a result that repeats more than m times. In this way, the host can

filter out incorrect results. The main problem of Replication-based solutions is

that they are inefficient, because each task has to be computed multiple times.

Specifically, the efficiency of false result attack resisting algorithms is defined

14

as
of unique tasks computed by workers

of all tasks computed by workers
.

Obviously, the optimal efficiency of false result attack resisting solutions is one.

Another core technique for false result attack resisting mechanisms is Quiz[11,

21, 22, 23]. In existing Quiz-based solutions, the host checks the correctness of

results of the quizzes returned from workers to judge the types of workers. Ac-

cordingly, a quiz has to satisfy the one-way complexity property: the correctness

of a quiz can be easily validated. Meanwhile, a quiz also has to satisfy the non-

distinguishableness property: it is impossible for workers to distinguish whether

or not a task is a quiz. However, how to generate tasks that satisfy these two

properties is still an open problem.

This chapter aims to provide an efficient and quiz-free algorithm that enables

the host to detect malicious workers. To this end, this chapter proposes Mutual

Spot Checking (MSC). The key idea is to use normal tasks, instead of quizzes, to

judge the types of workers. In MSC, the host dispatches checking tasks (normal

tasks) to each worker to compute, and increases the reliabilities of workers that

return correct results to the checking tasks. Additionally, workers, instead of

the host, check the correctness of results of the checking tasks. Since honest

workers return more correct results, the reliabilities of honest workers will be

higher than those of malicious workers, enabling the host to distinguish honest

workers from malicious ones. In MSC, quizzes are replaced by normal tasks, and

only the checking tasks are computed multiple times. Therefore, MSC is more

practical than the Quiz-based solutions, and more efficient than the Replication-

based solutions.

The performance of MSC is measured from three aspects: efficiency, reliabil-

ity gap, and the convergence performance. The efficiency of MSC should be high.

15

Additionally, the gap between the average reliability of honest workers and that

of malicious workers should be large, so that the host can distinguish malicious

worker accurately. Finally, the reliability of each worker should quickly con-

verge to a stable value as the system runs. Hence, the host can detect malicious

workers before accepting too many incorrect results.

The performance of MSC is evaluated by theoretical analysis and simula-

tions. Collusion DCSs and non-collusion DCSs are analyzed, respectively. First,

the evaluation shows that, in a non-collusion DCS, the host can detect all mali-

cious workers. In a collusion DCS, the host can detect malicious workers as long

as the number of malicious workers is less than that of honest workers. Addi-

tionally, the theoretical efficiency of MSC can approach one. Finally, simulation

results reveal that reliabilities of workers can converge to stable values within

ten rounds.

The organization of this chapter is as follows. Section 2.2 provides more

discussion on existing false result attack resisting mechanisms. Section 2.3 ex-

plains the design of MSC. Section 2.4 and Section 2.5 analyze the performance

of MSC theoretically and experimentally, respectively. Finally, Section 2.6 con-

cludes this chapter.

16

2.2 Resisting Mechanisms to False Result Attack

Golle et al.[11] proposed a Quiz-based algorithm called magic number (MN) that

enables the host to identify malicious workers. In MN, all tasks are assumed to

satisfy the one-way complexity property. Therefore, the host can easily check

the correctness of results returned from workers, and thus identify malicious

workers. However, in general DCSs, tasks do not satisfy the one-way complexity

property.

In the work of Zhao et al.[10], for each worker w, the host disseminates a set

of tasks. Among this set of tasks, some tasks are quizzes. Having received the

results from w, the host regards w to be malicious if any result to the quizzes is

incorrect. However, this algorithm has two problems. First, the host itself has

to check the correctness of the results of the quizzes. Second, the quizzes are

assumed to satisfy the non-distinguishableness property, but how to generate

tasks that satisfy this property is not yet clear.

Silaghi et al.[15] created a Replication-based malicious worker detecting al-

gorithm, denoted by Λ. In Λ, the host dispatches each task to three random

workers. If the result returned by w is equal to the results returned by the other

two workers, it is said that w has made a match. Honest workers will make more

matches than malicious workers. Accordingly, in a long run, malicious workers

will have notably lower reliabilities and thus will be detected by the host. Λ is

similar to MSC. However, since each task is computed three times, the efficiency

of Λ is not satisfiable.

To resist the false result attack, beside the Quiz and Replication based so-

lutions, another group of solutions aims to protect the task-solving application

from being tampered by workers. Specifically, in DCSs, each worker has an ap-

plication. On receiving a task, the worker runs the application using the task

17

as the input. The application generates the answer and sends it to the host.

To make the application generate incorrect answers, malicious workers need to

tamper with it. Therefore, the false result attack can be resisted by preventing

workers from tampering with the application.

Both software and hardware protection mechanisms have been proposed.

From the software perspective, tamper proofing and obfuscation are two well in-

vestigated techniques for code protection. The goal of the former technique is to

make applications nonfunctional once the applications are modified. The goal of

the latter technique is to encrypt applications without changing their function-

alities. A general survey on the topics of the code protection can be found in [24].

However, so far, these software solutions are far from practical[25, 26, 11]. The

hardware-based solutions aim to protect the applications using special hard-

ware devices[27, 28]. An example is to let workers run applications using the

cell processor[29], where the cell processor can protect the code running from be-

ing tampered by any outsize force. However, so far, hardware protection devices

are not widely available.

18

Table 2.1: Networks for evaluation
Name Description

Nct The number of checking tasks shared
by a pair of workers

Nts The number of tasks contained in each
task set

Np The number of workers in the system
w Each non-conspirator computes w

percent of tasks in its task set
Pf The percentage of malicious workers in

the system
Pc The percentage of conspirators among

malicious workers
φn

i The reliability of worker i in the n-th
round

φn
H , φn

M , φn
C , φn

NC The expected reliabilities of honest
workers, all malicious workers,

conspirators and non-conspirators in
the n-th round, respectively

2.3 Mutual Spot Checking

This section explains the design of MSC. Table 2.1 lists the important parame-

ters used in this chapter.

2.3.1 Basic Idea

The basic idea of MSC is as follows. In each round, the host dispatches to each

worker a set of tasks, called a task set. Each pair of task sets dispatched to two

workers share some tasks in common, called the checking tasks. An example

of three task sets is shown in Figure 2.1. For each worker, the host maintains

a reliability value for this worker. After receiving the results, for each pair of

workers i and j, the host compares the results of the checking tasks shared by

(the task sets of) i and j. It is said that “i matches the k-th checking task with j”

if the results of the k-th checking task shared by i and j are identical. The host

19

CT(c) t1 CT(a)

CT(a) t2 CT(b)

CT(b) t3 CT(c)

T2:

T1:

T3:

(a) Three task sets to be dis-
patched to three workers.

 t2

t1 t3
T1

T2

T3

CT(a)

CT(c)

CT(b)

(b) The relation between the
three task sets.

Figure 2.1: Three task sets (T). Each task set contains three tasks (t). Each pair
of tasks shares one checking task CT .

increases the reliabilities of i and j if they have made matches.

In a long run, the reliabilities of honest workers will be higher than those

of malicious workers. The reason is intuitive. The results of the checking tasks

shared by two honest workers must be identical. In contrast, the results of the

checking tasks shared by two workers are inclined to be different, if any one of

them is malicious. Accordingly, honest workers make more matches and have

higher reliabilities. Given the reliability of each worker, the host can detect

malicious workers.

MSC is a combination of the Replication and the Quiz methodologies. MSC

is more efficient than the replication method, because only the checking tasks

need to be executed by different workers. Additionally, it is more practical than

the Quiz-based solutions, since quizzes are replaced by normal checking tasks.

20

CT(a) CT(b)

CT(a) CT(b)

t7 t8

t1

CT(c)

CT(c)

t2

CT(d)

CT(d)

CT(e)

t4

CT(e)

CT(f)

t5

CT(f)

t3

t6

t9

Np

Nct

Nts

Figure 2.2: Instance of the checking task dispatching pattern with Np = 3, Nct =
2 and Nts = 7.

2.3.2 The Way to Form Task Sets

One key issue with MSC is to find a way to dispatch the checking tasks so that

high efficiency and detecting accuracy can be achieved. The dispatching pat-

terns can be specified by three parameters: the number of workers in the sys-

tem (Np), the number of checking tasks shared by a pair of workers (Nct), and the

number of tasks contained in a task set (Nts). Intuitively, the rate of Nts/Nct re-

flects the trade-off between the efficiency and detecting accuracy. When Nts/Nct

is high, the efficiency of MSC is high because fewer tasks are repeatedly com-

puted. Contrarily, when Nts/Nct is low, nodes compute more checking tasks. Ac-

cordingly, the host can detect malicious workers more quickly. There are quite a

large number of possible combinations for these three parameters. As the first

step to establish an effective assignment scheme, a typical and regular pattern

is investigated in this chapter. Figure 2.2 presents an instance of such a regular

pattern.

21

2.3.3 Reliability Metric

This section discusses how to compute the reliabilities of workers. Naturally,

the reliability should satisfy the following properties:

1. A worker will obtain a higher reliability if it returns more matching re-

sults.

2. A worker who matches a checking task with an honest worker (worker with

a higher reliability) obtains a higher reliability than those who match with

a malicious worker.

Accordingly, the reliability of worker i in the n-th round, denoted by φn
i , is defined

as

φn
i = E(

∑
0≤j 6=i≤Np

∑
1≤i≤Nct

ck
i (j) · φn−1

j∑
0≤j 6=i≤Np

Nct · φn−1
j

), (2.1)

where E(·) means the probability expectation, and ck
i (j) is an indicator random

variable defined by

ck
i (j) =

{
1 : Pi and Pj match their k-th checking task. k ∈ [1, Nct]

0 : otherwise.

22

Table 2.2: Three scenarios to study
Scenario 1 Non collusion
Scenario 2 Collusion Nts · w − Np · Pf · Pc · Nct ≤ 0
Scenario 3 Collusion Nts · w − Np · Pf · Pc · Nct > 0

2.4 Analysis

This section evaluates the theoretic performances of MSC in non-collusion and

collusion DCSs. In a non-collusion DCS, workers are divided into two groups:

honest and malicious. In a collusion DCS, malicious workers are further clas-

sified into conspirators and non-conspirators. Let Pf be the percentage of ma-

licious workers in the system, and Pc be the percentage of conspirators among

malicious workers.

In the collusion DCS, non-conspirator workers randomly pick exact w per-

centage of tasks in their task sets to compute, while conspirators compute at

least w percent of tasks. Conspirators will first compute all the checking tasks

known from their accomplices. If these tasks have accounted for more than w

percent of the total Nts tasks in their task sets, they stop computing; otherwise,

they continue to pick the remaining tasks randomly from their task sets until w

percent of tasks are accomplished. The former situation corresponds to the case

where Nts ·w−Np ·Pf ·Pc ·Nct ≤ 0, and the latter satisfies Nts ·w−Np ·Pf ·Pc ·Nct > 0.

Therefore, according to a) whether the system is under collusion, and b) whether

Nts · w − Np · Pf · Pc · Nct < 0, three scenarios referred to as Scenarios 1, 2 and 3,

shown in Table 2.2, are discussed.

23

2.4.1 Scenario 1 (Non-Collusion DCS)

This section proves that, in non-collusion DCSs, MSC can accurately distinguish

all malicious workers.

Equation (2.1) can be rewritten as

φn
i = E(

∑
Pj∈H,j 6=i

∑Nct

k=1 ck
i (j)φ

n−1
j +

∑
Pj∈M,j 6=i

∑Nct

k=1 ck
i (j)φ

n−1
j∑

Pj∈H,j 6=i Nct · φn−1
j +

∑
Pj∈M,j 6=i Nct · φn−1

j

). (2.3)

According to the types of workers i and j, E(ck
i (j)) can be three values:

1. When both workers i and j are malicious, E(ck
i (j)) = 1 · Pr(ck

i (j) = 1) + 0 ·

Pr(ck
i (j) = 0) = w2, where Pr means the possibility;

2. When both workers i and j are honest, E(ck
i (j)) = 1;

3. When one of workers i and j is malicious, supposing that worker i is honest

(for j is the same), E(ck
i (j)) = w.

Accordingly, Equation (2.3) can be written as

φn
H =

(1 − Pf) · φn−1
H + Pf · w · φn−1

M

(1 − Pf) · φn−1
H + Pf · φn−1

M

, (2.4)

φn
M =

(1 − Pf) · w · φn−1
H + Pf · w · w · φn−1

M

(1 − Pf) · φn−1
H + Pf · φn−1

M

= w · φn
H , (2.5)

where φn
H and φn

M denote the expected reliabilities of honest and malicious work-

ers in the n-th round, respectively.

The solution of Equations (2.4) and (2.5) is

φH =
Pf · w2 − Pf + 1

Pf · w − Pf + 1
, (2.6)

24

φM = w · φH . (2.7)

Equations (2.6) and (2.7) reveal two things. First, the reliabilities of honest

and malicious workers are independent of parameters Np, Nct and Nts, but are

solely determined by Pf and w. Second, the average of the expected reliabilities

of malicious workers is always w times less than that of honest workers. This

means that, statistically, MSC is always able to distinguish malicious workers

in the non-collusion DCS.

2.4.2 Scenario 2 (Nts · w − Np · Pf · Pc · Nct ≤ 0)

This section shows that, in Scenario 2, the average reliability of honest workers

is expected to be larger than the conspirators as long as malicious workers are

less than honest workers.

Under the collusion DCS, let φn
H ,φn

C and φn
NC be the reliabilities of hon-

est workers, malicious conspirators and malicious non-conspirators in the n-th

round, respectively. Now Equation (2.1) changes to

φn
H =

(1 − Pf) · φn−1
H + Pf · (1 − Pc) · w · φn−1

NC

(1 − Pf) · φn−1
H + Pf · Pc · φn−1

c + Pf · (1 − Pc) · φn−1
NC

, (2.8)

φn
C =

Pf · Pc

(1 − Pf) · φn−1
H + Pf · Pc · φn−1

C + Pf · (1 − Pc) · φn−1
NC

· φn−1
C , (2.9)

φn
NC = w · φn

H , (2.10)

which has two sets of solutions. When the coefficient of φn−1
H in Equation (2.8) is

larger than that of φn−1
C in Equation (2.9), namely when

Pf ≤ 1/(1 + Pc + (Pc − 1) · w2), (2.11)

25

φC converges to zero more quickly than φH . Then, the solution of Equations 2.8,

2.9 and 2.10 is

φH =
−Pf · w2 + Pf · Pc · w2 + Pf − 1

−Pf · w + Pf · Pc · w + Pf − 1
, φC = 0, φNC = w · φH ; (2.12)

otherwise, the solution is

φH = 0, φC = 1, φNC = 0. (2.13)

Note that 1
1+Pc+(Pc−1)·w2 ≥ 1/2 because Pc ∈ [0, 1] and w ∈ [0, 1]. By Equation

(2.11), it is concluded that the reliability of an honest worker is expected to be

larger than that of a conspirator as long as Pf is less than 0.5.

2.4.3 Scenario 3 (Nts · w − Np · Pf · Pc · Nct > 0)

This section shows that, in Scenario 3, MSC can distinguish malicious workers

as long as malicious workers are less than honest workers.

Equation (2.1) becomes

φn
H =

(1 − Pf) · φn−1
H + Pf · Pc · w′ · φn−1

C + Pf · (1 − Pc) · w · φn−1
NC

(1 − Pf) · φn−1
H + Pf · Pc · φn−1

C + Pf · (1 − Pc) · φn−1
NC

, (2.14)

φn
C =

(1 − Pf) · w′ · φn−1
H + Pf · Pc · φn−1

C + Pf · (1 − Pc) · w · w′ · φn−1
NC

(1 − Pf) · φn−1
H + Pf · Pc · φn−1

C + Pf · (1 − Pc) · φn−1
NC

, (2.15)

φNC = w · φH , (2.16)

where

w′ =
Nts · w − Np · Pf · Pc · Nct

Nts − Np · Pf · Pc · Nct

is the percentage of tasks that a conspirator will continue to compute after it

has finished the checking tasks known from its accomplices.

26

Equations (2.14) and (2.15) indicate that as Pf approaches zero, lim
Pf→0

φH =

1, lim
Pf→0

φC = w′, meaning that φH is larger than φC when Pf is closer to zero. On

the other hand, φn
H = φn

C only when Pf = 1/(1 + Pc + (Pc − 1) ·w2), which is larger

than 1/2. Accordingly, the reliabilities of honest workers are larger than those

of malicious workers as long as Pf is less than 0.5.

In brief, in this section, the performance of MSC is theoretically analyzed,

and two notable points are revealed. Call 1). non-colluding DCSs and 2). col-

luding DCSs where malicious workers are less than honest workers the reason-

able DCSs. First, in reasonable DCSs, the host can accurately detect malicious

workers. Second, in reasonable DCSs, theoretically, MSC can achieve an opti-

mal efficiency. In these DCSs, the average reliability of honest workers is al-

ways higher than that of malicious workers, no matter how Nct and Nts change.

Higher Nts/Nct means a higher efficiency. Therefore, by enlarging Nts, it is theo-

retically possible to increase the efficiency of MSC to one.

27

2.5 Evaluation

This section evaluates the reliability gap between honest workers and malicious

workers by simulation. This gap is expected to be large. The converging perfor-

mance of MSC is also evaluated by simulation. It is expected that the reliability

of each worker quickly converges to a stable value.

In all the evaluations, by Equation (2.1), the reliability of a worker i in the

n-th round is computed by

φn
i =

∑
0≤j 6=i≤Np

∑
1≤i≤Nct

ck
i (j) · φn−1

j∑
0≤j 6=i≤Np

Nct · φn−1
j

. (2.17)

The probability expectation of Equation (2.1) is interpreted as the mean of the

reliabilities of this worker from the first round until the current round.

2.5.1 Reliability Gap

Scenario 1

Figure 2.3 indicates the changes in reliabilities of different types of workers as

w increases in the case where MSC is used for Scenario 1. The system consists

of 40 workers. Each task set contains 400 tasks, and each pair of task sets

share eight checking tasks. The percentage of malicious workers Pf is set at 0.5.

The results show that honest workers obtain higher reliabilities than malicious

workers as long as w is less than 1, which matches the analysis well.

28

Figure 2.3: Changes in the reliabilities of honest and malicious workers with
the increase of w in Scenario 1.

Scenario 2

Figure 2.4 is an example of running MSC in Scenarios 2. The system has 40

workers. The task set size is 320, and each pair of task sets has eight checking

tasks in common. w is set at 0.2. Conspirator rate Pc is fixed at 0.5. This figure

shows the changes in reliability of each worker type, as Pf increases. It reviews

that Pf in the system is a critical factor affecting the feasibility of MSC.

In particular, when Pf is low (lower than 70 percent in this example), the

average of the expected reliabilities of honest workers is much higher than that

of malicious ones. Moreover, conspirators show no advantage over these non-

conspirators. Therefore, the host can clearly identify malicious workers in this

29

Figure 2.4: Changes in the reliabilities of three types of workers with the in-
crease of Pf , in Scenarios 2.

situation, which corresponds to Equation (2.12). Once the malicious rate is high

enough to exceed a certain threshold (70 percent in this example), which can be

calculated by Equation (2.11), the average of the expected reliabilities of con-

spirators quickly overwhelms that of honest workers. This matches Equation

(2.13) quite well.

Scenario 3

The evaluation results of Scenario 3 are similar with those of Scenario 2. An

example of Scenario 3 is shown in Figure 2.5. The system size, task set size, and

checking task size are 40, 320 and 8, respectively. The results show that, when

Pf is low (lower than 0.73 in this case), the average of the expected reliabilities

30

Figure 2.5: Changes in the reliabilities of three types of workers with the in-
crease of Pf , in Scenarios 3.

of honest workers is higher than that of malicious workers, and the reliability

gap is large and clear. As Pf increases, conspirators gradually overtake honest

workers. The reason is that, as the number of malicious workers increases,

conspirators also increase. As a result, conspirators can detect more checking

tasks in their task sets. Reliabilities of honest workers decrease as well since

they are more frequently paired with malicious workers, resulting in a higher

miss-matching rate.

2.5.2 Convergence Performance

Figures 2.6 and 2.7 review the convergence performance of honest and malicious

workers in Scenario 1, respectively. For instance, Figure 2.6 shows the maximal,

minimal and average values of the reliabilities of all honest workers during the

running of the system. This reveals that the average reliability converges in

about ten rounds. Moreover, the reliabilities of all honest workers in each round

31

Figure 2.6: The convergence performance of honest workers during the system
running in Scenario 1.

Figure 2.7: The convergence performance of conspirators during the system run-
ning in Scenario 1.

32

Figure 2.8: The convergence performance of honest workers during the system
running in Scenario 2.

stay within a small range (less than 5% in this example) around the average.

This means that it is unlikely for the reliability of a malicious worker to surge

over that of an honest worker throughout the running of the system. Figures

2.8, 2.9 and 2.10 reveal the convergence status of each worker type in Scenario

2. These results are all similar to the results of Scenario 1.

33

Figure 2.9: The convergence performance of conspirators during the system run-
ning in Scenario 2.

Figure 2.10: The convergence performance of non-conspirators during the sys-
tem running in Scenario 2.

34

2.6 Conclusion

DCSs are vulnerable to the false result attack, and the existing mechanisms to

this attack are either inefficient or impractical. This chapter proposed MSC, an

algorithm that solved the problems of the existing solutions. MSC enables the

host to detect malicious workers. The key idea of MSC is to use checking tasks,

instead of quizzes, to detect malicious workers. Hence, MSC removes the need

of generating quizzes. Theoretical analysis and simulation show that: in non-

collusion DCSs, the host can always detect malicious workers; in collusion DCSs,

as far as malicious workers are less than honest ones, the host can accurately

detect malicious workers. Additionally, the theoretical efficiency of MSC can be

near optimal.

35

Chapter 3

SybilDetector: an Attack Edge

Detecting-Based Sybil Detecting

Algorithm

3.1 Introduction

The Sybil attack is a serious security problem to DCSs. In a DCS, it is easy

for a malicious user to create many malicious nodes. The malicious user can

then control his/her malicious nodes to break the system protocol. This attack

is called the Sybil attack, and malicious nodes in this attack are called Sybil

nodes. For example, the Sybil attack can break the voting systems of large

online communities like Amazon[30, 31]. In a voting system, each node has

one ballot and can give its ballot to certain goods (such as a book). The goods

that obtain more ballots will be advertised to more nodes. By controlling many

Sybil nodes, malicious users can interrupt the voting results arbitrarily.

Among existing resisting mechanisms to the Sybil attack[32, 33], the social

36

network model (SNM) based Sybil detecting (SSD) algorithms (SybilLimit[18],

Gatekeeper[17], SOHL[19]) are drawing enormous attention from researchers.

For a DCS, SSD algorithms assume that DCSs obey SNM. In such a DCS, SSD

algorithms enable each honest node to judge the types of other nodes. The basic

idea of SSD algorithms is that, since the number of attack edges is small, the

communication between nodes of different types is weakened. Hence, it is easier

for honest nodes to communicate with honest nodes than with Sybil nodes. By

utilizing this property, honest nodes can distinguish honest nodes from Sybil

nodes.

The problem of existing SSD algorithms is that their accuracies are low –

these algorithms have a low honest accept rate (har) or a high Sybil accept rate

(sar). Although the attack edge bottleneck can weaken communication between

nodes of different types, it cannot entirely stop the communication. Accordingly,

it is possible for honest nodes to make incorrect judgments.

This dissertation observes that detecting the attack edges plays an important

role in creating accurate SSD algorithms. Here, detecting attack edges means to

enable nodes in the system to judge whether or not a certain group of edges are

attack edges. Intuitively, by explicitly detecting the attack edges, it is possible to

more clearly separate nodes of different types, and thus to create accurate SSD

algorithms.

The objective of this chapter is to design accurate SSD algorithms for au-

thorized DCSs by utilizing the attack edge detecting technique. This chapter

designs SybilDetector, an attack edge detecting-based SSD algorithm for autho-

rized DCS. In a SNM-based system, the shortest paths between honest nodes

and Sybil nodes have to pass the attack edges. In SybilDetector, for each honest

node hn, hn detects the attack edges in the system. Then, for node u, hn judges

37

whether the shortest paths between it and u pass the detected edges. If and only

if it is true, hn regards u to be Sybil (See Figure 1.5 for intuition). The core of

SybilDetector is a mechanism that enables each honest node to judge whether

or not a certain edge is an attack edge. The performance of SybilDetector is

compared with that of an existing SSD algorithm by simulations on topologies

of synthetic and real world networks. Evaluation results show that the sar of

SybilDetector is considerably lower than that of SybilLimit. Additionally, this

chapter validates the potential of the attack edge technique in designing accu-

rate SSD algorithms.

Model and Denotations

SybilDetector assumes that the system obeys SNM. The number of honest nodes,

denoted by n, is known to each node, as many existing SSD algorithms do[17,

20]. The number of attack edges in the system, denoted by g, is o(n/ log n)∗. The

reason of this assumption is explained in Section 3.2.3. The number of Sybil

nodes in the system, denoted by snn, is O(n). The edges among honest nodes

are called the honest edges, and the number of honest edges is denoted by m.

Hernando et al.[35] has shown that, in social networks, the number of friends

a person has is on average 150. Hence, SybilDetector considers that m = O(n).

The diameter of the system, denoted by 4, is assumed to be O(log n)[36]. Here,

the diameter of a network system is the maximum of the distances between any

pair of nodes in the system. Table 3.1 lists the important denotations used in

this chapter.

∗In computing complexity theory[34], the asymptotic notations f(n) = O(g(n)) means that,
as n increases, ∃k, |f(n)| < k · g(n). f(n) = Ω(g(n)) means that, as n increases, ∃k, f(n) > k · g(n).
f(n) = Θ(g(n)) means that, as n increases, ∃k1,∃k2, g(n) · k1 ≤ f(n) ≤ g(n) · k2. f(n) = o(g(n))
means that, as n increases, ∀ε, |f(n)| < ε · g(n).

38

Table 3.1: Important denotations
Name Description

(s, t)-SPs The shortest paths between node s and
node t

First-type SPs The shortest paths between nodes of
different types

Second-type SPs The shortest paths between honest
nodes

n The number of honest nodes in the sys-
tem

snn The number of Sybil nodes in the sys-
tem

Honest edges The edges among honest nodes
m The number of honest edges in the sys-

tem
har The probability that node v accepts

node u, where v and u are two random
honest nodes

sar The probability that node v accepts
node u, where v and u are a random
honest node and a random Sybil node,
respectively

Benchmark suspects of v The set of random honest nodes sam-
pled by node v to estimate its bottle-
neck bound

ℵ The number of benchmark suspects
sampled per node

SPEB The shortest path edge betweenness

39

The following part of this chapter is organized as follows†. Section 3.2 pro-

vides more discussion on the Sybil attack and SSD algorithms. Section 3.3

details the design of SybilDetector. Section 3.4 evaluates the performance of

SybilDetector. Then, Section 3.5 discusses the potential problems of SybilDetec-

tor. Finally, Section 3.6 concludes this chapter.

†This chapter is an extended version of [37].

40

3.2 Related Work

3.2.1 Sybil Attack Resisting Mechanisms

The Sybil attack was first noticed by Douceur[12] in the research of P2P sys-

tems. Douceur found that, in P2P systems, it is easy for a user to control a large

number of nodes to breach the system protocols. After the research of Douceus,

the Sybil attack rapidly gained the attention of researchers of not only P2P sys-

tems, but also many other DCSs such as sensor network systems[16] and mobile

systems[38].

Many Sybil resisting solutions have been proposed[33], and Levine et al.[33]

extracted the two basic ideas of these solutions. Each idea has its advantages

and disadvantages, and no complete solution to the Sybil attack has yet been

provided.

The first idea is to ensure the identifications of nodes using trustful authori-

ties. Douceur proved that, in a DCS with no trustful authority, it is impossible to

address the Sybil attack completely[12]. Trustful authorities can impose stricter

control on the identifications of nodes. This makes it harder for malicious users

to create Sybil nodes and thus weakens the attack.

The second idea is to identify Sybil nodes by testing the resources held by

each node. In a DCS, suppose that each user holds finite resources such as

memory, bandwidth and computing power. If many Sybil nodes are created, the

resources per Sybil node will be notably less than resources per honest node.

This property can be used to distinguish Sybil nodes from honest ones. SNM-

based Sybil resisting algorithms are indeed based on this idea, where the edges

incident to honest nodes are the limited resources.

41

3.2.2 Social Network Model

SNM is a model that depicts the network topologies of DCSs. For a DCS, SNM

assumes that the number of attack edges in the system is small. Here, an attack

edge is an edge connecting nodes of different types, honest or Sybil. The attack

edges separate the whole network into two regions, the honest region of honest

nodes and the Sybil region of Sybil nodes.

SNM fits systems that contain trust relationships. Online social network

systems (e.g., Facebook[1]) are the representative systems that match SNM. In

such a system, each node is corresponding to a person, and edges among the

nodes represent friendship among the people. Two nodes are connected by an

edge usually because the corresponding users of these two nodes trust each other

in the real world. It is reasonable to consider that, in the real world, it is hard

for a malicious person to be trusted by many honest persons. Consequently, in

online social network systems, the number of attack edges should be small.

Although not all DCSs obey SNM, SNM-based security mechanisms for DCSs

still have attracted great attention of researchers. Some DCSs naturally obey

SNM. For example, in many P2P systems, for a new node to join the system,

the new node needs to obtain invitations of the nodes that already exist in the

system[14]. Having joined the system, the new node is connected to the nodes

that have invited it. It is reasonable to think that honest nodes are unlikely to

invite Sybil nodes. Hence, the network topologies of these P2P systems natu-

rally obey SNM, and these DCSs can readily benefit from SNM-based security

mechanisms. For DCSs that do not obey SNM, they can import social network

information from third party online social network systems to create security

mechanisms[39]. As the potential of SNM in consolidating the security of DCSs

is explored, it is expected that more DCSs will be constructed based on SNM.

42

3.2.3 SNM-Based Sybil Detecting Algorithms

This section introduces some representative SSD algorithms.

SybilLimit[18]: SybilLimit is one of the earliest and fundamental SSD algo-

rithms. SybilLimit created the probing random walk, which has become a core

constructing component for many SSD algorithms. A probing random walk is a

message packet that advances for O(log n) steps in a random walk manner. Yu

el at.[18] proved that, when g = o(n
log(n)

), the probing random walk has two good

properties:

• First, the escape rate of the probing random walk is low of o(1). Here,

the escape rate of the probing random walk is the average probability that

a probing random walk starting from the honest region enters the Sybil

region during its movement.

• Second, for each probing random walk starting from the honest region, in

the last step, this probing random walk traverses each honest edge with

an equal probability of 1/m. Specifically, In a DCS with m edges, let rw be

a random walk and e be an arbitrary edge. According to Markov theory,

once rw has moved sufficient steps, the probability that rw passes e from

either direction converges to 1/(2m)[40]. At this point, it is said that rw

has mixed. The number of steps for rw to mix changes according to the

underlying network. A network where random walks mix within log n steps

is said to be fast mixing[18]. Yu el at.[18] showed that social networks are

fast mixing. For a SNM-based DCS, let prw be a probing random walk

starting from the honest region. Within log n steps, prw stays within the

honest region and fixes within the honest region. Hence, the last step of

prw traverses each honest edge with the probability of 1/m.

43

Figure 3.1: SybilLimit

In SybilLimit, each node disseminates r = O(
√

m) probing random walks.

Two nodes accept each other if and only if their respective probing random walks

intersect. Since the escape rate of the probing random walk is low, the proba-

bility that probing random walks of nodes of different types intersect is low.

Accordingly, honest nodes can distinguish honest nodes from Sybil nodes. Theo-

retically, in SybilLimit, each honest node accepts all other honest nodes with a

high probability and accepts O(g log n) Sybil nodes. Figure 3.1 shows an example

of SybilLimit.

SOHL[19] and Whānau[20]: SOHL and Whānau aim to reduce the message

cost of SybilLimit. In SybilLimit, the message cost for node v to judge the type

of node u is O(
√

m). SOHL and Whānau reduce this cost to O(1).

Similar to SybilLimit, the core constructing technique of SOHL and Whānau

is the probing random walk. In SOHL and Whānau, each node v disseminates

a large number of probing random walks. Then, v accepts the ending nodes of

its probing random walks and rejects other nodes. Since the escape rate of the

probing random walk is low, honest nodes can distinguish honest nodes from

Sybil nodes.

Sumup[31]: In Sumup, each node v disseminates a certain number of tickets

to other nodes in a broad first search manner. On receiving a set of tickets, node

u takes one ticket, and sends the leftover tickets to its incident nodes that have

not yet received any ticket. Finally, for an unknown node u, v accepts u if and

44

only if u has received a ticket of v. Since the number of attack edges is small,

the probability that the tickets of v enter the Sybil region is low. Accordingly, v

can distinguish Sybil nodes from honest ones.

Gatekeeper[17]: Gatekeeper increases the accuracy of Sumup using a ma-

jority vote technique. As in Sumup, in Gatekeeper, each node v disseminates a

certain number of tickets in a broad first search manner. v regards the nodes

that have received its tickets as its reachable nodes. Then, v accepts node u if

and only if u is reachable to multiple random honest nodes. When u is Sybil,

the probability that u is reachable to any honest node is low. Hence, the prob-

ability that u is reachable to multiple honest nodes is even lower. In this way,

Gatekeeper achieves a lower sar than Sumup. Theoretically, Gatekeeper en-

ables each honest node to accept all other honest nodes, and accept O(log g) Sybil

nodes.

Although these SSD algorithms have designed various techniques to distin-

guish Sybil nodes, they have not tried to explicitly detect the attack edges.

3.2.4 Betweenness Metrics

For a DCS, a node betweenness metric (edge betweenness metric) is a metric that

measures the extent to which each node (edge) lies on message paths between

nodes[41]. The problem of detecting attack edges in SNM-based DSCs is rele-

vant to the problem of computing the betweennesses of edges, which is discussed

in Section 3.2.5. For a DCS, according to the way to transmit the message, so

far, three kinds of node betweenness metrics and two kinds of edge betweenness

have been defined.

45

Figure 3.2: Attack edges have higher betweennesses

Shortest path node betweenness (SPNB)[42]: suppose that messages are trans-

mitted along the shortest paths between nodes. The SPNB of each node v repre-

sents the fraction of messages that pass v when a message is transmitted from

nodes s to t, average over all s and t.

Shortest path edge betweenness (SPEB)[43]: suppose that messages are trans-

mitted along the shortest paths between nodes. The SPEB of each edge e repre-

sents the number of messages that pass e when a message is transmitted from

nodes s to t, for all s and t. Newman et al.[43] observed that the SPEB satisfies

the following detecting property: on average, the SPEBs of inter-cluster edges

are higher than those of other edges. Figure 3.2 provides an example show-

ing this property: the inter-cluster edge (h3, s3) has a SPEB of 18, which is the

highest among SPEBs of all edges.

Flow node betweenness (FNB)[44]: suppose that each edge in the system has

a unit capacity. The flow node betweenness of a node v is the amount of message

flow that passes v when the maximum flow is transmitted from nodes s to t,

averaged over all s and t.

Random walk node/edge betweenness (RWNB/RWEB)[41]: suppose that mes-

sages are transmitted in a random walk manner between nodes: each message

starts from its source, moves in a random walk manner until it reaches its des-

tination. The RWNB of each node v (the RWEB of each edge e) represents the

46

fraction of messages that pass v (e) when a message is transmitted from nodes s

to t, averaged over all s and t. Newman[41] showed that, in a DCS, the RWNBs

of front nodes (nodes connecting multiple clusters) are higher than those of other

nodes.

3.2.5 Sybil Resisting Network Clustering

The SSD algorithm proposed in this chapter is an extension of SRNC[37] – the

only existing SSD algorithm that aims to detect the attack edges. This section

gives a brief introduction to SRNC.

In SRNC, each honest node hn detects the attack edges in the system. Then,

hn regards node u as a Sybil node if the shortest paths between hn and u pass

the attack edges. To simplify the expression, the set of shortest paths between

nodes s and t are written as (s, t)-SPs. The shortest paths between nodes of

different types are called the first-type shortest paths, and the shortest paths

between honest nodes are called the second-type shortest paths. The observation

of SRNC is that, if u is Sybil, each of the (hv, u)-SPs has to pass at least one

attack edge. In contrast, if u is honest, most (hn, u)-SPs should stay within the

honest region and not pass any attack edges (See Figure 3.2 for intuition).

To detect the attack edges, a three-step scheme has been proposed to design

attack edge detecting algorithms[37]:

• First, design an (or choose an existing) edge betweenness metric that satis-

fies the detecting property. This dissertation calls such a metric a detecting

metric.

• Design an algorithm that enables each node to securely compute the be-

tweennesses of edges in a distributed manner.

47

• Finally, design an algorithm that enables each node v to compute a detect-

ing threshold that is higher than the average betweenness of honest edges,

and lower than the average betweenness of attack edges. Then, v regards

edges with betweennesses higher than the detecting threshold as attack

edges.

Based on this scheme, the following SPEB-based attack edge detecting (SPEB-

AED) scheme was further designed for creating SPEB-based attack edge de-

tecting algorithms[37]. First, choose the SPEB as the detecting metric. Then,

compute the SPEBs of edges using distributed shortest path computing algo-

rithms. Finally, compute the average of the SPEBs of honest edges as the de-

tecting threshold.

Note that the SPEB-AED scheme can only be implemented in authorized

DCSs. Under SPEB-AED, nodes need to compute the shortest path informa-

tion, which is a non-trivial problem in DCSs containing malicious nodes. Sev-

eral algorithms, such as SEAD[45] and S-RIP[46], that can securely compute

the shortest path information among honest nodes have been proposed. How-

ever, these algorithms require the support of trustful authorities. Therefore, the

SPEB-AED scheme can only be implemented in authorized DCSs.

To detect the attack edges, SRNC tried to implement the SPEB-AED scheme.

However, SRNC failed to find a way to compute the detecting threshold, and left

this problem open.

48

3.3 SybilDetector

This section details the design of SybilDetector. Specifically, for an authorized

DCS, SybilDetector enables each honest node hn to judge the other nodes in the

system. The basic idea of SybilDetector is the same as SRNC: hn first detects

the attack edges. Then, hn regards node u to be Sybil if each of the (hn, u)-SPs

passes at least one attack edge. Additionally, SybilDetector detects attack edges

using the SPEB-AED scheme. Different from SRNC, SybilDetector can compute

the detecting threshold using a benchmark technique, which is introduced in

Section 3.3.3. SybilDetector has three main steps.

• Step 1: hn computes the shortest paths between itself and all other nodes.

• Step 2: For each (hn, u)-SP, denoted by sp, hn uses the maximum value of

the betweennesses of the edges along sp as the bottleneck of sp, denoted by

hn.bn(sp). In the example DCS in Figure 3.2, let sp1 =< h1, h3, s3, s1 > be

a (h1, s1)-SP, and let sp2 =< h1, h2 > be a (h1, h2)-SP. The bottleneck of sp1

is equal to the SPEB of edge (h3, s3) (i.e., 18), while the bottleneck of sp2 is

equal to the SPEB of edge (h1, h2) (i.e., two).

• Step 3: hn computes a bottleneck bound, denoted by hn.bb. Then, hn regards

a node u to be Sybil if and only if the bottleneck of each (hn, u)-SP is larger

than hn.bb.

Sections 3.3.1, 3.3.2 and 3.3.3 detail each step, respectively.

3.3.1 Compute the Shortest Paths

First, nodes run SEAD[45] to compute information of the shortest paths. As in-

troduced in Section 3.2.5, SEAD ensures that honest nodes compute the correct

49

shortest paths between each other in a distributed manner under malicious in-

terference. Sybil nodes may not participate in the computing of shortest paths.

If so, honest nodes cannot find shortest paths to the Sybil nodes and thus cannot

compute the correct betweennesses of attack edges. Consequently, honest nodes

cannot identify Sybil nodes. To address this problem, after the computing of

shortest paths, hn accepts node u only if hn has found at least one (hn, u)-SP.

3.3.2 Compute the Bottlenecks of Shortest Paths

Then, hn computes the bottlenecks of the shortest paths between itself and other

nodes. First, for each incident edge e, hn computes the betweenness of e, denoted

by hn.b(e), as the number of the shortest paths that pass e. Then, let sp =< u =

v1, v2, ..., vw = hn > be a (u, hn)-SP. To know the bottleneck of sp, hn asks each

node vi along sp for the betweenness of edge (vi, vi+1) (0 ≤ i < w). Finally, hn uses

the maximum value of the received betweennesses as the bottleneck of sp.

3.3.3 Compute the Bottleneck Bound

Now, hn needs to compute its bottleneck bound. The bottleneck bound should

be large, so that most honest nodes can be accepted. However, the bottleneck

bound should be small, so that most Sybil nodes can be rejected. Hence, the

value of the bottleneck bound has a trade-off between har and sar.

Specifically, hn computes a bottleneck bound so that hn can accept β percent

of honest nodes. Here, β is a parameter used to adjust the trade-off between

har and sar. In SRNC, the bottleneck bound of each node is set to be a global

parameter. In SybilDetector, hn can compute its bottleneck bound locally, using

the following benchmark technique.

1. hn finds a set of ℵ honest nodes from the systems as its benchmark suspects,

50

denoted by hn.bs. hn uses MH-random walks to find these honest nodes[17]

(Section V.B). A MH-random walk is a message packet that moves log n

hops in a special random walk manner. Suppose that the walk is currently

on node i, i chooses an incident node j as the next hop with a probability of

min(1/di, 1/dj), where di is the number of incident nodes of i. As discussed

by Tran et al.[17], when g = o(n/ log n), a MH-random walk starting from

the honest region will stay within the honest region, and finally end on a

random honest node with a high probability.

2. Call the average of the bottlenecks of the (hn, u)-SPs the bottleneck of u for

hn, denoted by hn.bn(u). hn sorts its benchmark suspects so that

hn.bn(bs0) < ... < hn.bn(bsi) < ... < hn.bn(bsℵ),∀bsi ∈ hn.bs. (3.1)

3. hn uses hn.bn(bsβ·ℵ) as its bottleneck bound.

The idea behind this benchmark technique is as follows. Obviously, the bot-

tleneck bound chosen by the above process allows hn to accept β percent of the

benchmark suspects. The benchmark suspects are random samples of honest

nodes. Therefore, if a bottleneck bound ensures hn to accept β percent of the

benchmark suspects, it should also ensure hn to accept β percent of all honest

nodes.

Having obtained the information relating to shortest paths, bottlenecks of

shortest paths, and the bottleneck bound, hn is able to determine which nodes

to accept. For node u, hn accepts u if and only if 1). hn has found at least one

shortest path to u, and 2). at least one (hn, u)-SP, sp, satisfies that hn.bn(sp) <

hn.bb.

51

3.3.4 Overhead

The total message overhead of SybilDetector is O(n2 log n), which is equal to the

overheads of SybilLimit[18] and Gatekeeper[17].

As described in the previous section, SybilDetector has three steps: 1). com-

puting the information relating to the shortest paths, 2). computing the bottle-

necks, and 3). computing the bottleneck bounds. In the first step, SybilDetector

uses SEAD to compute the shortest paths. SEAD is a distance vector protocol-

based algorithm[47]. The message cost of distance vector protocol-based short-

est path computing algorithms is O(mn4), when they run in a synchronous

mode[37]. According to the assumptions made in Section 3.1, O(mn4) = O(n2 log n).

Therefore, the message cost of SybilDetector for computing shortest paths is

O(n2 log n).

In the second step, for each node hn and each (hn, x)-SP, sp, to compute the

bottlenecks of sp, hn asks each node along sp for betweennesses of the edges

along sp. Hence, in this step, the message overhead is O(n log n) for hn and is

O(n2 log n) for the whole system.

In the third step, for node hn, hn needs to sample ℵ benchmark suspects,

where each sampling has a message overhead of O(log n). As shown in Section

3.4, ℵ can be a small constant like 50 in practice. Therefore, the message over-

head of the whole system in this step is O(n log n).

In conclusion, the message cost of the whole system is O(n2 log n) and is

O(n log n) per node.

3.3.5 Analysis

Intuitively, the performance of SybilDetector (har and sar) is mainly affected by

g and snn. This section provides a qualitative analysis of the influence of g and

52

(a) g is small. (b) g is large.

Figure 3.3: Influence of g on har and sar

Table 3.2: Changes as g increases (corresponding to Figure 3.3)
Parameter Change Reason

b(eh) Does not
change

There is no change in the number of
shortest paths in the system. Addition-
ally, the change of g does not affect the
network topology of the honest region.
Therefore, the change of g does not af-
fect b(eh).

b(es) Decreases es is an attack edge. As g increases, the
average number of shortest paths pass-
ing each attack edge decreases. Accord-
ingly, b(es) decreases.

b(ebs) May not
change

As g increases, the probability that bs is
Sybil and the probability that ebs is an
attack edge increase. The attack edges
have high betweennesses. Therefore,
b(ebs) should increase. However, as g
increases, the average betweenness of
attack edges decreases. Therefore, as g
increases, har may not change.

har May not
change

har = Pr(b(eh) < b(ebs)). b(eh) does
not change while b(ebs) may not change.
Therefore, har may not change.

sar Increases sar = Pr(b(es) < b(ebs)). b(ebs) may not
change, while b(es) decreases. Accord-
ingly, sar increases.

53

(a) snn is small. (b) snn is large.

Figure 3.4: Influence of snn on har and sar

Table 3.3: Changes as snn increases (corresponding to Figure 3.4)
Parameter Change Reason

b(eh) Does not
change or
increase

As snn increases, the number of first-
type shortest paths increases. There-
fore, b(eh) will increase if eh is along the
increased shortest paths. Otherwise,
b(eh) does not change.

b(es) Increases es is an attack edge. As snn increases,
the number of first-type shortest paths
increases. Accordingly, the between-
nesses of attack edges increase, and
b(es) increases.

b(ebs) Does not
change or
increase

The number of first-type shortest paths
increases. b(ebs) increases if ebs is on
these increased shortest paths. Other-
wise, b(ebs) does not change.

har Does not
change

Both bs and u are random honest nodes.
Therefore, b(eh) and b(ebs) change in
the same way. Accordingly, har =
Pr(b(eh) < b(ebs)) does not change.

sar Does not
change or
decrease

b(es) increases while b(ebs) may not
change. Accordingly, sar = Pr(b(es) <
b(ebs)) should stay unchanged or de-
crease.

54

snn on performance. It is shown that, as g increases, har may not change, and

sar increases. As snn increases, har does not change, and sar decreases.

First, the following analysis simplifies the expressions of har and sar. See

Figure 3.3 and Figure 3.4 for intuition of this analysis.

• Let hn be an average honest node. Additionally, let uh (us) be another ran-

dom honest (Sybil) node. According to its definition, har (sar) is equal to

the probability that hn accepts uh (us).

• Let sph be an average (hn, uh)-SP, and let sps be an average (hn, us)-SP.

Then, the probability that hn accepts uh is equal to Pr(hn.bn(sph) < hn.bb),

and the probability that hn accepts us is equal to Pr(hn.bn(sps) < hn.bb).

Here, Pr(χ) means the probability that χ happens.

• Let bs be the benchmark suspect that determines the bottleneck bound of

hn (i.e., bs is the benchmark suspect bsβ·ℵ in Equation (3.1)). Additionally,

let spbs be an average (hn, bs)-SP. Then, hn.bb = hn.bn(spbs).

• Let eh be the edge along sph that decides hn.bn(sph) (i.e., eh is the edge along

sph that has the largest betweenness). Similarly, let es be the edge along

sps that decides hn.bn(sps), and let ebs be the edge along spbs that decides

hn.bn(ebs). Then, hn.bn(spbs) = b(ebs), hn.bn(sph) = b(eh) and hn.bn(sps) =

b(es), where b(e) represents the SPEB of edge e.

In brief, the above analysis shows that har = Pr(b(eh) < b(ebs)) and sar =

Pr(b(es) < b(ebs)).

Tables 3.2 and 3.3 summarize the changes of har and sar as g and snn in-

crease, respectively. For example, Table 3.2 shows that, as g increases, har may

not change:

55

• As g increases, b(eh) does not change. There is no change in the number of

shortest paths in the system. Besides, the increase of attack edges does not

affect the network topology of the honest region. Accordingly, b(eh) should

have no significant change.

• As g increases, b(ebs) may not change. Recall that bs is sampled using MH-

random walks. As g increases, the probability that MH-random walks of

hn enters the Sybil region, and the probability that ebs is an attack edge in-

creases. Hence, b(ebs) should increase. However, as g increases, the average

betweenness of attack edges decreases. Therefore, bes may not change.

• Therefore, as g increases, har = Pr(b(eh) < b(ebs)) may not change.

Detailed analysis of the influence of g and snn on har and sar are listed in

Tables 3.2 and 3.3. These results are to be validated by simulation in Section

3.4.

56

3.4 Evaluation

This section evaluates the performance of SybilDetector using simulation. Specif-

ically, this section has two goals.

The first goal is to evaluate the accuracy of SybilDetector. To this end, this

section compares the accuracy of SybilDetector with that of SybilLimit. It is ex-

pected that the sar of SybilDetector is lower than that of SybilLimit. For a DCS,

let hn be an honest node and u be a Sybil node. SybilDetector and SybilLimit

are similar in the following way: in both SybilDetector and SybilLimit, for hn

to accept sn, there must be a path connecting hn and sn (a shortest path for

SybilLimit, and a random walk path for SybilLimit). Suppose that such a path

p exists. Then, in SybilLimit, hn will accept sn. In contrast, in SybilDetector, hn

will reject sn because hn knows that p has passed attack edges. Accordingly, the

sar of SybilDetector should be lower than that of SybilLimit.

The second goal is to evaluate the influence of g and snn on the performance

of SybilDetector. Section 3.3.5 qualitatively analyzed the influence of g and snn

on the performance of SybilDetector. This section thus aims to validate these

results.

3.4.1 Evaluation Configuration

Each network used in the simulations is created in the following way. First,

the networks of the honest region and the Sybil region are created separately.

Then, the two regions are connected by g attack edges. Two networks are used

to create the honest region. One is a real world social network that represents

the hyperlinks among the blogs created during the 2005 U.S. election[48]. This

network is used as it represents a complete social network. Another network is

57

Table 3.4: Networks used for creating honest and Sybil regions
Network name Type Number of nodes Number of edges

real1222 Real world social
network 1,222 16,714

pl1222 Synthetic network of
Barabasi-Albert model 1,222 7,257

rn500 Synthetic network of
Erdos-Renyi model 500 1,725

Table 3.5: Networks used for evaluation
Network name Honest region Sybil region

G1 real1222 rn500
G2 pl1222 rn500

a synthetic network generated according to the Barabasi-Albert (BA) model[49]

using NetworkX[50]. The BA model is designed for representing real world so-

cial networks. The networks of the Sybil regions are created using the Erdos-

Renyi (ER) model[51]. In a network obeying the ER model, each pair of two

nodes are connected by an edge with a probability of p. It is impossible to pre-

sume the network topology of a Sybil region because Sybil nodes can randomly

change the connection between each other. Hence, this evaluation simply uses

the ER model to create the Sybil regions. In this evaluation, p is set to 0.05.

Table 3.4 lists the details of the networks used to create the honest region and

Sybil region. Using these networks, two networks G1 and G2 are created for

simulations, as listed in Table 3.5.

During each simulation, β for both SybilDetector and SybilLimit is 95%. This

dissertation has tested different ℵ ranging from 10 to 100, and found that the

performance of SybilDetector is not sensitive to the change of ℵ. Hence, during

the simulations, ℵ is set to 50.

58

(a) G1

(b) G2

Figure 3.5: Changes of har as snn increases

59

3.4.2 Results and Analysis

Figure 3.5 shows the changes of har as snn increases. g is 36 in these simula-

tions. First, in both the real world social network and the synthetic network, the

har of SybilDetector is about 92%, which is close to β. This indicates that the

benchmark technique works effectively. Second, snn does not affect har, which

matches the analysis in Section 3.3.5.

Figure 3.6 shows the changes of sar as snn increases. g is 36 in these sim-

ulations. Two trends are notable. First, as snn increases, the sar of SybilDe-

tector decreases. This change is also explained in Section 3.3.5. Intuitively, as

snn increases, the betweennesses of attack edges increase, as well. Hence, it

is easier for honest nodes to detect the attack edges and Sybil nodes, and sar

decreases. Second, the sar of SybilLimit is notably (at least 5x) higher than the

sar of SybilDetector in both the real world and the synthetic network topologies.

Figure 3.7 shows the changes of har as g increases. snn is 500 in these simu-

lations. First, similar to Figure 3.5, the har of SybilDetector is close to β, which

validates the effectiveness of the benchmark technique. Second, as g increases,

the har of SybilDetector does not show obvious change, which matches the anal-

ysis of Section 3.3.5.

In both Figures 3.5 and 3.7, the har of SybilDetector is lower than the har of

SybilLimit. However, the difference is slight and less than 5%.

Figure 3.8 shows the changes of sar as g increases. snn is 500 in each sim-

ulation. As g increases, the sar of both SybilLimit and SybilDetector increases.

For SybilDetector, this is reasonable. As g increases, the betweennesses of the

attack edges decrease, which makes it harder for honest nodes to detect the at-

tack edges. Accordingly, the sar increases. However, the sar increases much

faster in SybilLimit than in SybilDetector. For example, in both the real world

60

(a) G1

(b) G2

Figure 3.6: Changes of sar as snn increases

61

(a) G1

(b) G2

Figure 3.7: Changes of har as g increases

62

(a) G1

(b) G2

Figure 3.8: Changes of sar as g increases

63

and the synthetic network topologies, when the g is 109, the sar of SybilLimit

increases to 98%. Meanwhile, the sar of SybilDetector is 4x and 10x lower in the

real world network topology and the synthetic network topology, respectively.

In summary, this section compared the performance of SybilDetector and

SybilLimit by simulation on real and synthetic network topologies. It is shown

that the accuracy of SybilDetector is significantly higher than that of SybilLimit.

Additionally, the potential of attack edge detecting in creating effective Sybil

resisting algorithms is confirmed.

64

3.5 Discussion

One potential problem of SybilDetector is that it assumes that the network has

only two clusters, the honest region and the Sybil region. It is reasonable to

consider that honest nodes are also divided into multiple clusters in real world

systems. Indeed, this is a common problem for all existing SSD algorithms.

Viswanath et al.[52] has highlighted that, in a DCS, the accuracies of existing

SSD algorithms decrease if the honest region contains cluster structures. To

detect Sybil nodes in DCSs where the honest region contains multiple clusters,

honest nodes need more knowledge of the systems. For example, for each honest

node v and each honest cluster c, suppose that v knows the type of at least one

node u in c. Using existing SSD algorithms, u can detect the honest nodes that

belong to c, and report such information to v. In this way, v can distinguish

honest nodes from Sybil nodes. Designing Sybil resisting mechanisms for DCSs

with more than two clusters will be part of the future work of this dissertation.

65

3.6 Conclusion

The Sybil attack is a critical security threat to DCSs. SSD algorithms are the

representative solutions to this attack. However, existing SSD algorithms are

inaccurate. Thus, the objective of this chapter is to design more accurate SSD

algorithms.

This chapter proposed SybilDetector, an accurate SSD algorithm. To obtain

high accuracy, the core innovation of SybilDetector is to detect the attack edges.

The accuracy of SybilDetector was compared with that of SybilLimit – a repre-

sentative existing SSD algorithm, on both synthetic and real world social net-

work topologies. In the simulations, the sar of SybilDetector was at least 4x

lower than that of SybilLimit.

Moreover, the accuracy improvement made by SybilDetector clearly confirmed

that attack edge detecting is a promising technique to resist the Sybil attack. It

is expected that this technique can be used to create effective security mecha-

nisms for other DCS attacks.

66

Chapter 4

RSC: an Attack Edge Detecting

Algorithm for Sybil Resisting

4.1 Introduction

The objective of this chapter is to design an attack edge detecting algorithm for

unauthorized DCSs – DCSs that do not contain trustful authorities. Designing

such an algorithm will allow accurate SSD algorithms for unauthorized DCSs

to be created.

Unauthorized DCSs form an important family of DCSs, and attack edge

detecting-based SSD algorithms are needed to protect them. Unauthorized DCSs

are more scalable than authorized DCSs. In an authorized DCS, the trustful au-

thorities have to provide resources to other nodes. Accordingly, the capacities of

trustful authorities limit the size of the system. Moreover, in many DCSs such

as ad hoc systems, maintaining trustful authorities is expensive[53]. Therefore,

many existing SSD algorithms such as SybilLimit[18] and Gatekeeper[17] have

been designed for unauthorized DSCs, and it is necessary to design attack edge

67

detecting-based SSD algorithms for this type of DCS.

As discussed in Section 3.2.5, the basic steps to create an attack edge de-

tecting algorithm are as follows. First, design a (or select an existing) detecting

metric. Here, edge betweenness metrics measure the extent to which edges are

passed by message paths. A detecting metric is an edge betweenness metric

that satisfies the detecting property – the betweennesses of the attack edges are

higher than those of the non-attack edges. Then, design a mechanism that en-

ables each node to securely compute the betweennesses of edges in a distributed

manner.

To create attack edge detecting algorithms for unauthorized DCSs, the main

difficulty is to design the appropriate detecting metric. This metric should sat-

isfy the detecting property, and it should be possible to securely compute values

of this metric in unauthorized DCSs. So far, the only edge betweenness metric

that is known to satisfy the detecting property is the SPEB (shortest path edge

betweenness). However, the SPEB-based attack edge detecting algorithms can

only be implemented in authorized DCSs as described in Section 3.2.5.

This chapter makes the following contributions.

1. It analyzes the properties of the random walk edge betweenness (RWEB,

Section 3.2.5) and presumes that the RWEB is an appropriate detecting

metric for unauthorized DCSs. Evaluation on synthetic and real world

network topologies finally validates this presumption.

2. It designs an algorithm for unauthorized DCSs, called Random walk and

SNM-based Clustering (RSC), enabling each honest node to distinguish the

attack edges among its incident edges. Basically, RSC enables each node

to compute RWEBs of its incident edges in a distributed manner. Since the

RWEB satisfies the detecting property, nodes can distinguish attack edges

68

among their incident edges. The difficulty in the design of RSC is to resist

attacks from Sybil nodes.

3. It provides an example showing how RSC can be used to create more ac-

curate SSD algorithms. RSC is incorporated into SOHL[19] – an existing

unauthorized SSD algorithm, to create an unauthorized SSD algorithm

called RSC-based Sybil resisting (RSSR). Evaluation shows that RSSR

makes a remarkable accuracy improvement over SOHL.

This chapter is organized as follows. Section 4.2 introduces the related re-

search. Sections 4.3 elaborates the design of RSC. Then, Section 4.4 integrates

RSC into SOHL to create RSSR. Section 4.5 evaluates the performances of RSC

and RSSR. Finally, Section 4.6 concludes this chapter. ∗

∗This chapter is an extended version of [54].

69

4.2 Related Work

4.2.1 Random Walk-based DCSs

In many DCSs, nodes communicate using random walks[55, 56, 57, 58]. For ex-

ample, Lv et al.[59] showed that random walks can be used to create efficient

searching algorithms in P2P systems. Also, as shown in Section 3.2.3, the ran-

dom walk is an essential constructing component for SSD algorithms. Random

walk-based DCSs are usually strong against network change: information is

spread among the systems probabilistically so that nodes can keep communicat-

ing during network change.

4.2.2 Random Walk Betweenness

Section 3.2.4 briefly explained the RWNB (random walk node betweenness) and

the RWEB, two betweenness metrics defined by Newman[41]. The RWEB is to

be used to detect attack edges in this chapter. Therefore, this section introduces

the formal definitions of these two metrics.

In a DCS, for each pair of nodes s and t, s and t disseminate one absorbing

random walk (ARW) to each other. Here, an absorbing random walk from s

to t, denoted by (s, t)-ARW, is a message packet: starting from s, this packet

advances in a random walk manner continuously until it reaches t. Let arw be

an average (s, t)-ARW. For each edge, e = (v, u), the expected numbers of times

that arw passes e from v to u (from u to v) is denoted by e.i
(s,t)
v (e.i(s,t)u). Then,

e.i(s,t) = |e.i(s,t)v − e.i(s,t)u | (4.1)

is called the partial betweenness of e for the (s, t) random walks. Namely, e.i(s,t)

70

represents the “pure” expected number of times that a (s, t)-ARW passes e. Now,

the RWEB of e is defined as

e.i =
∑
∀(s,t)

e.i(s,t). (4.2)

Let E(v) and N(v) denote the incident edges and incident nodes of v, respectively.

The summation of the betweennesses of the incident edges of v, namely

∑
∀e=(v,u)∈E(v)

e.i, (4.3)

is defined as the RWNB of v. The good property of the RWNB is that, in a DCS,

the RWNBs of front nodes are higher than those of other nodes. Here, front

nodes are the nodes connecting multiple clusters.

71

4.3 RSC – Detecting Attack Edges

This section introduces RSC, an algorithm that enables each node to distin-

guish the attack edges among its incident edges in unauthorized DCSs. RSC is

designed in two steps. The first is to choose an edge betweenness metric as the

detecting metric. Under this metric, RSC enables each node to securely com-

pute the betweennesses of its incident edges. Given this betweenness knowl-

edge, each node can distinguish the attack edges among its incident edges. Sec-

tion 4.3.1 explains the reason why the RWEB is a potential detecting metric for

unauthorized DCSs. Section 4.3.2 then introduces the design detail of RSC.

4.3.1 Choice of Detecting Metric

A detecting metric for unauthorized DCS needs to satisfy two properties: 1). this

metric satisfies the detecting property; 2). it is easy to securely compute values

of this metric in unauthorized DCSs.

This dissertation presumes that the RWEB satisfies the detecting property,

based on the following observations.

1. The RWNB of each node v is the summation of the RWEBs of incident

edges of v. When v is a front node, v has a high RWNB no matter how

many incident edges v has. The attack edges are edges incident to front

nodes. Hence, the incident edges of v, including the attack edges incident

to v, should on average have high RWEBs.

2. An ARW from an honest node to a Sybil node is called a first-type ARW.

Similarly, an ARW from an honest node to another honest node is called

a second-type ARW. Since 1). all first-type ARWs have to pass the attack

edges, 2). the number of attack edges is small, and 3). the number of Sybil

72

(a) before node b and c are connected (b) after node b and c are connected

Figure 4.1: Influence of network change on shortest paths and random walks

nodes is large, it is also reasonable to presume that the attack edges have

high RWEBs.

Moreover, it is harder for Sybil nodes to interrupt the computing of the

RWEB than to interrupt the computing of the SPEB, which makes it possible

to securely compute the RWEB in unauthorized DCSs. The basic approach for

Sybil nodes to interrupt the computing of betweennesses of edges is to change

the network topology. In a DCS, a slight change of the network topology may

significantly change all the shortest paths between nodes. In contrast, the influ-

ence of network change on random walks is smaller.

Figure 4.1 shows an example of the influence of the network change on short-

est paths and random walks (by Newman[41]). In this figure, before b and c are

connected, all shortest paths and random walks between clusters C1 and C2

have to pass node a. When nodes b and c are connected (network changes), all

shortest paths between C1 and C2 change, where no shortest paths pass a any

more. In contrast, when nodes b and c are connected, only some of the random

walks change, where some random walks still pass a.

Therefore, it is harder for Sybil nodes to interrupt the computing of the

RWEB, making it possible to compute the RWEB without trustful authorities.

Based on the above consideration, this dissertation regards the RWEB as a

candidate betweenness metric for detecting attack edges in unauthorized DCSs.

73

4.3.2 Distributed Computing of the RWEB

This section presents RSC. Henceforth, the RWEB is simply called the between-

ness for short. In the following section, a basic protocol of RSC is first designed.

Then, potential attacks against this basic RSC and mechanisms resisting these

attacks are discussed.

The number of honest nodes in the system is denoted by n. The edges among

honest nodes are called the honest edges, and the number of honest edges is M .

The number of attack edges in the system is denoted by g. It is assumed that

each node knows n and M , consistent with existing SSD algorithms[17, 19, 20].

Table 4.1 lists the important denotations used in this chapter.

Basic RSC Protocol

Each node v has a unique ID, which is simply the hash value of the IP address

of v. Additionally, v maintains a destination set, denoted by v.Des, that stores

the IDs of other nodes in the system. For each node u in v.Des, v disseminates

v.ir (v, u)-ARWs. Here, v.ir, called the issue rate of v, is a local parameter set

by v itself. In practice, each node sets its issue rate to be as large as possible

according to its computing capacity. RSC does not assume that the destination

set of v contains IDs of all the nodes in the system. Instead, once a node u

requires node v for communication, v adds u to v.Des. For each incident edge

e = (v, u) and each set of (s, t)-ARWs, v holds two variables v.u
(s,t)
− and v.u

(s,t)
+ .

When a (s, t)-ARW rw enters (leaves) v from e, v increases v.u
(s,t)
− (v.u

(s,t)
+) by one.

In this way, v.u
(s,t)
− and v.u

(s,t)
+ are approximations of e.i

(s,t)
v and e.i

(s,t)
u , respectively.

Then, v can compute the partial betweenness of e for the (s, t)-ARWs, denoted

by v.i
(s,t)
u , as

74

Table 4.1: Important denotations
Name Description
ARW Absorbing random walk

(s, t)-ARWs The absorbing random walks between
node s and node t

First-type ARWs The ARWs between nodes of different
types

Second-type ARWs The ARWs between honest nodes
n The number of honest nodes in the sys-

tem
Honest edges The edges among honest nodes

M The number of honest edges in the sys-
tem

har The probability that node v accepts
node u, where v and u are two random
honest nodes

sar The probability that node v accepts
node u, where v and u are a random
honest node and a random Sybil node,
respectively

er The probability that a random walk
starting from the honest region enters
the Sybil region

N(v) The incident nodes of node v
E(v) The incident edges of node v

RWNB The random walk node betweenness
RWEB The random walk edge betweenness

75

v.i(s,t)u = |v.u
(s,t)
− − v.u

(s,t)
+ |. (4.4)

Finally, the betweenness of edge e is computed as

v.iu =
∑
∀(s,t)

v.i(s,t)u . (4.5)

Resisting Attacks

This section shows how Sybil nodes can break the protocol of the basic RSC

and provides solutions to these attacks. More general attacks such as DoS and

message forging[60] are out of the discussion scope of this dissertation.

Attack 1. Let arw be a second-type (s, t)-ARW. Once arw enters the Sybil region,

Sybil nodes discard arw.

Attack 2. Let arw be a first-type (s, t)-ARW. Sybil nodes reduce the betweennesses

of attack edges by manipulating the path of arw. Let e = (v, u) be an attack edge,

where v and u are honest and Sybil, respectively. Suppose that u has received

arw from v, u always sends arw back to v. Accordingly, the betweenness of e

will always be zero. An example of this attack is shown in Figure 4.2: nodes v

and u are connected by edge e, where v is honest and u is Sybil. To reduce the

betweenness of e, on receiving a random walk packet from v, u simply returns

this random walk back to v.

To resist Attacks 1 and 2, the following lemma is needed.

Lemma 1. In a DCS with no attack, each first-type ARW increases the between-

ness of at least one attack edge.

Proof. Let rw be a first-type ARW, and let k denote the number of times that

rw traverses attack edges during its movement. In a secure environment, rw

76

Figure 4.2: Attack 2

Figure 4.3: First-type ARWs pass attack edges odd times

will finally stop in the Sybil region. Therefore, k is an odd number. Figure 4.3

provides an example showing this property. The dot dash line is a first-type

(s, t)-ARW, denoted by rw. ae1, ae2 and ae3 are the attack edges of the system.

The number of times that rw traverses the attack edges is an odd number of

three. Supposing that the first k − 1 times of traverses cancel each other out

completely, the left traverse will still pass a certain attack edge from the honest

region to the Sybil region. Therefore, the betweenness of at least one attack

edge will be increased.

RSC uses a Distance Limitation (DL) technique to resist Attacks 1 and 2: for

each (s, t)-ARW, arw, once arw has hopped Θ(M) steps, arw stops and s rejects

t. To implement DL, arw contains a counter initiated to be Θ(M). On each hop,

the node u that arw currently lies on decreases the counter of arw by one. If the

counter is zero, u discards arw and asks s to reject t.

The following showes that, under DL, 1). Sybil nodes do not launch Attack 1

or Attack 2, 2). the probability that honest nodes reject each other is low, and,

77

3). attack edges have high betweennesses.

Lemma 2. Under DL, Sybil nodes do not launch Attack 1 or Attack 2.

Proof. Under Attack 1, t will be rejected by s. However, arw now turns into

a first-type ARW, which increases the betweenness of at least one attack edge.

Indeed, if Attack 1 is launched, s can significantly increase the betweennesses of

attack edges by sending many (s, t)-ARWs. Hence, Sybil nodes should not launch

Attack 1.

As for Attack 2, since t is selected from the destination set of s, Sybil nodes

will expect t to be accepted by s. Therefore, Sybil nodes should not launch Attack

2. Indeed, to prevent t from being rejected by s, once arw enters the Sybil region,

Sybil nodes should send arw to t directly.

Lemma 3. Under DL, the probability that honest nodes reject each other is low.

Proof. Let arw be a second-type (s, t)-ARW. It is sufficient to show that, having

moved Θ(M) steps, the probability that arw does not reach t is low. As introduced

in Section 3.2.3, after O(log n) steps, arw traverses each edge with a probability

of Θ(1
M

) on each step. Since Θ(M) is much larger than O(log n), it can be con-

sidered that arw traverses each edge with an equal probability Θ(1
M

) since the

first step. For node t, call the number of the incident edges of t the degree of t,

denoted by k(t). The probability that arw does not arrive at t in Θ(M) steps is

(1 − Θ(k(t)/M))Θ(M)

< (1 − Θ(1/M))Θ(M)

= e−1.

(4.6)

This means that, as M increases, the probability that arw does not arrive at t in

Θ(M) steps is smaller than a constant 1/e. Lemma 3 follows.

78

Lemma 4. Under DL, attack edges have high betweennesses.

Proof. Let arw be a first-type (s, t)-ARW. According to Lemma 1, it is sufficient to

show that arw reaches Sybil node t in Θ(M) steps with a high probability. This

probability is

1 − (1 − Θ(g/M))Θ(M)

> 1 − (1 − Θ(1/M))Θ(M)

= 1 − e−1.

(4.7)

This means that as M increases, the probability that arw reaches its destination

is larger than a constant 1 − 1/e. Lemma 4 follows.

Therefore, DL can protect RSC to securely compute the betweennesses of

edges.

4.3.3 Distinguish Attack Edges

Having computed the betweennesses of incident edges, each node v can judge

the possibility that a certain incident edge is an attack edge. Specifically, v

computes the relative suspect rate of e as

v.sus(e) =
v.iu∑

∀e=(v,u)∈E(v) v.iu
.

Section 4.4 shows how the suspect rate can be used to create accurate SSD algo-

rithms.

79

4.4 RSSR

This section provides an example to clarify the potential of RSC in improving the

accuracy of existing SSD algorithms. Specifically, this section reduces the sar of

SOHL (briefly introduced in Section 3.2.3) using RSC. The resulting algorithm

is called RSSR.

4.4.1 Sybil Resisting One Hop Lookup

First, an introduction of SOHL is given below. In SOHL, each honest node dis-

seminates r probing random walks. As introduced in Section 3.2.3, a probing

random walk is a message that moves O(log n) steps in a random walk manner.

The ending nodes of the probing random walks of v consist of the finger set of

hn (hn.fingers). Finally, hn accepts node u if and only if u is in hn.finger, or in

finger sets of the nodes in hn.finger. Since the probing random walk has a low

escape rate, the sar of SOHL is low.

4.4.2 Incorporating RSC into SOHL

The basic protocol of RSSR is the same as that of SOHL, except for one differ-

ence: in RSSR, the nodes disseminate waterfall random walks instead of normal

probing random walks. Let rw be a random walk of a length log n. Suppose that

rw is currently on node v, and e = (v, u) is an incident edge of v. The probability

that v selects u as the next hop for rw is inversely proportional to v.sus(e). Such

a random walk is called a waterfall random walk. Since the attack edges are

expected to have high betweennesses, the escape rate of the waterfall random

walk should be lower than the escape rate of the probing random walk. Hence,

the sar of RSSR should be lower than that of SOHL.

80

4.5 Evaluation

This section has two goals. The first is to evaluate the performance of RSC by

simulation. RSC is expected to generate betweennesses that satisfy the detect-

ing property. Hence, the performance of RSC is measured by the ratio between

the average betweenness of attack edges and the average betweenness of honest

edges. To this end, simulations are implemented in the following manner. In

each simulation, each node v randomly chooses another node u from the sys-

tem, and disseminates air (v, u)-ARWs (air means ARW issue rate). The average

betweenness of honest edges is defined as the honest edge betweenness

heb = average({v.iu + u.iv
2

| for each honest edge e = (v, u)})/air,

and the average betweenness of attack edges is defined as the attack edge be-

tweenness

aeb = average({v.iu + u.iv
2

| for each attack edge e = (v, u)})/air.

Then, the detecting factor df = aeb/heb is the metric for the performance of RSC.

Each simulation is run five times, and the results are averaged.

The second goal is to validate the performance improvement made by RSSR

over SOHL by simulation. As RSSR and SOHL are both SSD algorithms, the

performances of RSSR and SOHL are evaluated by har and sar. During each

simulation, the length of a probing random walk (waterfall random walk) is

log n, and the number of probing random walks (waterfall random walks) dis-

seminated per node is
√

M . Each simulation is run five times, and the results

are averaged.

81

4.5.1 Network Construction

Each network used in the simulations is created as follows. First, the networks

of the honest region and Sybil region are created separately. The two regions

are then connected by g attack edges. Three networks are used to create the

honest region. One is a real world social network that represents the hyperlinks

among the blogs created during the 2005 U.S. election[48]. This network is used

because it represents a complete social network. The other two networks are

synthetic networks generated according to the Barabasi-Albert (BA) model[49]

using NetworkX[50]. The BA model is designed to present real world social

networks. The networks of the Sybil regions are created using the Erdos-Renyi

(ER) model[51]. In a network obeying the ER model, each pair of nodes are

connected by an edge with a probability of p. It is impossible to presume the

network topology of a Sybil region because Sybil nodes can randomly change

the connection between each other. Hence, this evaluation simply uses the ER

model to create the Sybil regions. In this evaluation, p is set to 0.05. Table 4.2

lists the details of networks used to create the honest and Sybil regions. Using

these networks, three networks G1, G2 and G3 are created for simulations, as

listed in Table 4.3.

4.5.2 Simulation Results

Influence of air

Figure 4.4 shows the influence of air on the performance of RSC. G3 is used for

this evaluation, and g is 30. Three points are notable. First, generally, both aeb

and heb gradually decrease as air increases. By definition, the betweenness of e

is the expectation of the pure number of times that ARWs pass e. As introduced

82

Table 4.2: Networks used for creating honest and Sybil regions
Name Type Number of nodes Number of edges

real1222 Real world social
network 1,222 16,714

pl1222 Synthetic network of
Barabasi-Albert model 1,222 7,257

rn500 Synthetic network of
Erdos-Renyi model 500 1,725

pl100 Synthetic network of
Barabasi-Albert model 100 545

rn100 Synthetic network of
Erdos-Renyi model 100 149

Table 4.3: Networks used for evaluation
Network name Honest region Sybil region

G1 real1222 rn500
G2 pl1222 rn500
G3 pl100 rn100

Figure 4.4: Influence of air on the betweenness

83

in Section 3.2.3, in a SNM-based DCS, random walks starting from the honest

region mix in a short distance. When air is large, many ARWs disseminated

by nodes mix before reaching their respective destinations. Suppose that arw

is such a mixed ARW. On each step, arw passes each edge e from the opposite

directions with the equal probability of 1/(2M), decreasing the betweenness of

e. Therefore, as air increases, aeb and heb decrease.

Second, as air increases, aeb and heb finally become stable. Originally, the

edge betweenness is a probabilistic definition. Hence, for a certain network, the

betweenness distribution of this network is fixed. RSC computes the between-

nesses of edges in a Monte Carlo manner. As air increases, the betweennesses of

edges computed by RSC should approach the true distribution of the between-

ness. Therefore, aeb and heb should finally become stable.

Third, as aeb and heb become stable, aeb is higher than heb. According to

Lemma 1, this is attributed to the dissemination of first-type ARWs.

The above results indicate that, to ensure the performance of RSC, air should

be sufficiently large. In practice, this can be ensured by running RSC periodi-

cally.

Influence of first-type ARWs

Figure 4.5 validates that the performance of RSC is closely relevant to the dis-

semination of first-type ARWs. G3 is used for this evaluation, with g being

set to 30. Lemma 1 claims that the betweennesses of attack edges increase if

more first-type ARWs are disseminated. In Figure 4.5, the blue, red and green

bars represent the df obtained when 1). both first-type ARWs and second-type

ARWs are disseminated, 2). only first-type ARWs are disseminated, and 3). only

84

Figure 4.5: Influence of first-type ARWs on df

second-type ARWs are disseminated, respectively. Clearly, the df of RSC in-

creases when more first-type ARWs are disseminated, validating Lemma 1.

Influence of g

In the following evaluations, air is set to 8000. Other values of air ranging

from 1500 to 8000 have also been evaluated. Generally, as air increases, the

performances of RSC and RSSR increase accordingly.

Figure 4.6 shows the influence of g on the performance of RSC. In this eval-

uation, networks G1 and G2 are used. It is notable to see that aeb decreases as

g increases. Intuitively, as g increases, the average number of first-type ARWs

passing each attack edge decreases, and hence aeb decreases. However, heb is

lower than aeb in both the real world and synthetic network topologies. There-

fore, RSC can be regarded as a feasible attack edge detecting algorithm.

85

(a) G1

(b) G2

Figure 4.6: Influence of g on heb and aeb

86

(a) G1

(b) G2

Figure 4.7: Influence of g on har

87

Figure 4.7 shows the influence of g on the har of SOHL and RSSR. Networks

G1 and G2 are used for this evaluation. In both the real world and synthetic

network topologies, the har of RSSR is 20% lower than the har of SOHL. In

RSSR, RSC can detect the attack edges and prevent waterfall random walks

from approaching the attack edges. Accordingly, honest nodes near the attack

edges are less likely to be visited by waterfall random walks and are therefore

less likely to be accepted by other honest nodes. Hence, the har of RSSR is lower

than that of SOHL.

Note that RSSR is only designed to have low sar, instead of having high har.

The results above also indirectly indicate that RSC can effectively detect the

attack edges.

Figure 4.8 shows the influence of g on the sar of SOHL and RSSR. Networks

G1 and G2 are used for this evaluation. First, as g increases, the sar of both

RSSR and SOHL increase. As g increases, aeb decreases, and the escape rate of

waterfall random walks increases. Accordingly, honest nodes accept more Sybil

nodes, increasing the sar. Second, the sar of RSSR is lower than that of SOHL.

For example, when g = 427, the sar of SOHL increases to 90%. However, the

sar of RSSR is 5x and 13x times lower than that of SOHL using real world and

synthetic network topologies, respectively. These results validate that RSC can

remarkably improve the accuracy of SOHL.

In this section, simulations on synthetic and real world network topologies

show that the betweenness values computed by RSC satisfy the detecting prop-

erty. Hence, RSC is a feasible attack edge detecting algorithm for unauthorized

DCSs. Moreover, it has also shown that, by utilizing RSC, the accuracy of SOHL

is significantly improved. Therefore, these results validate the power of RSC in

creating accurate SSD algorithms.

88

(a) G1

(b) G2

Figure 4.8: Influence of g on sar

89

4.6 Conclusion

The goal of this chapter is to design an attack edge detecting algorithm for unau-

thorized DCSs. Having such an algorithm, accurate SSD algorithms for unau-

thorized DCSs can be created based on attack edge detecting.

To this end, this chapter proposed RSC, an algorithm that enables each node

to distinguish the possible attack edges among its incident edges. The main dif-

ficulty in the creating of RSC is to find a detecting metric that can be securely

computed in unauthorized DCSs. By analyzing the properties of existing be-

tweenness metrics, this dissertation chooses the RWEB as such a metric. RSC

enables each node to securely compute the RWEBs of its incident edges in a

distributed manner. The difficulty is to resist attacks from Sybil nodes. Simula-

tions on real world and synthetic network topologies showed that the between-

ness computed by RSC satisfies the detecting property well: the betweennesses

of attack edges are higher than those of honest edges. This validates the feasi-

bility of RSC.

This chapter also provided an example showing that RSC can be readily used

to improve the accuracies of existing SSD algorithms. That is, RSC is embedded

into SOHL to create a new SSD algorithm. The evaluation showed that RSC

remarkably reduced the sar of SOHL.

In summary, this chapter created a feasible attack edge detecting algorithm

for unauthorized DCSs, which can be used to create accurate SSD algorithms

for unauthorized DCSs.

90

CHAPTER 5. CONCLUSIONS

Chapter 5

Conclusions

DCSs, such as P2P systems, ad hoc network systems and volunteer computing

systems, are playing pivotal roles in industry and our daily life. However, ma-

licious nodes may exist in DCSs and launch attacks against the systems. Espe-

cially, the false result attack and the Sybil attack are two representative attacks

to DCSs. For a DCS, under the false result attack, malicious worker nodes de-

liberately send incorrect results of computing tasks to host nodes. Under the

Sybil attack, malicious users control many Sybil nodes to attack the system. To

ensure the application and development of DCSs, it is necessary to resist these

two attacks. However, existing solutions to these two attacks are problematic.

Hence, this dissertation aims to design more effective attack resisting mecha-

nisms.

Chapter 2 proposed a false result attack resisting algorithm MSC, which en-

ables hosts to detect malicious workers efficiently without using quizzes. The

core innovation of MSC is to detect malicious workers using normal tasks called

checking tasks, instead of quizzes. In MSC, for each host and its workers, the

host disseminates checking tasks to each worker. The host then judges each

worker by checking whether the worker returned correct results to the checking

91

CHAPTER 5. CONCLUSIONS

tasks. Since malicious workers return incorrectAdditionally results, over time,

the host can detect malicious workers. Theoretical analysis and simulations

showed that each host can accurately detect malicious workers in reasonable

DCSs. In addition, the efficiency of MSC is theoretically optimal. Hence, MSC

is a more efficient and practical solution to the false result attack compared to

existing solutions.

Chapter 3 proposed SybilDetector, an accurate SSD algorithm for authorized

DCSs. This dissertation observed that, to increase the accuracy of SSD algo-

rithms, it is necessary to further prohibit the communication between nodes of

different types. To this end, the intuitive idea is to directly detect and cut the

attack edges. In SybilDetector, honest nodes first detect the attack edges using

a SPEB-based mechanism. Then, two nodes accept each other if and only if the

shortest paths between these two nodes do not pass any attack edges. Evalu-

ation showed that SybilDetector made a significant improvement in accuracy

over an existing representative SSD algorithm. Moreover, Chapter 3 confirmed

that attack edge detecting is an important technique in resisting the Sybil at-

tack. It is expected that this technique can be widely used to create security

mechanisms for other DCS attacks in the future.

Chapter 4 proposed an attack edge detecting algorithm for unauthorized

DCSs called RSC, which can be used to create accurate SSD algorithms for

unauthorized DCSs. As shown in Chapter 3, it is crucial to detect attack edges

in order to create accurate SSD algorithms. However, how to detect attack edges

in unauthorized DCSs is an open problem. To detect the attack edges, the key

is to design a betweenness metric that satisfies the detecting property – under

this metric, the attack edges have high betweennesses, and non-attack edges

have low betweennesses. By analyzing the properties of existing betweenness

92

CHAPTER 5. CONCLUSIONS

metrics, Chapter 4 regarded that the RWEB should satisfy the detecting prop-

erty. Chapter 4 then designed RSC to compute RWEBs of edges under mali-

cious interference. Evaluations on real world and synthetic network topologies

confirmed that the betweenness values computed by RSC indeed satisfied the

detecting property. By regarding edges of high betweennesses as attack edges,

the attack edges can be detected. Chapter 4 then provided an example showing

that, by using RSC to detect attack edges, the accuracy of an existing SSD algo-

rithm was significantly improved. This confirmed the effectiveness of RSC and

its potential in creating accurate SSD algorithms for unauthorized DCSs.

The algorithms designed and findings made in this dissertation can effec-

tively address the false result attack and the Sybil attack. Hence, this disserta-

tion has made a stable contribution to ensure the application and development

of DCSs.

In the future, this dissertation will be extended to two directions. The first is

to design Sybil resisting mechanisms for a more general social network model.

For a DCS, the existing SNM considers that honest nodes gather in a single clus-

ter. However, in real DCSs, honest nodes may be divided into multiple clusters.

Sybil resisting mechanisms for these DCSs should be designed. The second di-

rection is to find flexible methods to combine SNM with DCSs. SNM has been

regarded as a promising tool to consolidate securities of DCSs. However, most

existing DCSs have their own connection protocols for realizing certain func-

tionalities, and the portion of DCSs that satisfy SNM among all DCSs is still

small. Hence, it is necessary to find flexible ways that enable DCSs to benefit

from SNM without affecting their functionalities.

93

BIBLIOGRAPHY

Bibliography

[1] Facebook. http://www.facebook.com.

[2] Skype. http://www.skype.com.

[3] Ian Foster. What is the grid? a three point checklist. Technical report,

http://www-fp.mcs.anl.gov/ foster/Articles/WhatIsTheGrid.pdf, June 2002.

[4] David P. Anderson. Boinc: A system for public-resource computing and

storage. In GRID ’04: Proceedings of the 5th IEEE/ACM International

Workshop on Grid Computing, pages 4–10, Washington, DC, USA, 2004.

IEEE Computer Society.

[5] SETI@Home. http://setiathome.ssl.berkeley.edu/.

[6] Mo Zhou, Yafei Dai, and Xiaoming Li. A measurement study of the

structured overlay network in p2p file-sharing systems. Adv. MultiMedia,

2007:10–10, January 2007.

[7] Katayoun Sohrabi, Jay Gao, Vishal Ailawadhi, and Gregory J Pottie. Pro-

tocols for self-organization of a wireless sensor network. IEEE Personal

Communications, 7:16–27, 2000.

94

BIBLIOGRAPHY

[8] Elizabeth M. Royer and C.-K. Toh. A review of current routing protocols for

ad-hoc mobile wireless networks. IEEE Personal Communications, 6:46–

55, 1999.

[9] Dongyu Qiu and R. Srikant. Modeling and performance analysis of

bittorrent-like peer-to-peer networks. In Proceedings of the 2004 conference

on Applications, technologies, architectures, and protocols for computer com-

munications, SIGCOMM ’04, pages 367–378, New York, NY, USA, 2004.

ACM.

[10] Shanyu Zhao, Virginia Lo, and Chris GauthierDickey. Result verification

and trust-based scheduling in peer-to-peer grids. In P2P ’05: Proceedings of

the Fifth IEEE International Conference on Peer-to-Peer Computing, pages

31–38, Washington, DC, USA, 2005. IEEE Computer Society.

[11] Philippe Golle and Ilya Mironov. Uncheatable distributed computations. In

CT-RSA 2001: Proceedings of the 2001 Conference on Topics in Cryptology,

pages 425–440, London, UK, 2001. Springer-Verlag.

[12] J. Douceur. The sybil attack. Peer-to-Peer Systems, pages 251–260, 2002.

[13] Miguel Castro, Peter Druschel, Ayalvadi Ganesh, Antony Rowstron, and

Dan S. Wallach. Secure routing for structured peer-to-peer overlay net-

works. SIGOPS Oper. Syst. Rev., 36(SI):299–314, 2002.

[14] G. DANEZIS, C. LESNIEWSKI-LAAS, M.F. KAASHOEK, and R. ANDER-

SON. Sybil-resistant DHT routing. Lecture notes in computer science, pages

305–318, 2005.

95

BIBLIOGRAPHY

[15] Gheorghe Cosmin Silaghi, Filipe Araujo, Luı́s Moura Silva, Patrı́cio

Domingues, and Alvaro E. Arenas. Defeating colluding nodes in desktop

grid computing platforms. J. Grid Comput., 7(4):555–573, 2009.

[16] Newso James, Elaine Shi, Dawn Song, and Adrian Perrig. The sybil attack

in sensor networks: analysis & defenses. In Proceedings of the 3rd interna-

tional symposium on Information processing in sensor networks, IPSN ’04,

pages 259–268, New York, NY, USA, 2004. ACM.

[17] Nguyen Tran, Jinyang Li, Lakshminarayanan Subramanian, and Sher-

man S.M. Chow. Optimal sybil-resilient node admission control. In The

30th IEEE International Conference on Computer Communications (INFO-

COM 2011), pages 3218–3226, Shanghai, P.R. China, 4 2011.

[18] H. Yu, P.B. Gibbons, M. Kaminsky, and F. Xiao. Sybillimit: A near-optimal

social network defense against sybil attacks. In IEEE Symposium on Secu-

rity and Privacy, pages 3–17. Citeseer, 2008.

[19] Chris Lesniewski-Laas. A sybil-proof one-hop dht. In Proceedings of the 1st

Workshop on Social Network Systems, SocialNets ’08, pages 19–24, New

York, NY, USA, 2008. ACM.

[20] Chris Lesniewski-Laas and M. Frans Kaashoek. Whanau: A sybil-proof

distributed hash table. In NSDI, pages 111–126, 2010.

[21] Luis F. G. Sarmenta. Sabotage-tolerance mechanisms for volunteer com-

puting systems. In Proceedings of the 1st International Symposium on

Cluster Computing and the Grid, CCGRID ’01, pages 337–346, Washing-

ton, DC, USA, 2001. IEEE Computer Society.

96

BIBLIOGRAPHY

[22] Wenliang Du, Jing Jia, Manish Mangal, and Mummoorthy Murugesan.

Uncheatable grid computing. In In 24th IEEE International Conference

on Distributed Computing Systems, pages 4–11, 2004.

[23] Cécile Germain, Gilles Fedak, Vincent Néri, and Franck Cappello. Global

computing systems. In LSSC ’01: Proceedings of the Third International

Conference on Large-Scale Scientific Computing-Revised Papers, pages

218–227, London, UK, 2001. Springer-Verlag.

[24] C. S. Collberg and C. Thomborson. Watermarking, tamper-proofing, and

obfuscation - tools for software protection. In Software Engineering, IEEE

Transactions on, volume 28, pages 735–746, 2002.

[25] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit

Sahai, Salil P. Vadhan, and Ke Yang. On the (im)possibility of obfuscating

programs. In CRYPTO ’01: Proceedings of the 21st Annual International

Cryptology Conference on Advances in Cryptology, pages 1–18, London, UK,

2001. Springer-Verlag.

[26] Ben Lynn, Manoj Prabhakaran, and Amit Sahai. Positive results and tech-

niques for obfuscation. In EUROCRYPT, pages 20–39, 2004.

[27] Kanna Shimizu, Daniel Brokenshire, and Mohammad Peyravian. Cell

broadband engine support for privacy, security, and digital rights manage-

ment applications. White paper, 2005.

[28] Microsoft Corporation, Bennet Yee, Bennet Yee, J. D. Tygar, and J. D. Tygar.

Secure coprocessors in electronic commerce applications. In In Proceedings

of The First USENIX Workshop on Electronic Commerce, pages 155–170,

1995.

97

BIBLIOGRAPHY

[29] D. Pham, S. Asano, M. Bolliger, M. N. Day, H. P. Hofstee, C. Johns, J. Kahle,

A. Kameyama, J. Keaty, Y. Masubuchi, M. Riley, D. Stasiak, M. Suzuoki,

M. Wang, J. Warnock, S. Weitzel, D. Wendel, T. Yamazaki, and K. Yazawa.

The design and implementation of a first-generation cell processor. In Proc.

ICICDT 2005, pages 49 – 52, 2005.

[30] Amazon. http://www.amazon.com.

[31] N. Tran, B. Min, J. Li, and L. Subramanian. Sybil-resilient online content

voting. In Proceedings of the 6th USENIX symposium on Networked sys-

tems design and implementation, pages 15–28. USENIX Association, 2009.

[32] Guido Urdaneta, Guillaume Pierre, and Maarten Van Steen. A survey of

dht security techniques. ACM Comput. Surv., 43:8:1–8:49, February 2011.

[33] Brian Neil Levine, Clay Shields, and N. Boris Margolin. A survey of solu-

tions to the sybil attack. Tech report, University of Massachusetts Amherst,

Amherst, MA, October 2006., 2006(2006-052):052, October 2006.

[34] Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E. Leis-

erson. Introduction to Algorithms. McGraw-Hill Higher Education, 2nd

edition, 2001.

[35] A. Hernando, D. Villuendas, C. Vesperinas, M. Abad, and A. Plastino. Un-

ravelling the size distribution of social groups with information theory in

complex networks. The European Physical Journal B - Condensed Matter

and Complex Systems, 76(1):87–97, 2010.

98

BIBLIOGRAPHY

[36] Jure Leskovec, Kevin J. Lang, Anirban Dasgupta, and Michael W. Mahoney.

Community structure in large networks: Natural cluster sizes and the ab-

sence of large well-defined clusters. Internet Mathematics, 6(1):29–123,

2009.

[37] Ling Xu, Chainan Satayapiwat, Hiroyuki Takizawa, and Hiroaki

Kobayashi. Resisting sybil attack by social network and network cluster-

ing. In SAINT, pages 15–21, 2010.

[38] Daniele Quercia and Stephen Hailes. Sybil attacks against mobile users:

friends and foes to the rescue. In Proceedings of the 29th conference on

Information communications, INFOCOM’10, pages 336–340, Piscataway,

NJ, USA, 2010. IEEE Press.

[39] George Danezis and Prateek Mittal. Sybilinfer: Detecting sybil nodes using

social networks. In NDSS, 2009.

[40] László Lovász and Peter Winkler. Mixing of random walks and other diffu-

sions on a graph, pages 119–154. Cambridge University Press, New York,

NY, USA, 1995.

[41] MEJ Newman. A measure of betweenness centrality based on random

walks. Social networks, 27(1):39–54, 2005.

[42] Linton C. Freeman. A set of measures of centrality based on betweenness.

Sociometry, 40(1):35–41, March 1977.

[43] Michelle Girvan and M. E. J. Newman. Community structure in social and

biological networks. PROC.NATL.ACAD.SCI.USA, 99:7821, 2002.

99

BIBLIOGRAPHY

[44] Linton C Freeman, Stephen P Borgatti, and Douglas R White. Centrality

in valued graphs: A measure of betweenness based on network flow. Social

Networks, 13(2):141–154, 1991.

[45] Yih-Chun Hu, David B. Johnson, and Adrian Perrig. Sead: secure efficient

distance vector routing for mobile wireless ad hoc networks. Ad Hoc Net-

works, 1(1):175–192, 2003.

[46] Tao Wan, Evangelos Kranakis, and P. C. Oorschot. S-rip: A secure distance

vector routing protocol. In In Proc. of Applied Cryptography and Network

Security (ACNS’04, pages 103–119. Springer, 2004.

[47] Hedrick. Rfc 1058. Technical report, Internet Engineering Task Force,

1988.

[48] Lada A. Adamic and Natalie Glance. The political blogosphere and the

2004 u.s. election: divided they blog. In LinkKDD ’05: Proceedings of the

3rd international workshop on Link discovery, pages 36–43. ACM Press,

New York, NY, USA, 2005.

[49] A. L. Barabasi and R. Albert. Emergence of scaling in random networks.

Science, 286:509–512, 1999.

[50] NetworkX. http://networkx.lanl.gov/contents.html.

[51] P. Erdös and A. Rényi. On random graphs i. Publicationes Mathematicae

Debrecen, 6:290, 1959.

[52] Bimal Viswanath, Ansley Post, Krishna P. Gummadi, and Alan Mislove.

An analysis of social network-based sybil defenses. SIGCOMM Comput.

Commun. Rev., 40:363–374, August 2010.

100

BIBLIOGRAPHY

[53] A. A. Pirzada and C. McDonald. Trust establishment in pure ad-hoc net-

works. Wirel. Pers. Commun., 37:139–168, April 2006.

[54] Ling Xu, Ryusuke EGAWA, Hiroyuki TAKIZAWA, and Hiroaki

KOBAYASHI. A network clustering algorithm for sybil-attack resisting.

IEICE Transactions, special section, Parallel and Distributed Computing

and Networking, E94-D,No.12:2345–2352, 2011.

[55] Christos Gkantsidis, Milena Mihail, and Amin Saberi. Random walks in

peer-to-peer networks: algorithms and evaluation. Perform. Eval., 63:241–

263, March 2006.

[56] Laurent Massoulié, Erwan Le Merrer, Anne-Marie Kermarrec, and Ayal-

vadi Ganesh. Peer counting and sampling in overlay networks: random

walk methods. In Proceedings of the twenty-fifth annual ACM symposium

on Principles of distributed computing, PODC ’06, pages 123–132, New

York, NY, USA, 2006. ACM.

[57] Nabhendra Bisnik and Alhussein A. Abouzeid. Optimizing random walk

search algorithms in p2p networks. Comput. Netw., 51:1499–1514, April

2007.

[58] Marc Bui, Thibault Bernard, Devan Sohier, and Alain Bui. Random walks

in distributed computing: a survey. In Innovative Internet Community Sys-

tems 2004. Revised Papers, Lecture Notes in Computer Science, pages 1–14,

Guadalajara, Mexico, 2004. Springer.

[59] Qin Lv, Pei Cao, Edith Cohen, Kai Li, and Scott Shenker. Search and repli-

cation in unstructured peer-to-peer networks. In ICS ’02: Proceedings of

101

BIBLIOGRAPHY

the 16th international conference on Supercomputing, pages 84–95, New

York, NY, USA, 2002. ACM.

[60] William Stallings. Cryptography and Network Security: Principles and

Practice. Pearson Education, 3rd edition, 2002.

102

