
THESIS FOR DOCTOR OF PHILOSOPHY DEGREE

Agent-based Design Mehtod for Evolutional Systems
発展型システムにおけるエージェント指向設計手法に関する研究

Kinoshita Laboratory

Department of Computer and Mathematical Sciences

Graduate School of Information Sciences

Tohoku University

B1ID1002 Wenpeng Wei

January 2014

Contents

Acknowledgment 1

Chapter 1 Introduction 3

1.1 Background . 3

1.1.1 Internet and Open Systems . 3

1.1.2 Self-* Concept from Automatic Computing Community 4

1.1.3 Evolutional System . 6

1.1.4 Agent-Oriented Software Engineering 8

1.2 Objectives . 9

1.2.1 Research Objectives . 9

1.2.2 Challenges . 10

1.2.3 Proposals . 10

1.3 Summary . 11

Chapter 2 Organization Controlling Architecture for Agent-based Evolutional Sys-

tems 13

2.1 Overview . 13

2.2 Related Works and Problems . 14

2.2.1 Related Works . 14

2.2.2 Problems of Adopting Existing Approaches 17

2.3 Proposal . 18

2.3.1 Proposal Overview . 18

i

2.3.2 Controllable Construction of Agent Organization 19

2.3.3 System Architecture based on EAS Model 20

2.4 Experiment and Evaluation . 27

2.4.1 Experiment Overview . 27

2.4.2 Experiment System Design . 28

2.4.3 Implementation of Experiment System 30

2.4.4 Experiment Results . 33

2.4.5 Evaluation . 34

2.5 Summary . 37

Chapter 3 Protocol Design Method for Agent-based Evolutional Systems 39

3.1 Overview . 39

3.2 Related Works and Problems . 40

3.2.1 Related Works . 40

3.2.2 Problems of Adopting Existing Method 40

3.3 Proposal . 41

3.3.1 Proposal Overview . 41

3.3.2 Repository-based Reusing Mechanism for Cooperation Protocol 42

3.3.3 Tools Supported Design Work Flow for Protocol Template 43

3.4 Experiment and Evaluation . 51

3.4.1 Experiment Overview . 51

3.4.2 Experiment Results . 52

3.4.3 Evaluation . 56

3.5 Summary . 57

Chapter 4 Autonomous Knowledge Construction Method for Evolutional Control 60

4.1 Overview . 60

4.2 Related Works and Problems . 61

ii

4.2.1 Related Works . 61

4.2.2 Problems of Adopting Existing Method 62

4.3 Proposal . 63

4.3.1 Proposal Overview . 63

4.3.2 Indirect Estimation of System Global Measurement 63

4.3.3 Knowledge Construction Utilizing Machine Learning 65

4.4 Experiment and Evaluation . 68

4.4.1 Experiment Overview . 68

4.4.2 Experiment System Design . 69

4.4.3 Experiment Results . 75

4.4.4 Evaluation . 79

4.5 Summary . 79

Chapter 5 Conclusion 80

5.1 Conclusions . 80

5.2 Contributions . 81

5.3 Future Works . 82

Publications 83

Bibliography 90

Appendix A 91

Appendix B 97

iii

List of Figures

1.1 System failures due to unstable environment 3

1.2 Self-adaptive system recovers from system failure 5

1.3 EAS prevents system failure . 6

1.4 EAS operation images . 7

1.5 The conceptual architecture of an ES . 7

1.6 Position of proposals and chapters in this research 11

2.1 Static organization design . 15

2.2 Dynamic organization design . 16

2.3 Controllable construction of agent organization 19

2.4 Activity Property P in EAS model . 24

2.5 System architecture based on EAS model . 25

2.6 Experiment system design for organization controlling architecture 28

2.7 Snapshot of the experiment system for organization controlling architecture . . 32

2.8 Result of experiment: the ECI and battery information of conventional method 34

2.9 Result of experiment: the ECI and battery information of proposed method . . 35

2.10 Comparison of battery life . 36

3.1 Overview of the proposal . 41

3.2 Protocol templates using repository . 42

3.3 Protocol Design Workflow for DASH . 43

3.4 Sequence Diagram . 45

iv

3.5 DASH State Diagram Component . 46

3.6 DASH State Diagram of Role Participant of Contract Net Protocol Template . . 47

3.7 Meta Model of the DASH State Diagram . 49

3.8 DASH State Diagram to Model Mapping . 50

3.9 DASH State Diagram Model to DASH Rule Set Code Mapping 50

3.10 User interface of the graphical design tool for the DASH State Diagram design . 52

3.11 Detailed images of Tool Palette and Properties Editor 53

3.12 “Generate Dash Rule Set” menu . 54

3.13 DASH rule set code file . 55

3.14 Contract Net Protocol . 56

3.15 DASH State Diagrams and DASH Rule Set files 57

3.16 MicroGrid Control System using the generated protocol templates 58

3.17 Code comparisons between old implementations and proposed method 58

4.1 Indirect estimation of system global measurement 63

4.2 Knowledge construction architecture utilizing machine learning 66

4.3 Flow chart of decision making process of Meta-Agent 67

4.4 General MicroGrid operation . 69

4.5 Procedure of MicroGrid operation . 70

4.6 Design of experiment system . 71

4.7 Learning process . 72

4.8 Estimation process . 74

4.9 Scheduling as required . 75

4.10 Scheduling more all the time . 76

4.11 Scheduling by EAS . 77

4.12 Comparison of wasted power . 78

5.1 Contribution of this research . 82

v

A.1 Illustrates the scale of the details within each development phase 91

A.2 Presents the measure of agent concept that each methodology support 91

A.3 Shows the scale of the modeling criteria within each methodology 92

A.4 Compares the properties of the methodologies 92

A.5 Illustrates the available activities in each development phase 93

A.6 Illustrates the type of the system domain that each methodology is suitable for . 93

A.7 Summarizes the toolkits that are available for each methodology 93

A.8 Comparison of Concept . 94

A.9 Comparing a methodology ’s properties, attributes, process and pragmatics . . 95

A.10 Comparing methodology ’s properties, attributes, process and pragmatics . . . 96

vi

List of Tables

2.1 Result of experiment 1: comparison of portable device battery life 33

3.1 Steps, products and supporting tools of proposed design method 44

3.2 The result of the comparison of lines of code between the old implementation

and proposed design method . 57

vii

Acknowledgment

I would like to express my sincere and utmost gratitude to Professor Tetsuo Kinoshita for the

significant and helpful advice and support through my research period over 5 years. As my su-

pervisor, his many constructive advises and guidance were the key to the successful completion

of my PhD research and thesis. In every stage of this research, precious advice and comments

given have improved.

I would also like to extent many appreciation to my thesis committee members, Professor Mi-

chitaka Kameyama and Professor Ayumi Shinohara, whose constructive comments helped to

improve this thesis.

I would also like to thank Associate Professor Gen Kitagata for his significant opinions and

comments.

Likewise, I would like to deeply thank the staffs of the Kinoshita Lab who provided me with

assistance during the development of the ideas in this thesis, and for helpful comments on the

text. I thank Dr. Kazuto Sasai, Dr. Hideyuki Takahashi, Dr. Johan Sveholm, and Dr. Khamisi

Kalegele for the many constructive discussions we have had.

I would like to deeply thank Dr. Akiko Takahashi from Sendai National College of Technology

for her support and help to this research.

I would like to thank Ms. Ami Konno, Laboratoty secretary, for helping me focusing on my

work.

I would also like to thank all my friends and colleagues who contributed to my work in so many

ways.

I also very much appreciate the full scholarship award which I received from the Japanese

1

Ministry of Education, Culture, Sports, Science and Technology.

Lastly, I am grateful to the support and courage I have been receiving from my family.

2

Chapter 1 Introduction

1.1 Background

1.1.1 Internet and Open Systems

Networks of computers have been rapidly developed in the last decade. With the increment

and development of networks, software systems become more and more complex and open[20].

For an instance, consider the software that is designed to be distributed in the unstable and

unpredictable environment like the Internet. The bandwidth of the connections among those

components are changing over time. In some extreme situation there might be no connection

at all. The construction of the system also changes dynamically while the system is running.

Some components are probably offline. Some might be replaced by new versions. There is

almost no way to predict the situation of the environment and the construction of that kind of

open system.

Fig. 1.1: System failures due to unstable environment

In practice, it becomes obviously difficult to design and to control the behavior of the system.

3

To design a open system, in general the designer is required to decide the behavior of the system

in all of the situations that the system is possible to face while running. However, it is clearly

difficult, if not impossible, to predict those changing situations in design process. By the reasons

mentioned above, the design and development of open systems are still an open challenge in the

real world.

Therefor, a methodology that provides appropriate support for engineering large-scale open

systems is significant and useful[11].

1.1.2 Self-* Concept from Automatic Computing Community

As one possible solution to the problem about open systems that is mentioned in the last

section, Automatic Computing community introduces the Self-* concept to provide a approach

of archiving systems, which are more intelligent and autonomous. The corresponding concepts

can be categorized into three different layers as follows[18].

Primitive Level This level contains the underlying primitive properties of Self-* concept. For

example, self-awareness, which means that the system is aware of its self states and be-

haviors, and context-awareness, which means that the system is aware of its operational

environment.

Major Level This level contains four major properties.

Self-configuring is the capability of autonomous and dynamic reconfiguration.

Self-healing is the capability of discovering, diagnosing and reacting to disruptions.

Self-optimizing is the capability of managing performance and resource allocation.

Self-protecting is the capability of detecting security breaches and recovering from their

effects.

4

Fig. 1.2: Self-adaptive system recovers from system failure

General Level This level contains global properties of self-adaptive software. The self-adaptiveness

is a top-down approaches, with which the system is supposed to change itself to adapt to

the changing operational environment or changing requirement.

The self-adaptive property is actually a general solution from Autonomic Computing com-

munity for the problems around open systems mentioned last section. However, as a general

approach, it has some short comes for particular situations. For an instance, self-adaption is

able to recover the system after environment or requirement changes, but is not able to avoid

the negative effect of them. Those short comes make self-adaptive system not suitable for the

mission critical applications such as financial applications and security applications.

5

1.1.3 Evolutional System

As a solution for the problems self-adaptive systems have, Evolutional System is introduced

in our previous research.

Fig. 1.3: EAS prevents system failure

An Evolutional System(ES) is an intelligent system with the following characters.

• An ES evolves autonomously and dynamically over time.

• An ES improves itself in many aspects such as stability and effectiveness continuously.

• An ES features unique properties that over self-* systems such as structure evolution,

potential improvement and deterioration resistant.

Specifically, deterioration resistant means the system ability to autonomously prevent the

negative effect of undesired changes of system structure or system function before those changes

actually arise. In contrast to the self-adaptive system, that unique property makes ES an ideal

solution for those mission critical applications, which is difficult for self-adaptive approach.

6

Time

Time

Time

Time

Performance measurement (e.g. QoS)

Potential measurement
(e.g. margin)

Requirement

Threshold

Requirement

Threshold

Performance measurement (e.g. QoS)

Potential measurement
(e.g. margin)

Fig. 1.4: EAS operation images

The conceptual architecture of an ES is shown in Fig. 1.5.

Evolution Mechanism
(EM)

Problem Solving System
(e.g. Agent System)

ES

Monitoring
Evolutional

Control

Perceiving

Environment

Cooperation

Evolutional System (ES)

Environment Information

Monitoring
Evolutional

Control

Evolutional Agent System (EAS)

Problem Solving Multi-agent System

Meta Agent (EM1) Agent
Repository

(EM2)

Meta Agent Type EAS

Fig. 1.5: The conceptual architecture of an ES

The problem solving system is the ordinary system dealing with the system requirement. For

7

an instance, it could be an ordinary plain agent system. Besides that, the additional Evolution

Mechanism is introduced. The Evolution Mechanism monitors the problem solving system

and perceives from the operational environment of the system. Then it judges the situation of

system by using all the parameters it monitored. If there is any possible undesired change,

the Evolution Mechanism adjusts or re-organizes the problem solving system to change the

character and behavior of the system to avoid the negative effect of those changes even before

those changes actually arise.

It is obviously that the key point of design an Evolutional System is to know how to design

the Evolution Mechanism. Nevertheless, those additional complexity and flexibility of the ES

appears as serious challenges for engineering them properly.

This research focuses on the design of Evolution Mechanism towards the realization of dete-

rioration resistant property of Evolutional Systems.

1.1.4 Agent-Oriented Software Engineering

We choose to use software agent and multi-agent system(MAS) as the paradigm for the design

of Evolutional Systems. It has good enough advantage to decide to use them.

Firstly, multi-agent system is the actually standard paradigm for distributed information pro-

cessing systems. Featuring autonomous and sociable, software agents are ideal first class for

the design of intelligent autonomous system distributed over networks.

Secondly, through the development over decades, there a number of mutual design method-

ologies to not only adopt but also to learn from. The legacy from existing research is specifically

valuable and useful. Some of the famous multi-agent system design methods can be categorized

into two types.

• General purpose design methods for MAS

The Gaia methodology[28], the Tropos methodology[5] and the MaSE methodology[8]

8

• Special purpose design methods for MAS

– For open systems and system adaption: the ADELFE methodology[3]

– For telecommunication applications: the MESSAGE methdodology[6]

Although there are such a number of mutual design methodology for multi-agent system,

there is still no specific design method or tools for Evolutional Systems yet. Therefor, the

remain of this research aims to provide a agent-based design method for Evolutional Systems.

1.2 Objectives

1.2.1 Research Objectives

This research aims for the reliable and effective realization of Evolutional System that fea-

tures the deterioration resistant property. The key points of this research objective is as the

follows.

Reliable the Evolutional System must meet all design requirements and performs stably

Effective the development cost for the Evolutional System must stay low even with the extra

flexibility

Deterioration resistant the Evolutional System must be able to autonomously prevent the ef-

fect of undesired changes of system structure or system function before those changes

actually arise

Towards that objective, this research focuses on the design method and tools for Evolution

Mechanism, which performs Evolutional Control of the Evolutional System.

9

1.2.2 Challenges

Focusing on the design of the Evolutional Mechanism for performing Evolutional Control,

challenges appear as the follows.

(C1) To know how to perform Evolutional Control by changing the behavior and construction

of the problem solving system reliably and effectively. This challenge can be described

by two sub challenges as following.

(C1.1) Keeping the problem solving system construction flexible yet controllable.

C(1.2) Keeping the development cost of the system low even with the extra flexibility.

(C2) To know to decide the appropriate timing of performing Evolutional Control before actual

undesired changes arise without extra design burden.

1.2.3 Proposals

Against to the challenges mention last section, we propose a agent-based design method for

Evolutional Systems as the follows.

Proposal to challenge (C1) This proposal can be described by two sub proposals as following.

Proposal to challenge (C1.1) (P1) Organization controlling architecture for agent-based

Evolutional Systems

Proposal to challenge (C1.2) (P2) Protocol design method for agent-based Evolutional

Systems

Proposal to challenge (C2) (P3) Autonomous knowledge construction method for Evolutional

Control

The details of each proposal are discussed in the following chapters.

10

Fig. 1.6: Position of proposals and chapters in this research

1.3 Summary

As the background of this research, it becomes common that information processing systems

are distributed over vary network environment. For this kind of distributed systems, the activity

properties of them change irregularly depending on the changes or failures of system compo-

nents as also as the changes of network situations. The unstable changing of activity properties

is one of the main reasons, which are responsible for negatively effecting the quality of services.

In general, it is extremely difficult to consider all the possible changes the system will face to

in the design process. Presently, many research focusing on the judgment of abnormal situation

of systems and the recover solutions are under taken.

On the other hand, the research about cooperation distributed system call Evolutional System

is introduced. By constructing the system as multi-agent systems, Evolutional System approach

proposes the methodology that performs preventing processing in advance before the effects

of system changes arise by monitoring the activity properties of the system, which affect sys-

tem behaviours. An appropriate method for design and development of Evolutional System is

important. In this paper, we provides a design method based on multi-agent system, which is

described in the following 3 chapters.

11

Research Objective

This research aims for the reliable and effective realization of Evolutional Systems(ES) that

features the deterioration resistant property.

Challenges

(C1) To know how to perform Evolutional Control by changing the behavior and construction

of the problem solving system reliably and effectively. This challenge can be described

by two sub challenges as following.

(C1.1) Keeping the problem solving system construction flexible yet controllable.

C(1.2) Keeping the development cost of the system low even with the extra flexibility.

(C2) To know to decide the appropriate timing of performing Evolutional Control before actual

undesired changes arise without extra design burden.

Proposals

(P1) Organization controlling architecture for agent-based Evolutional Systems

(P2) Protocol design method for agent-based Evolutional Systems

(P3) Autonomous knowledge construction method for Evolutional Control

12

Chapter 2 Organization Controlling

Architecture for Agent-based

Evolutional Systems

2.1 Overview

With the rapid development and popularization of smart portable devices, it is becoming

common to use various network services on portable devices such as smart phones nowadays

such as navigation services. However, those portable devices are usually used in unstable and

dynamic environments with certain limitations such as variation in network bandwidth. In addi-

tion to that, not only the limitations of the environments, but also the limitations of the devices

themselves such as effects of limited battery power on user experiences. For instance, users of

multimedia sharing services like YouTube have to always keep an eye on the battery charge of

their devices while enjoying the contents to make sure the playback will not be suspended.

A number of researches trying to improve the situation mentioned above have been under-

taken in recent years. Those research efforts can be divided into two mainstreams. One of

them is the works that attempt to reduce local resource consumption of the portable devices by

optimizing local processing, for instance, a smart phone application manager trying to extend

battery life by exiting background processing. Due to the lack of the ability to control service

provisions outside the portable devices, those works show only limited effect in the case of

that the numerous system resources are consumed by the services which are provided by inde-

pendent service providers. The other one is the efforts on the service provider side to prepare

13

optimized services based on the situations of users and their devices. Nevertheless, it is obvi-

ously difficult, if not impossible, to predict all possible situations and prepare suitable services

for all users in advance.

To solve the problems mentioned above, this research aims to provide appropriate services to

portable devices flexibly by considering the situations of users and their devices while enjoying

the services. The remainder of this paper is organized as follows. Related works and main

challenges are discussed in the next section. In Section 3, the proposal is presented in details.

An experimental system is described and the results discussed in Section 4. Last but not least,

Section 5 presents important conclusions.

2.2 Related Works and Problems

2.2.1 Related Works

There are quite a number of researches aiming at reducing the energy consumption of portable

devices. A mechanism which sleeps the processors of portable devices for short periods to save

battery power is suggested in Brakmo et al [4]. While in Qiu et al [17], an algorithm of task

scheduling to aggressively reduce energy consumption is provided. Both approaches mentioned

above are limited in the portable devices and lack for the ability to control service provision

when portable devices are using network services.

On the other hand, automatic and dynamic construction of services according to the situations

of service users and environments has been an active research area for a long time. In the last

decade, a number of researches on autonomous service provisioning systems have been trying

to provide appropriate services depend on the situations of the systems. Users of those systems

are required to construct and to control the service provisioning system dynamically to receive

adequate services.

Regarding multi-agent based autonomous service provision systems, methods for construct-

14

ing the autonomous overall system using a combination of software agents that collaborate

with each other autonomously have been proposed[10, 26]. Those methods construct agent or-

ganizations with mutual interactions among autonomous agents to achieve autonomous system

characteristics. Depending on QoS degradation and environmental changes, the systems change

parameters and reconstruct the agent organization during service provisioning. The QoS degra-

dation and environment changes serve as triggers in those systems which function reactively.

Fig. 2.1: Static organization design

An agent organization model to construct a system that recovers autonomously when trouble

occurs is reported in Oyenan et al [16]. The knowledge for the control of agents is required by

the reported organization model: the condition of the agent organization have to be monitored.

A multi-agent system is constructed systematically by operating agents autonomously under

the model. In case some agent is aborted or some trouble which does not satisfy the system’s

objective during service provision, the reconstruction of agent organization is performed to

recover service provision autonomously. Nonetheless, service suspension is difficult to avoid

by this model.

A multi-agent system architecture incorporates a policy to manage applications, resources

and service provision is proposed in Tesauro et al [27], thereby achieving means to construct

15

systems based on user requirements, to recover from system failures and to optimize systems.

However, in case that the system handles every system component using the same policy, the

overall system becomes overloaded easily.

There are also a number of researches aiming to construct multi-agent systems which are

able to adapt to changeable unstable environments. Disparate models for that purpose have

been introduced in various publications [12, 19]. The former provides a meta-model focusing

on organizational concepts such as roles in a multi-agent system. The latter gives a concrete

model for the actual modeling agent organizations of the application systems. In those ap-

proaches, the adaption of agent behavior is realized by changing the roles which agents play

dynamically after some predefined conditions are perceived. In Luckey et al [15], a useful tool

to defined those important predefined conditions is provided. By extending standard UML use

cases, the proposed Adapt Cases enable the explicit modeling of those conditions with domain

specific means early in the design phase of software engineering process. It is noteworthy that

the approaches mentioned above perform adaptive actions after the system falls into some un-

desirable situations. Even if the systems recover after that, user experiences are noticeably

affected especially under an unstable environment such as wireless network.

Fig. 2.2: Dynamic organization design

Addressing to the problems mentioned above, in our previous researches[22, 23], a method

that is able to predict system troubles in order to maintain service provision by adopting the

16

Evolutional Agent System(EAS)[21] has been proposed. Instead of monitoring undesired con-

ditions of the applications as the triggers for reconstruct agent organizations, the proposed ap-

proach focuses on the characteristic of agent behavior and application requirements to obtain the

current system potential as system margin for providing required services. Based on the system

margin, the proposed approach controls multi-agent system proactively considering the “control

possibility” and “control effect” for reducing the decrement of QoS to the absolute minimum

while providing services by reconstructing agent organizations. This approach avoids QoS de-

terioration effectively for systems which consist of immobile platforms. Therefore, it is natural

to apply the succeed approach to portable devices. However, there are several challenges due to

the unique limitations of portable devices mentioned above.

2.2.2 Problems of Adopting Existing Approaches

For portable devices which are used in unstable environments, it is obvious that autonomous

service provisioning systems are suitable for users to experience adequate quality. While adapt-

ing our previous experience to portable devices, we meet the challenges that can be described

by the following problems.

Without considering system power storage and other local resources, device battery life is

shortened by additional control processing. The extra control process reduces user experiences

while enjoying provided services due to the limited local resources.

Different from immobile devices, portable devices have certain limitations. Those limitations

have to be considered while applying EAS concept to systems which involve mobile devices.

The limited battery capacity is one of those limitations. In an EAS, besides to the agent system

which provides the required services, there is an extra evolution mechanism to improve the

whole system. It is obvious that the extra computation of the evolution mechanism consumes

extra energy of the system. That might not be an serious issue for immobile devices but for

the devices with limited power supply it means shorter battery life which is an undesirable

17

condition. Another limitation is the limited processing power of the portable devices. On those

devices, extra controlling process consumes additional computation resources and effects user

experiences.

Therefore, against those challenges we propose a new design of energy-consumption-aware

EAS for portable devices. The proposed design customizes and extends previous EAS model

to overcome the limitations of portable devices. In brief, the proposal provides solutions to the

challenges mentioned above as follows.

A service provision control mechanism considering device energy consumption and local re-

sources. In addition to QoS parameters, local resources parameters are also taken into account

while service is being provided to reduce the influence to device battery life. A system archi-

tecture which considers user experiences during service provision. Instead of users and their

devices, software agents on service provider side deal with the extra controlling.

Instead of performing control process of evolution mechanism on the portable devices, the

proposed design performs those process using immobile platforms of the whole system as much

as possible to minimize the effect on portable devices. The details of the proposal are described

in next section.

2.3 Proposal

2.3.1 Proposal Overview

The overview of the proposal is described as the following.

Proposal

Organization controlling architecture for Agent-based Evolutional Systems.

Proposed solutions

18

1. Controllable construction of agent organization

This solution makes it possible to constructs agent organization dynamically while

running according to user requirement. It also provides ability to be controlled while

re-organization.

2. System architecture based on Evolutional Agent System model

This solution provides system design to support the realisation of deterioration re-

sistant property of Evolutional Agent System(EAS).

2.3.2 Controllable Construction of Agent Organization

In this section the details of the controllable construction of agent organization are described.

The idea of this solution is shown in Figure.2.1.

Fig. 2.3: Controllable construction of agent organization

19

In general, the organization of a system is either controlled in a centralized fashion or in a de-

centralized way. For the former, there is usually a controller in the system, which is holding all

the organization candidate information. While there is a need to be reorganized, the controller

chooses the most appropriate organization depending on the strategy of the whole system and

the situation the system is facing. The centralized approach usually achieves best result for a

closed system thanks to that all the information of the system is hold by the controller. However

for the open system, there is always a chance that unexpected component comes to the system,

the information of which is not available for the controller. That makes the controller losing the

full control of the system. In that case, the reorganizing fails due to the uncertain center control.

For the latter, there is no such a center controller in the system. Instead of it, each agent de-

cides which one is going to be communicated depending on its own goals and decision making.

In this case, usually each agent in the system only holds part of the information of the system.

For that reason, it is extremely difficult, if not impossible, to make the whole system reorganize

to achieve some certain system level goals. In other words, it is hard to control at system level.

2.3.3 System Architecture based on EAS Model

A Evolutional Agent System (EAS) is a multi-agent system which has the ability to con-

trol and reconstruct itself actively to recover QoS after analyzing the system environment,

not merely passively responding to changes. We applied the EAS concept to construct an

autonomous service provision system in the previous research[22]. Based on that successful

experience, in this research we customize the EAS model from [22] by explicitly modeling en-

ergy consumption related characteristics of agent behavior and environment to overcome the

limitations of portable devices. The customized EAS model is described in a syntactic manner

as the following.

Definition 1. An Evolutional Agent System, denoted as an EAS, is designed based on ne,R, S,E

and P ;

20

EAS =< ne,R, S,E, P > .

Where ne signifies the name of the EAS, R denotes a set of requirements given to EAS, S

is the EAS structure, E stands for the environment in which EAS operates, and P is the EAS

property.2

The EAS usually consists of several agent workplaces and one agent repository running on

distributed platforms. Detailed elements of an EAS in this research are described as the follow-

ing definitions.

Definition 2. R includes reqk(k = 1, 2, ..., Nr) and reqk is determined as a required service

function req-fk and the required quality req-f -qk of the req-fk, as shown below.

R = {reqk|reqk =< req-fk, req-f -qk >; k = 1, ..., Nr}

Here, Nr is the total number of the required functions.2

Definition 3. S is an organization of an EAS. It consists of AG,STR and AL-AG. S is

S =< AG,STR,AL-AG >,

where AG denotes a set of EAS member agents, STR stands for the structure of an agent

organization and AL-AG signifies a set of alternate agents which member agents in AG can be

replaced by.2

Firstly, AG includes agi(i = 1, ..., Na) which is determined with the following: identifier nai

; a set of services Sv-agi which can be provided by the agi .

AG = {agi|agi =< nai, Sv-agi >; i = 1, ..., Na}

Here, Na is the total number of EAS member agents. Member agents AG are problem solving

agents which run in agent workplaces to provide required services.

21

Sv-agi includes svai, which is determined as a provided function funci,the provided quality

func-qi of the funci and relative energy consumption func-eci of providing funci as follows:

Sv-agi = {svai|svai =< funci, func-qi, func-eci >;

i = 1, ..., Ns}.

Here, Ns is the total number of functions agent agi has.

Secondly, AL-AG includes agj(j = 1, ..., Nalt) as the following.

AL-AG = {agj|agj =< naj, Sv-agj >; j = 1, .., Nalt}

Here, Nalt is the total number of the alternate agents. Alternate agents AL-AG are stored in

the agent repository which is running on top of a immobile platform such as a PC server.

Finally, STR includes relij(i, j = 1, ..., Na) which denotes the relation rij between agi and

agj . Here, agj and agi are included by AG, rij is included by Rel which is the set of inter-agent

relations defined in EAS, respectively.

The STR is

STR = {relij|relij =< rij, agi, agj >;

agi, agj ∈ AG; rij ∈ Rel}.

All the agents in the EAS are stored as alternate agent in the agent repository at first. After a

requirement is issued to the EAS, appropriate agents are initiated from the agent repository to

the agent workplaces as member agent to construct agent organizations which provide the user

required services. Those member agents are selected in a design process as the following.

Definition 4. In a design process, the EAS is feasible and S is determined when all requirements

and functions are compared and matched. It can be described by the following expression:

22

(∀k)reqk = < req-fk, req-f -qk >∈ R,

(∃i, j)agi = < nai, Sv-agi >∈ AG;

svaj = < funcj, func-qj, func-ecj >∈ Sv-agi;

req-fk = funcj;

req-f -qk = func-qj.

Using this expression, S is determined.2

By that design process, agents that have necessary functions to realize the user requirements

are selected as member agent. After the process, the EAS is ready to provide required services

using the agent organization constructed by member agents AG.

P is the operating property of the EAS. It is determined by the evolutional mechanism of the

EAS. If the system can recover its performance, then the evolutional mechanism operates the

system actively and dynamically based on the operating status of the multi-agent system and

the information of system environment. In this study, we design the evolutional mechanism as

the knowledge and abilities of a meta-agent(mag). It manages P as internal information. The

details of evolutional control based on system margin are described in [22]. In addition to that,

to overcome the certain limitations of portable devices, the hardware information of distributed

platforms is also necessary as follows.

Definition 5. E is the information of the behavioral environment of the EAS system. In this

research, E consists of the hardware information HWi of each distributed platform:

E = {HWi|i = 1, ..., Ndp},

where Ndp is the total number of distributed platforms.2

23

Fig. 2.4: Activity Property P in EAS model

With that information, the EAS is able to be aware of the energy consumption and potential

of the whole system as discussed in the next section.

To design an energy consumption aware control mechanism, we propose the Energy Continu-

ance Index ECI as an indicator of the estimated continuance of system energy storage for each

distributed platform. ECI is one of the detectable properties of EAS which are represented by

the set P .

By calculating the energy consumption related data which is obtained from platform hard-

ware, it is possible to be aware of the impact of the current service on the energy storage of

the platform. ECI is defined as a numerical value to measure that impact which is directly

proportional to current battery charge of the platform and is inversely proportion of the energy

consumption speed.

24

!"#$%&'#()*+%),-&.!"/'("*0

 Alternate Agent

 (AL-AG)

Distributed Platform

(Ds-Plfms)

Distributed Platform

(Ds-Plfms)

!"#$%&1),2(345#
.!"/6378*0

!"#$%&1),2(345#
.!"/6378*0

agi

agi

agi

agi agi

agi

Distributed Platform (Ds-Plfms)

agi agi agi agi agi agi

agi agi agi agi agi agi

Meta-Agent

(mag)

9*#, :#,;+5#

!"#$%&<#=4;+)>,
(4,48#%#,*

'#(345#

'#(345#

?&!"#$%&@,"4$+A4%+)$

?&'#(345#&8#8<#,&4"#$%&
B+%=&43%#,$4%+;#&4"#$%&

agi agi

C=))*+$"&4((,)(,+4%#&
43%#,$4%+;#&4"#$%*
.!6/!D/!E0

F)$+%),+$"&
!"#$%&"'"()*+!$,

+-, +.,

+/, +/,

Fig. 2.5: System architecture based on EAS model

Definition 6. The Energy Continuance Index ECI is obtained using platform hardware infor-

mation HWi as the follows.

ECI = {eci|eci =< eng-strgi, ECFi >; eng-strgi ∈ HWi;

ECFi ⊆ HWi; i = 1, ..., Ndp}

where eng-strgi denotes the current energy storage of the platform, ECFi is a set of energy

consumption factors of the platform as follows:

ECFi = {ecfij|ecfij ∈ HWi; j = 1, ..., Nf},

where Nf is the number of energy consumption factors of the platform.2

In this study, for simpilicity we define eci as the following.

25

ecii =
Nf × eng-strgi∑Nf

j=1(αij × ecfij)
,

where αij is the weight of each factor and Nf is the total number of ecfij . The range of

αij is (0, 1] and for each ecfij a specific αij is defined. eng-strgi is a numerical value which

represents energy storage, the battery charge for instance, in the range of [0, 1]. ecfij denotes

the energy consumption factor which influences the energy storage using a value from [0, 1].

Therefore, ecii is a numerical value which is larger than or equal to 0, where a value of 0 shows

that the platform has no energy in the storage to operate anymore, while a value of positive

infinity means that the platform has minimal energy consumption and is expected to provide

maximal battery life that hardware allows. In practice, eng-strgi and ecfij can be various over

disparate platforms. A concrete instance is shown in next section.

ECI is updated and monitored frequently at regular intervals during service provision. The

architecture of EAS with energy consumption awareness is presented in 2.5. The agent work-

place is the behavioral platform which contains the member agents (agi ∈ AG) to provide user

required services. The alternate agents (agi ∈ AL-AG) are managed by the meta-agent (mag)

in the agent repository which constructs agent organizations in response to user requirements.

mag also retrieves platform specific hardware information HWi from each distributed platform

and keeps updating and monitoring ECI .

Using the architecture described above, the agent behavior to archive energy consumption

awareness is designed as the follows. During service provision, if a ECI degradation, i.e. acute

energy consumption which may seriously affect system power storage, is detected by mag,

it dynamically reconstructs the agent organization by replacing corresponding member agents

with alternative agents which have equivalent functions with same QoS and lower relative en-

ergy consumption as described next.

Definition 7. The agent organization S is reorganized if

(1) ECI degradation is detected:

26

eci +∆eci < θ,

(2) appropriate alternative agent is available:

(∃i)agi ∈ AG,

(∃j)agj ∈ AL-AG,

where

(∀k)svak = < funck, func-qk, func-eck >∈ Sv-agi,

(∃q)svaq = < funcq, func-qq, func-ecq >∈ Sv-agj;

funck = funcq;

func-qk = func-qq;

func-eck > func-ecq.

Here, θ is the threshold to decide ECI degradation.2

By implementing those models as behavior knowledge of software agents in the EAS, energy

consumption awareness is realized. An application example is described in the next section.

2.4 Experiment and Evaluation

2.4.1 Experiment Overview

The objective of this experiment is to verify if proposed architecture could dynamically reor-

ganize by considering system situation.

The scenarios of the experiment is as the follows. Implement a experiment system streaming

live video to a portable device, which is supposed to consider the energy consumption of the

portable device at first. The system using proposed architecture is expect to scale down the

27

video by re-organization to reduce the energy consumption of the portable device while battery

consumes too fast on it.

The object of comparison is the system without proposed architecture using the same ini-

tial organisation through the experiment. The parameter of comparison is the battery life of

streamed video play back at a full charge.

2.4.2 Experiment System Design

Agent Repository

Streaming Server

Portable Client Video
encoding

agent

Video
streaming

agent Video
encoding

agent

Video
capturing

agent

Video
streaming

agent
Video

playing back
agent

Video
playing back

agent

Meta

Agent

User

Live
streaming

video

Live rawvideo

Video
camera

Encoded liv
e

video data

Agent Workplace

Agent Workplace

Agent behaviour
parameters

Replace

Replace

Monitoring ECI
(as Measurement Ms)

Choosing
video encoding agents /

video playing back agents
(as AP-AL-AG)

(1) (2)

(3)

(3)

Fig. 2.6: Experiment system design for organization controlling architecture

To evaluate our proposal, we applied it to a Flexible Multimedia Network Middleware (FMNM)[24],

which is an agent-based multimedia communication system providing adequate multimedia

communication services dynamically based on user requirements. In this research, the experi-

mental application contains a live video server and one or more portable devices as clients. The

server captures live video with a web camera and encodes the video while streaming it to the

28

clients to play it back. As the previous research of FMNM, the quality of the provided service

in terms of video frame rate(fps) and video resolution are used as QoS parameters. Every QoS

parameter is implemented as a component of design specifications and the parameters of user

requirement’s function and its quality are implemented as req-f and req-f -q. The agents in the

system are as follows:

video capturing agent The agent controls the web camera and passes the video raw data from

the camera to the video encoding agent. The controller and driver of the web camera on

the video server is implemented as the knowledge of this video capturing agent.

video encoding agent The agent encodes the video raw data using different video encoders

with variable parameters to pass to the video streaming agent. All the video encoders

available on the video server are wrapped and implemented as the knowledge of this

video encoding agent.

video streaming agent The agent controls network communication to send and to receive en-

coded video data from video encoder agent to video playing back agent. The networking

related controllers and drivers of both server and client are implemented as the knowledge

of this video streaming agent.

video playing back agent The agent receives encoded video data from video streaming agent

and decodes the data using corresponding video decoder to play back the video on the

display. All the video decoders and the video player on the client are implemented as the

knowledge of this video playing back agent.

In addition to that, each of those agents also has the knowledge for communication with each

other. Specifically, for the video encoding agent and the video playing back agent, there are

disparate agents for different video encoders/decoders with varying parameters. The agents for

each type have the same functions but with different internal implementations. They perform

the same task such as encoding a video with different QoS and energy consumption depending

29

on the concrete encoder/decoder implementation and parameters. During system initiation, user

requires a multimedia communications service which is able to play a remotely captured live

video on a Android tablet device at a required frame rate and resolution as required QoS. The

system selects appropriate member agents from the agent repository according to the design

process defined in Definition 4. In this process, the agents combination which is able to provide

required services at best QoS is selected to construct agent organization.

2.4.3 Implementation of Experiment System

After constructing the agent organization which is able to provide user required service, the

experimental prototype system continuously provides streaming services for a live video cap-

tured from a web camera of a PC to an Android tablet through wireless network. For the Android

tablet, in addition to the conventional QoS parameters such as video frame rate, local resource

parameters are also involved as HW . In this prototype system, those local resource parame-

ters include the following: CPU load(%), memory usage(%), display brightness(%), wireless

network signal strength(%), network traffic(kB) and battery charge(%).

HW =< cpu-load,mem-usg, disp-brt, wifi-sigl,

nw-traf, batt-chrg >

During the required service provision, the meta agent mag in the agent repository receives

HW update from the table every second and use it to calculate the energy continuance index

ECI of the tablet. For the use case in this experiment, the battery power of the tablet is mainly

used in three parts as the following.

1. Network part: to receive video data through the wireless network.

2. Processor part: to decode the video data using CPU calculation.

30

3. Display part: to playback the video on the display.

Specifically, for the network part, the power consumed for the wireless communication is

inversely proportional to the signal strength of the networks. More power is needed for a con-

nection with relatively weak signal. In summary, there are three factors of energy consumption

ecf of the tablet. Also the tablet is the only portable device in this experimental system for the

calculation of ECI . Therefore, ECI of the system is defined as follows.

ECI =
3× batt-chrg

cpu-load+ disp-brt+ f -scale(
nw-traf

wifi-sigl
)

Here, f -scale is a function to scale the network part factor to the same numerical range of

the other factors to guarantee they have the same influence on the ECI . For the simplicity, we

use 1 as the weight α for all the factors. In this way, the mag is able to be aware of the energy

continuance index of the portable tablet device.

If an ECI degradation of the system is detected by the mag, it looks for alternative agents

which have the same required functions as member agents but consume relative less energy in

the set AL-AG according to Definition 7. The relative energy consumption of a certain function

is represented by func-ec element of sva. For example, encoding video in high resolution

consumes more resources and more power than encoding video in low resolution. In this study,

the value of func-ec is 1 for encoding video in full resolution and 0.8 for 80% resolution.

In case appropriate alternative agent exists, corresponding member agent is replaced by it

to recover the ECI . I.e. to reduce the energy consumption of the portable device in order to

recovery expected battery life. In this process, as a trade off to reducing the rate of energy

consumption , usually agents perform required tasks with lower QoS are selected. However, the

reduced QoS is still able to satisfy user requirements otherwise the reorganization will not be

performed.

The experimental application described above is implemented using ADIPS/DASH agent

31

framework[13] and Java language. The live video server is running on a Unix-based desktop

PC while the clients are implemented using tablets running Android OS. The server and clients

are connected using wireless network.

Fig. 2.7: Snapshot of the experiment system for organization controlling architecture

32

2.4.4 Experiment Results

To evaluate the feasibility and effectiveness of our proposal, using the experimental applica-

tion described above, two comparison experiments have been performed.

This experiment is set up to evaluate the feasibility of the proposal. As shown in Figure 2.7, a

live video captured by a web camera of a PC is continuously streaming to an unplugged Android

tablet using the multimedia communication service based on FMNM. The requirements to the

service are live video streaming at over 15 fps and 0.25 times resolution. The tablet starts to

use the service and plays the video stream when it has 80% battery charge and stops when

the battery charge is less than 10%. The exactly identical experiments are repeated for the

conventional method from previous work which only considers QoS parameters and proposed

method of this research. The time spend in that operation is recorded as system battery life

which is the main evaluation aspect. The local resource parameters such as battery voltage

and battery charge are also collected during the service provision to help analyzing experiment

results. The comparison of portable device battery life is shown in 2.1. The detailed information

of battery is presented in 2.8 and 2.9, where the x-axis shows time and y-axis shows battery

voltage, battery charge and ECI of the tablet ECI , respectively.

Table 2.1: Result of experiment 1: comparison of portable device battery life

conventional method our proposal

battery life (hours) 3.78 6.74

increment n/a 78%

First of all, as shown in 2.1, comparing to the conventional method which does not consider

energy consumption of the portable devices, our proposal significantly saves battery power to

increase battery life of the device. In the experiment using conventional method, it takes 3.78

hours to drain the tablet battery power from 80% to 10% during the multimedia communication

33

service provision. By using our proposal, for providing the same service with maintaining the

same QoS represented by video frame rate, the same battery energy lasts for 6.78 hours which

is a 78% increased battery life.

Fig. 2.8: Result of experiment: the ECI and battery information of conventional method

The detailed battery information and the ECI obtained from the experiment using the con-

ventional method is shown in Fig. 2.8. During the service provision, with the decrement of

the battery power which is represented by battery voltage, the battery charge decrease linearly

and fast. The ECI decreases rapidly after service provision starts and keeps low during the

experiment.

2.4.5 Evaluation

In the experiment using proposed method, we set the ECI threshold θ to 20 as the trigger

to reorganize the service provision agent organization. After service provision starts, with the

34

Fig. 2.9: Result of experiment: the ECI and battery information of proposed method

35

Fig. 2.10: Comparison of battery life

decrement of the battery voltage, the battery charge decreases linearly and the ECI decreases

rapidly as the same as the experiment using convectional method.

However, when the ECI reaches the threshold, the reorganization is performed by replacing

the video encoding agent in member agents using alternate agent which uses another video

encoder. The new video encoding agent encodes video with 75% less resolution and requires

less energy to provide the multimedia communication service with the required QoS. After the

reorganization, a recovery of the battery voltage is confirmed from the result figure. The ECI

recovers over the threshold and the battery charge decreases at a lower rate which is represented

by the slope of the battery charge curve.

After the first reorganization, the ECI reaches the threshold again and system reorganizes

one more time to reduce the energy consumption of the portable device. The reorganization

repeats four times in the experiment to keep the ECI over the threshold to save the battery

36

energy of the tablet. When the ECI reaches the threshold at the fifth times, there is no avail-

able alternative agent, which is able to provide the same service with the required QoS, in the

agent repository. Therefore no reorganization is performed and the ECI falls down under the

threshold and battery charge decrease linearly.

It is noteworthy that in the process of reorganization, there is the trade-off between battery

life and QoS of the provided service. The balance of that trade-off is controlled by the ECI

threshold θ. The higher θ is, the earlier reorganization is performed i.e. the more energy con-

sumption is reduced and more QoS is reduced and the other way round. In practice, service

providers are encouraged to simulate multiple times to investigate the appropriate θ values for

particular applications.

In this research, the result of experiment shows that the system functions correctly as de-

signed. The rate of energy consumption is reduced by the control of the evolution mechanism

autonomously before the battery charge of the tablet actually reaches low level. The QoS is

maintained at the level which is able to satisfy requirements to the system. Therefore, proposed

design is feasible for the system which contains portable devices as the example.

2.5 Summary

Facing the situation that network services are being used on portable devices under unstable

environment with variable limitations, this research aimed to provide adequate services to the

portable devices flexibly by considering the situations of users and their devices while enjoying

the services. As described in this paper, we proposed a new design of energy-consumption-

aware Evolutional Agent System for portable devices. The proposal considers platform specific

parameters of local resources in addition to QoS parameters to control the service provision by

autonomous agent reorganizations. Moreover, to evaluate the feasibility and the effectiveness

of our proposal, we implemented a multimedia communication system based on the proposed

design. By the experiment results, through comparison to the conventional method, we con-

37

firmed that our proposal is able to provide adequate multimedia communication services with

minimum effect to user experiences.

38

Chapter 3 Protocol Design Method for

Agent-based Evolutional

Systems

3.1 Overview

Multi-agent systems are proved very effective for solving the problems related to distribute

information processing and simulations in the past few years. Many researches make great

efforts in those areas. For an instance, a multi-agent based approach for providing communica-

tion services in ubiquitous computing environment is proposed. Pu introduces an agent-based

negotiation service with the combination of ontology. An agent-based computing model and its

application for care-support services are proposed.

However, the development of multi-agent system still remains difficult. Addressing to that

restriction, this research proposes a cooperation protocol design method to improve the effi-

ciency of multi-agent system development. Based on the repository mechanism, reusable pro-

tocol templates can be applied for disparate multi-agent applications. Furthermore, a graphical

design tool with automatic code generation functions is developed to support the proposal.

The remainder of this chapter is organized as follows. In Section 2, we introduce the related

researches of protocol design for multi-agent systems and the repository-based agent frame-

work. In Section 3, the proposed design method is described in details. The applications and

evaluations are presented in Section 4. Finally, we conclude this paper in Section 5.

39

3.2 Related Works and Problems

3.2.1 Related Works

There are many different multi-agent system development methodologies have been proposed

in order to support the development of agent systems. In the common sense of software engi-

neering, multi-agent system development contains six different states in the whole lifecycle: Re-

quirement Analysis, Design, Implementation, Testing, Deployment and Maintenance.Supported

development lifecycle coverages are different depend on different multi-agent methodologies.

While GAIA[28], MaSE[8], Prometheus and Troops[5] are supporting Requirement Analysis

and Design phases, ADELFE[3], INGENIAS and PASSI are supporting one more phase to Im-

plementation. However, the other phases of Testing, Deployment and Maintenance are out of

support by those methodologies. There are also researche of comparing agent-oriented method-

ologies have been done.

3.2.2 Problems of Adopting Existing Method

One of the problems of those methodologies is the limitation to the specific agent implemen-

tation frameworks. Some methodologies are requiring specific agent natures to adapt. The sim-

ple comparison of agent nature requirements are shown in Figure 2.2. The cells with red back-

ground are the requiring agent natures that DASH dose not support. Those requirements make it

impossible to adapt those methodologies to DASH to support multi-agent system development.

Another problem is the lack of Implementation phase coverage of the other methodologies. The

multi-agent development in DASH could not be fully supported without the Implementation

phase supporting methodology.

40

3.3 Proposal

3.3.1 Proposal Overview

In this section, we would discuss our proposal of cooperation design method for repository-

based agent framework in details. The proposed method would be described below by three

different aspects which are related closely. Figure 3.1 gives the overview of the proposal.

Fig. 3.1: Overview of the proposal

41

3.3.2 Repository-based Reusing Mechanism for Cooperation Protocol

For practical using the repository mechanism to improve the high level software reuse, we

would like to introduce the protocol template mechanism. The protocol templates are the com-

munication pattern abstract to well-used agent cooperation protocols. Developers of the proto-

col templates could make different protocol templates for different cooperation protocols and

submit them to the repository to form a protocol library. The other multi-agent system devel-

opers who want to use the functions of the protocols just need to simply import the protocol

templates they would like to use from the repository and implement the interfaces of the tem-

plates to use them.

Application 2

CNP

CNP

CNP

CNP-based

Interaction

Repository

Protocol template

Agent organization

Reuse

Reuse

CNP

CNP

CNP-based

Interaction

Application 1

Reuse

Reuse

Fig. 3.2: Protocol templates using repository

Developer A (export developer) designed and implemented three different protocol templates

and submitted them to the repository for future reuse. In the other side, developer B (non-

42

expert developer) who hopes use the functions of a cooperation protocol just imported desired

protocol template to his multi-agent system project without re-design and re-implementation of

it. To support the expert developers, we would like to introduce protocol design workflow for

DASH, protocol template design method and supporting tools with protocol designer (expert

developer) support functions which would be described separately in the following section 3.2,

3.3, and 4.2, respectively. While for the non-expert developers, we also prepared supporting

functions for the protocol users which would be described in section 4.1 later.

3.3.3 Tools Supported Design Work Flow for Protocol Template

The protocol design workflow is the guideline and instructions for design protocol templates.

The proposed workflow is described in Figure 3.3.

Designer

Protocol ideas
Message Design

Message Sequence
Design

Code

(rules)

State Transaction
Design

Message Process
Knowledge (rules)

Decide roles

Decide sequence
of messages

Decide message
definitions
(performative,
content, etc...)

Decide states of roles
and the transaction
rules for states

Implementation

Step 1 Step 2

Step 3

Fig. 3.3: Protocol Design Workflow for DASH

As shown in Figure 3.3, the protocol template design activity would be started from the

Protocol Ideas of protocol designer, where the roles of the protocol should be decided. After

that, the sequence of the messages which would be used in this protocol should be decided in

43

the next Message Sequence Design phase. Once the sequence of the messages are defined, the

developer should give the detail definitions of the messages such as the performative, content,

etc... in the Message Design phase. And also the states of each roles of the protocol and

the transition rules between states should be decided in the State Transition Design phase

following. While all those design phase finished, the developer would implement the designed

protocol template in the phase of Message Process Knowledge (rule) to get the final code

(rules). The proposed workflow has been divided into three different step as shown in Figure

3.2. Phase Message Sequence Design and Message Design are contained by Step 1, while

State Transition Design phase in Step 2 with the rest in Step 3. We would propose the design

method follow those design steps in the following section.

Protocol Template Design Method

In this section, we would like to describe the proposed protocol template design method for

the steps of the proposed protocol design workflow which has been introduced in last section.

The products and supporting tools for each step is listed in Table 3.1.

Step Product Tool Support

1. Role and Sequence Design Sequence Diagram General UML Design Tool

2. State Design DASH State Diagram Proposed Graphical Design Tool

3. Implementation Code (*.rset files) Code Generation Function

Table 3.1: Steps, products and supporting tools of proposed design method

The Sequence Diagram would be the product of Role and Sequence Design step. And

There are a number of general UML design tools to support the design of it. While for the State

Design step, DASH State Diagram should be generated. We would introduce a graphical

design tool which is designed for this purpose to support the design of this step in section 4.2.

And for the Implementation step in which final codes are the product, the code generation

44

function of the graphical design tool would definitely help the developers. We would like to

introduce each step in details in the following subsections.

Step 1, Role and Sequence Design

The roles and message sequences of the protocol template would be decided by developer

in this step using common UML sequence diagrams with specific notations for the template

characters. An example of Contract Net Protocol template has been shown in Figure 3.4.

14

CNP_compose_propose (task)

CNP_ perform_task (contract)

CNP_ check_propose (proposal_list)

: interfaces 1 :Initiator n :Participant

CNP_cfp (task)

CNP_refuse

CNP_propose (proposal)

CNP_accept_proposal (contract)

CNP_reject

CNP_fail

CNP_inform (result)

T
1

T
2

T
3

CNP_ task_complete (result, participant)

CNP_task_fail (participant)

• Protocol designers decide the names
and the parameters.

• Protocol users finish the inner actions.

Fig. 3.4: Sequence Diagram

The specific nations for DASH protocol templates in the sequence diagram are surrounded

with dashed lines in Figure 3.4 which are called interface. The interface is just like the defi-

nition of functions, which are decided by the protocol designers in ways of the names and the

parameters. The body of the interfaces would be left blank to the protocol users to finish the

inner actions to meet their application domain specific requirements.

In the example of Contract Net Protocol template above, two different roles of Initiator and

Participant communicate using seven different kind of type messages to archive the goals of the

45

protocol. Five interfaces with parameters have been also defined by the protocol developer for

the protocol users to archive the application domain specific requirements. Once the sequence

diagram is defined, the development could entry the next step of State Design which we will

describe in next subsection.

Step 2, State Design

For each role of the protocol template, the DASH State Diagram should be designed in this

step by the designer depend on the sequence diagram which has been designed in the last step.

The DASH State Diagram is formed by six different basic components which are shown in

Figure 3.5.

(+) state_name
Actions:

Interface:

interface_name (parameter)

return_name (parameter)

Actions:

return_name (parameter)

Actions:

[Msg:performative (parameter)]

State Interface

Interface

Return

Initiation

Transition

Termination

Fig. 3.5: DASH State Diagram Component

The DASH State Diagram would be always started from the Initiation state and ended to

the Termination state. The else states of the roles would be described by the State part with

the specific state names. The“+” in front of the state name decide if a new thread would be

created for a particular state. And the Actions part of the state describe the actual actions

46

would be performed in the state. The state would contain one optional Interface which must

be defined with a name and none or more parameters. The interface would be always invoked

with the parameters after all the actions of the state has been performed by the system. One or

more Interface Return components would be contained by an interface. The interface return

components must be defined by interface return names and optional parameters and actions.

Finally, all the states must be connected by the Transition with the optional message labeled.

With the basic components which have been described above, developers could easily com-

pose them to construct complex DASH State Diagram. One example of the Role Participant of

Contract Net Protocol template has been shown in Figure 3.6.

[Msg:CNP_cfp (task)]init

wait_for_accept
Actions:

Interface:

+ composing_propose

Actions:

Interface:

call CNP_compose_propose (task) ;

CNP_compose_propose (task)

CNP_send_propose (propose, timeout_after)

CNP_refuse

send Msg:CNP_propose (propose) ;

Alarm (timeout_after) ;

send Msg:CNP_refuse ;

perform_task

Actions:

Interface:

call CNP_perform_task (contract) ;

CNP_perform_task (contract)

CNP_task_complete (result)

CNP_task_fail

send Msg:CNP_task_complete (result, participant) ;

send Msg:CNP_task_fail (participant) ;

terminated

[Msg:CNP__Alarm]

[Msg:CNP_accept (contract)]

Fig. 3.6: DASH State Diagram of Role Participant of Contract Net Protocol Template

In the example there are three different states besides the initiation and the termination states.

The initiation state would transfer to the composing propose state in a new created thread on

receiving a message with the performative of CNP cfp and parameter of task. The interface

CNP compose propose would be invoked in the state composing propose to give the protocol

template users chance to decide wether propose or not using interface return CNP send propose

47

or CNP refuse. If user chooses to refuse, the message with performative of CNP refuse would

be sent and the thread turns into termination state. While the user chooses to propose, the

message with performative of CNP propose would be sent and an alarm would be set and the

thread turns into the state of waiting for accept. If the alarm goes time out without receiving

the accepted message, the thread goes to terminate. On receiving message with performative

of CNP accept, the thread transfers to the state of perform task to perform the contracted tasks

by invoking the interface of CNP perform task. Finally, after performing the tasks, the thread

turns into termination.

As the example we have been explained above, the developers could use the components

to construct any kind of DASH State Diagram to describe the state transitions of the roles

of the protocol templates. Once this step has been finished, the developer could implement

the designed transitions in the next step of Implementation which would be described in next

subsection.

Step 3, Implementation

In this step developers should convent the designed DASH State Diagram into DASH rule

set codes. To archive that goal, we would like to introduce a meta model of the DASH State

Diagram so that the implementation activity could be described by the mapping between models

and codes. The meta model of the DASH State Diagram has been shown in Figure 3.7.

According to the meta model, the StateDiagram class contains the State class and the Tran-

sition class as components. And the Transition class has State class type properties named

“source” and “target” which points to the source state and the target state of the transition. In-

terface class with InterfaceReturn class in it with a component could be contained by the State

class, which could also contain Action class as components.

Using the proposed meta model, the DASH State Diagram could be modeled and mapping to

the DASH rule set codes. The mapping keeps one Transition object to one rule which has the

48

Fig. 3.7: Meta Model of the DASH State Diagram

conditions from the message property of the Transition object and the name of State object of

source property. The actions of the rule are constructed by the Action properties of the target

State object of the Transition object. And example of the State Diagram-model-code mapping

has been shown in Figure 3.8 and Figure 3.9.

The diagram-model mapping has been shown in Figure 3.8 with the example of the part of

Contract Net Protocol template. The transition from initiation to the composing propose state

has been mapped to the transition object with the source property which pointed to the state

object with the name property of “init” and the target property which pointed to the state object

with the name property of “composing propose”.

49

[Msg:CNP_cfp (task)]

+ composing_propose

Actions:

Interface:

call CNP_compose_propose (task) ;

CNP_compose_propose (task)

CNP_send_propose (propose, timeout_after)

CNP_refuse

send Msg:CNP_propose (propose) ;

Alarm (timeout_after) ;

send Msg:CNP_refuse ;

message = (Msg :performative CNP_cfp :content ?task)
source
target

Transition

init

name = init
State

name = +composing_propose
action = (make (CNP_compose_propose :task ?task))

State

Fig. 3.8: DASH State Diagram to Model Mapping

message = (Msg :performative CNP_cfp :content ?task)
source
target

Transition

name = init
State

name = +composing_propose
action = (make (CNP_compose_propose :task ?task))

State

 (rule Contract_Net_Protocol_Participant_receive_CNP_cfp_on_Init_to_Composing_Propose

 (Msg :performative CNP_cfp :content ?task) = ?msg

 (Contract_Net_Protocol_Participant :state init :max_thread ?max_thread) = ?init

 -->

 (bind ?new_thread (+ ?max_thread 1))

 (modify ?init:max_thread ?new_thread)

 (bind ?new_state ?init)

 (Modify ?new_state:thread ?new_thread)

 (bind ?state ?new_state)

 (Modify ?state:state ComposingProposal)

 (Modify ?state:partner ?msg:from)

 (Modify ?state:partner_thread ?pfrom)

 (make (CNP_compose_proposal :task ?task :state ?state))

 (remove ?msg)

)

Fig. 3.9: DASH State Diagram Model to DASH Rule Set Code Mapping

The model-code mapping has been shown in Figure 3.9 with the same example. The condi-

tions of the rule would be constructed by the transition object and the source state of it. And

the action part of the rule would be constructed by the action properties of the target state of

the transition. The “+” notation in front of the name of the state would construct the codes of

50

creating new thread.

With the proposed diagram-model-code mapping in this step, the developers could easily

implement the designed DASH State Diagram into reusable DASH rule set codes. Further

more, we also provide the graphical design tool for the diagram design with the function of

code generation to support the development of protocol templates which would be introduced

in the next chapter.

3.4 Experiment and Evaluation

3.4.1 Experiment Overview

To validate the functionality and feasibility of our proposal, we developed a multi-agent ap-

plications. The agent communication protocols of the applications are designed and generated

by the proposed protocol design method and tools.

A microgrid system is a private small-scale power grid, which is typically composed of dis-

tributed generation system (DGs), distributed storage devices (DSs), and loads. Usually a hu-

man operator is required for efficient and economical microgrid operation. This system aims

a multi-agent system for autonomous microgrid operation by appending intelligent software

agents to the components of a microgrid. Instead of a human operator, Microgrid Operation

Control Center (MGOCC) agent collects information such as power supply and demand from

the other power unit agents in the system and makes plans for operation. In this research, we

focus on the protocol design aspect.

The CNP Template is used in the system for information exchange and coordination. The

MGOCC agent plays role Initiator and the other power unit agents play role Participant of

the CNP Template. The MGOCC agent broadcasts the CNP cfp message to collect the power

information such as power demand of a load. Then an operation plan is created according to

the power information collected. The plan is assigned to the power unit agents as CNP task

51

contracts through CNP accept proposal messages. Participant agents perform the tasks and

report the results to the MGOCC agent. In this way, the system performs appropriate operation

autonomously.

3.4.2 Experiment Results

The snap shot of the running graphical design tool has been shown in Figure 3.10 with the

DASH State Diagram of Role Participant of the Contract Net Protocol template as an example.

Canvas

Properties Editor

Tool
Palette

Outline
Viewer

Fig. 3.10: User interface of the graphical design tool for the DASH State Diagram design

The tabbed Canvas has been placed in the main place of the tool in which user could design

52

the diagram by choose different component from the Tool Palette besides the canvas. At the

bottom of the tool the Properties Editor could be used to easily edit the properties of the

components. Finally, the right side Outline Viewer could give the developer a full perspective

of the whole diagram. The detailed images of Tool Palette and Properties Editor could be seen

in Figure 3.11.

Fig. 3.11: Detailed images of Tool Palette and Properties Editor

53

Once the design of the DASH State Diagram has been finished, the developers could use the

“Generate Dash Rule Set” menu from the popup menu of the init component of the diagram to

generate the DASH rule set codes. The menu has been shown in Figure 3.12

Fig. 3.12: “Generate Dash Rule Set” menu

The example of output DASH rule set code file could be seen in Figure 3.13. And the whole

content of the file could be found in Appendix B.

Contract Net Protocol (CNP) is a well known task sharing protocol that is used for task

allocation in multi-agent systems and consists of a collection of nodes or software agents that

form the contract net. Each node on the network can, at different times or for different tasks be

54

Fig. 3.13: DASH rule set code file

a manager or a contractor.Figure 3.14 gives a abstract of the Contract Net Protocol.

The DASH State Diagrams which has been designed using the proposed design method and

DASH Rule Set files which has been generated by the supporting tool has shown in Figure 3.15.

The new implemented MicroGrid Control System using the generated protocol templates has

been running well as designed, which verified the validity of the generated codes. The snap of

running system has been shown in Figure 3.16.

Comparing to the old implementation which were all written by developers, the experiment

55

Initiator

Participant

Organization

1. Task announcement

2. Bid

3. Award

4. Task result

Fig. 3.14: Contract Net Protocol

implementation using the proposed design method and supporting tool which had only small

parts need to be written by developers. The example of code comparisons has been shown in

Figure 3.17.

3.4.3 Evaluation

To evaluate the coding work reducing effect of the proposed design method, the compari-

son of lines of code between the old implementation and proposed design method has been

performed. The result of the comparison could be seen in Table 3.2.

According to the result table, about half coding work has been reduced using the proposed

design method comparing to the old implementation. The problem of heavy coding work had

been solved by the proposed design method.

56

Fig. 3.15: DASH State Diagrams and DASH Rule Set files

MGOCC Agent LOAD Agent DG Agent

Lines of codes of old implementation 298 lines 114 lines 136 lines

Lines of codes of proposed method 129 lines 58 lines 62 lines

Coding work reduction 56.7% 49.1% 54.4%

Table 3.2: The result of the comparison of lines of code between the old implementation and

proposed design method

3.5 Summary

Research Purpose

This research has been done to support the multi-agent system development in DASH.

57

Fig. 3.16: MicroGrid Control System using the generated protocol templates

Old implementation

All written by user

Proposed method

Only small part written by user

76 lines

11 lines

Fig. 3.17: Code comparisons between old implementations and proposed method

58

Problem

The problem of DASH is the lack of easy-to-use, effective development methodology.

1. Difficult for non-expert developers

2. Heavy coding work due to the low level reusability.

Proposal

To solve that problem of DASH, the proposal of cooperation protocol design method for

repository-based agent framework has been proposed.

Result

1. The supporting functions and the proposed design method successfully reduced the dif-

ficulty of design and implementation of protocol templates for repository-based multi-

agent framework.

2. The proposed design method effectively reduced coding work by practical using design

level software reuse.

59

Chapter 4 Autonomous Knowledge

Construction Method for

Evolutional Control

4.1 Overview

Toward the effective realisation of Evolutional System with deterioration resistant property,

this chapter describes the issues about extracting and construction of control knowledge for

agent organization controlling in EAS. The challenge appears as that how to deciding the ap-

propriate timing of performing Evolutional Control before actual undesired changes arise with-

out extra design burden. Here, we proposes autonomous knowledge construction method for

Evolutional Control.

In the other words, by utilising machine learning technique to the monitoring results of system

activity property, the collection and management of control knowledge, which are performed

manually in present, are able to be finished automatically. And simulation experiment proves

the feasibility of our proposal. This is a significant result toward to the design and development

of EAS for practice usages.

The remains of this chapter is as the follows. Section 2 discusses the related works of this

chapter. Section 3 describes the proposal in details. Following section 4 describes and analysis

the simulation experiment and results. Finally section 5 gives a summary to the chapter.

60

4.2 Related Works and Problems

In this section, the related works are reviewed carefully. Also, the problems of adopting

existing approaches are discussed after that.

4.2.1 Related Works

The related works can be categorized into two disparate mainstreams. One of them is to di-

rectly monitor and perceiving the system characters at system global level and to react against

to the monitoring result. Naturally, this kind of approach is widely used by self-adaptive sys-

tems. For an instance, an extension[15] to UML Use Case[9][1] is introduced for modeling

the situation described above. In this approach, some predefined conditions are stored in the

system while designing. The whole system is continuously monitored in the aspects of those

predefined conditions while running. Right after any of the conditions are met, according pre-

defined actions are performed to try to recover the system from failure. This is a quite straight

forward approach which usually is able to achieve the original goal of the system. That is also

the reason of wide adaption of this approach in the self-adaptive community. However, obvi-

ously this approach lacks the ability to prevent any effect of undesired situations of the system

before those situations actually happen.

On the other hand, some of our previous research show unique direction of solutions to the

problems. We turn our focus from the global measurement of the system to the relationship

between the behavior of the system and it. This approach is described with according example

application[25]. In the previous research, a multimedia communication system is used as the

example application. The QoS of the multimedia communication service is the global measure-

ment of the experimental system. Unlike the conventional method that monitors the QoS and

acts after the QoS falls, our approach focuses on the system behaviors and parameters those

effect QoS possibly. Those behaviors and parameters show the potential ability of maintain cur-

rent QoS. By figuring out the relationship between the QoS(i.e. system global measurement)

61

and the related system behaviors and parameters(i.e. system potential measurement), it is able

to foreseen the QoS failure of the system through perceiving those behaviors and parameters

before QoS failure actually happens. Therefore it is able to be prevented by performing recov-

ering action(e.g. tuning the system and/or re-organizing) before QoS fails. The possibility of

applying this approach is proved by our previous experiment. Nevertheless, to understand the

relationship between system global measurement and potential measurement relies on the ap-

plication domain knowledge and is extremely difficult even for the application domain experts.

4.2.2 Problems of Adopting Existing Method

Towards the effective realization of the Evolutional System with the deterioration resistance

property, the adoption of existing methods is discussed. However, we notice certain problems

for the existing method mentioned in last section. For the approach of direct perceiving and

reacting, the lack of the ability to avoid deterioration of systems is unacceptable. Because

of that the global measurement of systems usually appears random, it is hard to predict for

avoiding system deterioration. This is also the main reason of the absent of the ability for

avoiding system failure of self-adaptive systems. Even it is possible to recover the system itself

after certain system failure, this approach is not suitable for the systems those cannot afford

any kind of system failure(mission critical systems, e.g. financial systems and medicine related

systems). For the other approach which is presented in our previous research, it is possible to

prevent certain system failure before the effect appears. However the difficulty of explaining

the relationship between the system measurement and system behavior parameters restricts the

applying of this approach. Those kind of hidden relationship in a complex system such as

multi-agent systems is extremely hard to be discovered manually. The developers are forced to

construct those kind of knowledge manually with the extra burden and difficulty.

To improve this situation, we propose the autonomous knowledge construction method for

evolutional control. The details of the proposal are described in the following section.

62

4.3 Proposal

4.3.1 Proposal Overview

The proposal of autonomous knowledge construction method for evolutional control can be

divided into two solutions. The first one is indirect estimation of system global measurement.

Instead of monitoring system global measurement directly, this solution uses the system local

behavior parameters to estimate the system global measurement.

The second one is knowledge construction utilizing machine learning. Instead of manually

discovering the relationship between system global measurement and local parameters, this

solution utilizes machine learning technology to discover the hidden knowledge automatically.

4.3.2 Indirect Estimation of System Global Measurement

The details of the indirect estimation of system global measurement is described in this sec-

tion. The main idea of this solution is shown in Figure 4.1.

Fig. 4.1: Indirect estimation of system global measurement

63

To explain this solution, there are two very important facts about multi-agent system must be

cleared. The first one is that although the most of multi-agent systems are barely complicated

system, the single agent in the system remains relative simple. This also is one of the motiva-

tions of the multi-agent systems. For engineering large scaled complex systems, using top-down

approach to break the whole system down to simple software agents makes it becomes relative

easier to develop and to maintain. For that reason, usually single agents in multi-agent systems

behaves following simple rules to achieve their goals. Those rules are written by human beings

and are of course readable to human beings. It becomes possible to predict the behavior of a

single agent of the whole system once knowing the rules it following and the situation it facing.

Nevertheless, even with the well regulated single agent behavior, the global measurement

of the system still appears random. This is because of the second fact about the multi-agent

systems, which is that the whole system level behavior of multi-agent systems is decided by

complicated interactions among member agents. In other words, the system level performance

and behavior of multi-agent system is decided dynamically by the unpredictable interactions

of member agents autonomously. That means, there is nearly no way to predict or foresee the

global measurement of the multi-agent systems by profiling itself.

In the EAS model described in the last chapter, the function for calculating activity proper-

ties of EAS is introduced. The function using requirement R, Environment E, and Organization

Structure S as parameters to calculate Activity Property Prop. The reason is the fact that activ-

ity properties of the EAS are usually affected by the requirement, environment, and the EAS

itself. Developers are only required to provide the implementation of the function to calcu-

late the activity properties and to choose one from them as the measurement of the Evolution

Control. Then the application system will be constructed as defined in the EAS model. The

function is manually constructed by developers using their knowledge and experiences about

the application domain. This brings noticeable burden to developers.

64

4.3.3 Knowledge Construction Utilizing Machine Learning

As discussed in last section, to extract the relationship knowledge between system global

measurement and local parameters is the critical point for Evolutional Systems. However, to

finish it manually is an extremely difficult job. Specifically, for the large scaled systems, the

amount of information of local parameter overwhelms the capacity of human can deal with

at the same time. Not mention to the confusing interactions among member agents. Even for

experienced experts fulfilled with domain related knowledge, the task appears ultimate difficult.

On the other hand, machine learning technology shows another possibility for solutions. It

is widely used for discovering hidden knowledge among a large amount of data. Therefor in

this research, we decide to utilize machine learning technology for extraction and construction

of control knowledge. The knowledge construction architecture utilizing machine learning is

shown in Figure 4.2.

65

Fig. 4.2: Knowledge construction architecture utilizing machine learning

In our previous research, the meta agent presents the Evolution Mechanism, which monitors

the agent organization and control the reorganization of it. After obtains member agent local

parameters during monitoring phase, there is a newly appended learning phase follows. In the

learning phase, all the data about local parameter and global measurement are used by ma-

chine learning engine to update and maintain the Evolutional Control Knowledge. Regression

analysis is used for finding the relationship between activity properties and requirement, envi-

ronment, and structure of EAS. The incremental machine learning cycle is utilized to construct

the knowledge of implementation of the function of calculating activity properties. After the

learning phase, in the decision making phase, the updated Evolutional Control Knowledge is

used to decide whether to reorganize. The flow chart of decision making phase is shown in

Figure 4.3.

66

Start

Collect local

parameters

monitored

Estimate macro

measurement

Acceptable?

Stop

Keep current

organization

Require

alternative agent

to cover

Arise Alert

Yes No

Available?
Yes

Re-organize

No

Fig. 4.3: Flow chart of decision making process of Meta-Agent

67

Right after the process starts, the data of local parameters is collected for the estimation

of global measurement using the same machine learning engine. If the result of estimation

is acceptable, then keep the current organization and terminate the process. If the result is

not acceptable, then alternative agent is required to cover this deterioration. The meta agent

reorganize the organization in the case of that alternative agent is found. If these is no available

alternative agent, the meta agent arises an alter for human administrator and keeps the current

organization and terminate the process.

4.4 Experiment and Evaluation

4.4.1 Experiment Overview

To verify our proposal, an experiment is performed. The overview of the experiment is shown

as the follows.

Experiment objectives

To verify if proposed knowledge construction method is able to autonomously accumulate

control knowledge to avoid system failure.

Experiment scenarios

Experiment method

In this experiment, an implementation of a agent-based MicroGrid control simulator us-

ing proposed autonomous knowledge construction method is performed at first. In the

experiment system, power generators are controlled by agent to balance power supply

and power demand in the grid and to prevent power overload failure. Experiment sys-

68

tem is supposed to autonomously increase power supply before possible power overload

failure to avoid it.

Object of comparison

Conventional system which simply increase power supply all the time.

Parameter of comparison

Times of power overload failure and amount of wasted power.

4.4.2 Experiment System Design

In general, a MicroGrid operates as the figure following.

Fig. 4.4: General MicroGrid operation

The system has a control center called MGOCC (MicroGrid Operation and Control Center),

which collects information from power loads and generators and makes plans to be executed

by the them. Power loads inform the MGOCC the power demand, while generators inform the

69

capacity of supply. Then the MGOCC makes plan according to the planning table to maintain

power balance in the grid by reducing power production in the case of low demand or increasing

power production in the case high demand. Once the plan is made, it is executed by the loads

and generators. All the processes are performed in cycle, which are repeated through microgrid

operation.

Another important character of MicroGrid is the procedure of operation as showing in this

figure.

Fig. 4.5: Procedure of MicroGrid operation

To make sure the control to the power units in the grid is constant, the planing and execution

are performed in parallel. This is realized by dividing the grid operation into several intervals

of time. The plan made in interval i is executed in interval i+1 as shown in the figure. So a

whole operation cycle is during 2 intervals. While the execution of current plan, the plan for

next interval is just being made.

In the ideal world, using the strategy described above, the grid is always able to keep the

power balance. That means the generators are controlled to produces just the right amount

of power which load consumes. However, in the real world it is not the case. To make the

simulation more real and practical, a price-based adjustment is made. All the generator has

certain cost for produce power. The information of the cost is also collected by the MGOCC to

70

decide the price of the power while selling it to loads. The power price is the average cost of

power generator produced.

The important point is, loads are able to decide their actual power consumption depending on

the power price and their budget. This actual consumption is not needed to be the same as the

scheduled consumption, which the load informed MGOCC. The budget of load is decided by

the power price in last interval. In other words, if power price become expensive, loads are free

to reduce purchasing. On the other hand, loads is possible to consumes more power than the

amount they informed MGOCC if the power price turns out cheap. In result, this price-based

adjustment introduces the danger of power grid overload failure into the simulation experiment.

In the case of power demand overload, the system is designed to increase power supply in

two ways. The design of the experiment system is shown in Figure 4.6.

MGOCC

agent

Demand Supply

Load

agent

Load

agent

Load

agent

Load

agent

Storage

agent

Generator

agent

Generator

agent

Storage

agent

Emergency generator

agent Emergency

generator

agent

Fig. 4.6: Design of experiment system

There are three types of agents in the system. The MGOCC agent is the controller of the grid

system. It collects information, calculates the power balance and make schedule for the other

units. The demand type of agents includes Load agent and Storage agent. The supply type of

agents includes Generator agent, Storage agent and Emergency generator agent. In the case of

power demand overload, the system reorganized in two ways as following:

71

1. Using storage agent as power supply.

2. Initiating emergency generator agent as power supply.

The learning process is shown in the next figure.

Fig. 4.7: Learning process

72

The activity property in this experiment is the actual power balance in the grid. The behavior

parameters are all the parameters of power units such as demand of power load, capacity and

cost of generator, and price of power. For an instance, at interval i-1, all the behavior param-

eters are collected by the meta agent from the member agents. Based on those information,

the MGOCC makes plan for the power units. At interval i, the plan is executed by the grid

and the actual power balance at that time is also monitored by meta agent as the activity prop-

erty. Then the behavior parameters and activity property are used for the regression analysis

to construct the implementation of the property calculation function. This learning process is

performed for every interval of the grid operation to accumulate the knowledge to construct

accurate implementation of the function. At the same time, the estimation process is performed

in parallel.

While in the estimation process, only BP-ag is used as input as shown in this figure.

For example, at interval i-1, power unit parameters are monitored by meta-agent as behavior

parameters as the same in the learning process. Once the behavior parameters are collected,

they are used as input parameters to the activity property calculation function, which is the

result of learning process. The function takes power unit parameters as input and calculates the

estimated power balance in the case of that the plan based on the current power unit parameters

is executed in the next interval. This estimated result is used as the measurement of the system

to evaluate the danger of power grid overload in the future. Therefor, if the measurement is

under zero, it means the meta agent is aware overload danger in next interval. As a result, the

meta agent reorganizes the power grid to increase the power production to prevent the possible

system failure.

73

Fig. 4.8: Estimation process

74

4.4.3 Experiment Results

The experiment results are discussed in this section.

The power balance serial of scheduling as required is shown in Figure 4.5. It is noticed

! "! #!! #"! $!! $"! %!! %"!
!#!!

!"!

!

"!

#!!

#"!

$!!

$"!

%!!

%"!

&!!

&"!

Intervals

P
o

w
e
r

B
a
la

n
c
e
 (

k
W

h
)

Scheduling as required

Fig. 4.9: Scheduling as required

that although the system reorganized power supply agent after overload failure to recover every

times, the grid still experienced many times of power demand overload failures. It will be

unacceptable for real world application that the power grid is unstable like this.

75

In practice, the generators are usually scheduled to produce more power than required to pre-

vent overload failure. For this simulation experiment, the generators are scheduled to produce

40% more power than the load required.

! "! #!! #"! $!! $"! %!! %"!
!#!!

!"!

!

"!

#!!

#"!

$!!

$"!

%!!

%"!

&!!

&"!

Intervals

P
o

w
e
r

B
a
la

n
c
e
 (

k
W

h
)

Scheduling 40% more than required (conventional mehtod)

Fig. 4.10: Scheduling more all the time

As a result of preparing more power than loads actually need, there is no overload failure

during the simulation. However, this method wastes a significant amount of energy which

becomes more and more valuable nowadays. Especially for the large scaled gird, the waste of

energy must not be ignored.

76

On the other hand, the following figure shows the power balance while the grid is scheduled

by the EAS.

! "! #!! #"! $!! $"! %!! %"!
!#!!

!"!

!

"!

#!!

#"!

$!!

$"!

%!!

%"!

&!!

&"!

Intervals

P
o

w
e
r

B
a
la

n
c
e
 (

k
W

h
)

Scheduling by EAS (proposed mehtod)

Fig. 4.11: Scheduling by EAS

It is obvious that on overload failures occurs thanks to the reorganizations performed while

meta agent predicts the possible overload failure before the failures actually arise.

77

In the aspect of wasted power, the comparison of the amount of wasted power between pro-

posed EAS based control and conventional manual control is shown in the following figure.

0 50 100 150 200 250 300 350
0

1

2

3

4

5

6

7

8
x 10

4 Comparision of wasted power

Intervals

W
a
s
te

d
 P

o
w

e
r

(k
W

h
)

Conventional Method

Proposed Method

Proposed method achieved 15%

reduction of wasted power

Fig. 4.12: Comparison of wasted power

As shown in the figure, proposed method is managed to reduce wasted power successfully by

15%.

78

4.4.4 Evaluation

To verify if proposed knowledge construction method is able to autonomously accumulate

control knowledge to avoid system failure, this experiment is performed. The results of the

experiment shows the experiment system using proposed method is able to re-organise before

overload actually happens to prevent failure. What is important is that through the experiment

there is no need to manually input knowledge about Evolutional Control explicitly. That means

proposed knowledge construction method is possible to extract knowledge autonomously from

the running system. Furthermore, the knowledge proposed method discovered successfully

prevent system failures, which is the original goal of the proposal. Therefor the proposal is

totally feasible for Evolutional Systems.

4.5 Summary

In this chapter, toward the effective realisation of Evolutional System with deterioration resis-

tant property, the research on control knowledge construction is discussed. Challenges appears

as the problems of how to decide the appropriate timing of performing Evolutional Control

before actual undesired changes arise without extra design burden. The existing approach ei-

ther lacks the ability to avoid deterioration of systems or adds extra burden and difficulty of

manual knowledge construction. To improve that situation, we propose autonomous knowl-

edge construction method for Evolutional Control. The proposal features indirect estimation of

system global measurement and constructs control knowledge utilizing machine learning au-

tonomously. The experiment result shows that proposed autonomous knowledge construction

method is able to decide the appropriate timing of performing Evolutional Control without ex-

tra design burden to help the effective realisation of Evolutional System featuring deterioration

resistant property.

79

Chapter 5 Conclusion

5.1 Conclusions

As the background of this research, it becomes common that information processing systems

are distributed over vary network environment. For this kind of distributed systems, the activity

properties of them change irregularly depending on the changes or failures of system compo-

nents as also as the changes of network situations. The unstable changing of activity properties

is one of the main reasons, which are responsible for negatively effecting the quality of services.

In general, it is extremely difficult to consider all the possible changes the system will face to

in the design process. Presently, many research focusing on the judgment of abnormal situation

of systems and the recover solutions are under taken.

On the other hand, the research about cooperation distributed system call Evolutional System

is introduced. By constructing the system as multi-agent systems, Evolutional System approach

proposes the methodology that performs preventing processing in advance before the effects

of system changes arise by monitoring the activity properties of the system, which affect sys-

tem behaviours. An appropriate method for design and development of Evolutional System is

important. In this paper, we provides a design method based on multi-agent system, which is

described in 3 parts.

In chapter 2, we propose operation controlling architecture for agent-based Evolutional Sys-

tems. The operations and activities of Evolutional System are formalised and modelled in Evo-

lutional Agent System(EAS) model. Based on the EAS model, we develop the EAS architec-

ture. By the experiment of using energy consumption rate as measurement, the feasibility of

80

proposed model is proved. This is a brand new approach for organization design for Evolutional

Systems.

In chapter 3, we propose protocol design method for agent-based Evolutional Systems. In

details, we introduce protocol template mechanism, which enables the communication protocol

reuse among different applications. Furthermore, based on model-driven development princi-

ple, we propose a tool supported design work flow utilising newly proposed meta model of

protocol template for supporting the design and development of EAS. The comparison exper-

iment shows proposal reduces almost half development cost against to conventional method

using general purpose tools. This is useful for the effective design and development of EAS.

In chapter 4, we proposes autonomous knowledge construction method for Evolutional Con-

trol. In the other words, by utilising machine learning technique to the monitoring results of

system activity property, the collection and management of control knowledge, which are per-

formed manually in present, are able to be finished automatically. And simulation experiment

proves the feasibility of our proposal. This is a significant result toward to the design and

development of EAS for practice usages.

In summary, we proposes an original design method based on multi-agent system for Evo-

lutional Systems in this paper, which is a significant contribution to agent-oriented software

engineering and information sciences.

5.2 Contributions

The first contribution of this research is that a feasible agent-based design method for Evolu-

tional Systems is provided for reliable and effective realisation

As the second contribution, using the provided design method, effective ES realisation with

deterioration resistance provides solutions for the problem of preventing unpredictable system

failures, which distributed open system usually have.

This research also provides a possible solution for mission critical industry applications, such

81

as financial systems, autonomous network management system, etc.

Self-* Systems

Evolutional Systems

This research

Fig. 5.1: Contribution of this research

5.3 Future Works

The essence characters of autonomous knowledge construction are still unclear, more work

for discovering them through long time span experiment is needed.

The effective of autonomous knowledge construction method for Evolutional Control is still

possible to be improved by using disparate machine learning method(e.g. neural network deep

learning).

The work about the design and implementation of general supporting tools (e.g. common

framework, development environment, etc) are necessary and welcomed.

82

Publications

Journals

1. Wenpeng Wei, Hideyuki Takahashi, Takahiro Uchiya, Tetsuo Kinoshita, “Cooperation

Protocol Design Method for Repository-based Multi-agent Applications”, International

Journal of Software Science and Computational Intelligence, Vol.5, No.2, pp1-14, 2013.

2. Wenpeng Wei, Akiko Hatakashi, Tetsuo Kinoshita, “Design and Evaluation of Energy-

consumption-aware Evolutional Agent System for Portable Devices”, Journal of Infor-

mation Processing. (Conditional Accepted)

3. Wenpeng Wei, Tetsuo Kinoshita,“Autonomous Control Knowledge Construction Using

Machine Learning for Evolutional Agent System”(In Preparation)

4. Hak-Man Kim, Wenpeng Wei, Tetsuo Kinoshita, ”A New Modified CNP for Au-

tonomous Microgrid Operation based on Multiagent System,”Journal of Electrical En-

gineering & Technology, Vol.6, No.1, pp139-146, 2011.1.

Proceedings

1. Shota Kotato, Hideyuki Takahashi, Wei Wenpeng, Kazuto Sasai, Gen Kitagata, Tetsuo

Kinoshita, ”User-Oriented Information Delivery System based on Autonomous Cooper-

ation of Heterogeneous Contents,” Proc. of the 2nd International Workshop on Smart

Technologies for Energy, Information and Communication (STEIC2013), pp.105-112,

2013. 8.

83

2. Wenpeng Wei, Akiko Takahashi, Tetsuo Kinoshita, ”Design of Energy-consumption-

aware Evolutional Agent System for Portable Devices,” Proc. of the 12th IEEE Interna-

tional Conference on Cognitive Informatics and Cognitive Computing (ICCI*CC2013),

pp.254-259, 2013. 7.

3. Shota Kotato, Aki Asanuma, Wenpeng Wei, Hideyuki Takahashi, Tetsuo Kinoshita, ”In-

teractive Information Delivery System based on Active Information Resources,” Proc.

of the 12th IEEE/ACIS International Conference on Computer and Information Science

(ICIS 2013), pp.247-250, 2013. 6.

4. Wenpeng Wei, Aki Asanuma, Shota Kotato, Hideyuki Takahashi, Kazuto Sasai, Gen

Kitagata, Tetsuo Kinoshita, ”User-oriented Autonomous Contents Delivery System based

on Active Information Resources,” MoMuC2012-57,AN2012-59,USN2012-68(2013-1),

pp.85-86, 2013. 1.

5. Akiko Takahashi, Mitsuru Abe, Wenpeng Wei, Tetsuo Kinoshita, ”Proactive Control

Method based on System Margin in Evolutional Agent System,” Proc. of the 2012

IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent

Technology, pp.64-68, 2012.12.

6. Wenpeng Wei, Aki Asanuma, Taishi Ito, Hideyuki Takahashi, Kazuto Sasai, Gen Kita-

gata, Tetsuo Kinoshita, ”Design of Cooperation Scheme of Active Information Resource

for Heterogeneous Contents,” Proc. of the 1st International Workshop on Smart Technolo-

gies for Energy, Information and Communication (IW-STEIC2012), pp.81-87, 2012.10.

7. Akiko Takahashi, Mitsuru Abe, Noriyuki Horikawa, Wenpeng Wei, Tetsuo Kinoshita,

”Design and Evaluation of System Margin in Evolutional Multiagent System,” Proc. of

the 1st International Workshop on Smart Technologies for Energy, Information and Com-

munication (IW-STEIC2012), pp.69-79, 2012.10.

84

8. Wenpeng Wei, Hideyuki Takahashi, Takahiro Uchiya, Tetsuo Kinoshita, ”Repository-

based Methodology of Cooperation Protocol Design for Multi-agent System,” Proc. of

The 11th International Conference on Cognitive Informatics and Cognitive Computing

(ICCI*CC2012), pp.283-288, 2012.8.

9. Wenpeng Wei, Hideyuki Takahashi, Takahiro Uchiya, Tetsuo Kinoshita, ”Cooperation

Protocol Design Method based on Repository Mechanism for Multiagent System,” Proc.

of the Joint Agent Workshop & Symposium 2011 (JAWS2011), pp.1-6, 2011.10.

85

Bibliography

[1] Unified Modeling Language (UML). http://www.uml.org/.

[2] Ebrahim Al-Hashel, BalaM. Balachandran, and Dharmendra Sharma. A Comparison of

Three Agent-Oriented Software Development Methodologies: ROADMAP, Prometheus,

and MaSE. In Bruno Apolloni, RobertJ. Howlett, and Lakhmi Jain, editors, Knowledge-

Based Intelligent Information and Engineering Systems SE - 111, volume 4694 of Lecture

Notes in Computer Science, pages 909–916. Springer Berlin Heidelberg, 2007.

[3] Carole Bernon, Marie-Pierre Gleizes, Sylvain Peyruqueou, and Gauthier Picard.

ADELFE: A Methodology for Adaptive Multi-agent Systems Engineering. In Paolo Petta,

Robert Tolksdorf, and Franco Zambonelli, editors, Engineering Societies in the Agents

World III SE - 12, volume 2577 of Lecture Notes in Computer Science, pages 156–169.

Springer Berlin Heidelberg, 2003.

[4] Lawrence S. Brakmo, Deborah A. Wallach, and Marc A. Viredaz. µSleep: a technique for

reducing energy consumption in handheld devices. In Proceedings of the 2nd international

conference on Mobile systems, applications, and services - MobiSYS ’04, page 12, New

York, New York, USA, June 2004. ACM Press.

[5] Paolo Bresciani, Anna Perini, Paolo Giorgini, Fausto Giunchiglia, and John Mylopoulos.

Tropos: An Agent-Oriented Software Development Methodology. Autonomous Agents

and Multi-Agent Systems, 8(3):203–236, May 2004.

[6] Giovanni Caire, Wim Coulier, Francisco Garijo, Jorge Gómez-Sanz, Juan Pavón, Paul

Kearney, and Philippe Massonet. The MESSAGE methodology. Methodologies and Soft-

86

ware Engineering for Agent Systems The Agent-Oriented Software Engineering Hand-

book, 11:177–194, 2004.

[7] KhanhHoa Dam and Michael Winikoff. Comparing Agent-Oriented Methodologies. In

Paolo Giorgini, Brian Henderson-Sellers, and Michael Winikoff, editors, Agent-Oriented

Information Systems SE - 6, volume 3030 of Lecture Notes in Computer Science, pages

78–93. Springer Berlin Heidelberg, 2004.

[8] Scott A DeLoach. The mase methodology. In Methodologies and software engineering

for agent systems, pages 107–125. Springer, 2004.

[9] D.G. Firesmith. Use case modeling guidelines. Proceedings of Technology of Object-

Oriented Languages and Systems - TOOLS 30 (Cat. No.PR00278), 1999.

[10] Nicholas R. Jennings. On agent-based software engineering. Artificial Intelligence,

117(2):277–296, March 2000.

[11] Thomas Juan, Adrian Pearce, and Leon Sterling. ROADMAP: extending the gaia method-

ology for complex open systems. In Proceedings of the first international joint conference

on Autonomous agents and multiagent systems part 1, pages 3 – 10, New York, New York,

USA, July 2002. ACM Press.

[12] Thomas Juan and Leon Sterling. A meta-model for intelligent adaptive multi-agent sys-

tems in open environments. In Proceedings of the second international joint conference

on Autonomous agents and multiagent systems - AAMAS ’03, AAMAS ’03, page 1024,

New York, New York, USA, 2003. ACM Press.

[13] Tetsuo Kinoshita and Kenji Sugawara. ADIPS Framework for Flexible Distributed Sys-

tems. In Toru Ishida, editor, Multiagent Platforms, chapter Chapter 2, pages 18–32.

Springer Berlin / Heidelberg, Berlin, Heidelberg, 1999.

87

[14] Graham Low, Ghassan Beydoun, Brian Henderson-Sellers, and Cesar Gonzalez-Perez.

Towards Method Engineering for Multi-Agent Systems: A Validation of a Generic MAS

Metamodel. In Aditya Ghose, Guido Governatori, and Ramakoti Sadananda, editors,

Agent Computing and Multi-Agent Systems SE - 22, volume 5044 of Lecture Notes in

Computer Science, pages 255–267. Springer Berlin Heidelberg, 2009.

[15] Markus Luckey, Benjamin Nagel, Christian Gerth, and Gregor Engels. Adapt Cases: Ex-

tending Use Cases for Adaptive Systems. In Proceeding of the 6th international sym-

posium on Software engineering for adaptive and self-managing systems - SEAMS ’11,

page 30, New York, New York, USA, May 2011. ACM Press.

[16] Walamitien H. Oyenan and Scott A. DeLoach. Design and Evaluation of a Multiagent

Autonomic Information System. In 2007 IEEE/WIC/ACM International Conference on

Intelligent Agent Technology (IAT’07), pages 182–188. IEEE, November 2007.

[17] Meikang Qiu, Zhi Chen, Laurence T. Yang, Xiao Qin, and Bin Wang. Towards Power-

Efficient Smartphones by Energy-Aware Dynamic Task Scheduling. In 2012 IEEE 14th

International Conference on High Performance Computing and Communication & 2012

IEEE 9th International Conference on Embedded Software and Systems, pages 1466–

1472. IEEE, June 2012.

[18] Mazeiar Salehie and Ladan Tahvildari. Self-adaptive software: Landscape and research

challenges. ACM Transactions on Autonomous and Adaptive Systems, 4(2):1–42, May

2009.

[19] Candelaria Sansores and Juan Pavón. An adaptive agent model for self-organizing MAS.

In Proceedings of the 7th international joint conference on Autonomous agents and mul-

tiagent systems - Volume 3, pages 1639–1642. International Foundation for Autonomous

Agents and Multiagent Systems, May 2008.

88

[20] Munindar P Singh. Agent-based abstractions for software development. Methodologies

and Software Engineering for Agent Systems, pages 5–18, 2004.

[21] A. Takahashi, T. Suganuma, T. Abe, Y. Iwaya, and T. Kinoshita. A behavioral characteris-

tics model for flexible distributed system. In 20th International Conference on Advanced

Information Networking and Applications - Volume 1 (AINA’06), volume 1, pages 6 pp.–

280. IEEE, 2006.

[22] Akiko Takahashi, Mitsuru Abe, Noriyuki Horikawa, Wenpeng Wei, and Tetsuo Kinoshita.

Design and Evaluation of System Margin in Evolutional Multiagent System. In The 1st

International Workshop on Smart Technologies for Energy, Information and Communica-

tion, pages 69–79, 2012.

[23] Akiko Takahashi, Mitsuru Abe, Wenpeng Wei, and Tetsuo Kinoshita. Proactive Control

Method Based on System Margin in Evolutional Agent System. In 2012 IEEE/WIC/ACM

International Conferences on Web Intelligence and Intelligent Agent Technology, pages

64–68. IEEE, December 2012.

[24] Akiko Takahashi and Tetsuo Kinoshita. Configuration and control design model for an

agent based Flexible Distributed System. Web Intelligence and Agent Systems, 9(2):161–

178, January 2011.

[25] Akiko Takahashi and Tetsuo Kinoshita. Dynamic Control and Construction Method for

Multiagent Systems Based on an Evolutional Agent System. International Journal of

Energy, Information and Communications, 4(2):1–20, 2013.

[26] Akiko Takahashi, Takuo Suganuma, and Tetsuo Kinoshita. Dynamic Construction Scheme

of Multimedia Processing Components Based on Multiagent Framework. IPSJ Journal,

45(2):366–376, February 2004.

89

[27] Gerald Tesauro, David M. Chess, William E. Walsh, Rajarshi Das, Alla Segal, Ian Whal-

ley, Jeffrey O. Kephart, and Steve R. White. A Multi-Agent Systems Approach to Au-

tonomic Computing. In International Conference on Autonomous Agents and Multiagent

Systems, pages 464–471. IEEE Computer Society, July 2004.

[28] Michael Wooldridge, NicholasR. Jennings, and David Kinny. The Gaia Methodology

for Agent-Oriented Analysis and Design. Autonomous Agents and Multi-Agent Systems,

3(3):285–312, 2000.

90

Appendix A

Multi-Agent System Methodologies Comparison Result Tables

Phases ROADMAP MaSE Prometheus

System specification Detailed Medium Detailed

Analysis Detailed Detailed Detailed

Architectural design Abstract, high-level Detailed Detailed

Detailed design Not exists

(Architecture)

Not exists

(Architecture)

Detailed (BDI

agents)

Fig. A.1: Illustrates the scale of the details within each development phase[2]

Concept ROADMAP MaSE Prometheus

Autonomy Medium Medium High

Mental

attitudes

Uses knowledge

schema.

Agents do not have

to be intelligent

Agents are intelligent

agents. BDI agents.

Fig. A.2: Presents the measure of agent concept that each methodology support[2]

91

Criteria ROADMAP MaSE Prometheus

Clear notation Strongly agree Strongly agree Strongly agree

Ease of learning Strongly agree Strongly agree Agree

Ease of use Agree Strongly agree Agree

Adaptability Strongly agree Strongly agree Agree

Traceability Strongly agree Agree Strongly agree

Fig. A.3: Shows the scale of the modeling criteria within each methodology[2]

Property ROADMAP MaSE Prometheus

Openness High Low Medium

Environment High Medium Medium

Abstraction High High High

Traceability High High High

Modelling Medium High High

Complexity Low Low Medium

Ease of use Easy, requires some Easy Complicated,

Limitations Lack of richer notations Lack of Highly

Language Low Medium High

Reusability High Medium Medium

Fig. A.4: Compares the properties of the methodologies[2]

92

Phases ROADMAP MaSE Prometheus

System

Specification

 Stakeholders

Scenarios diagram

Analysis Environment,

Knowledge,

Goal, Role,

Revised role model,

Social model

 Use cases,

Goal hierarchy,

Sequence,

Concurrent task

diagram

Goal overview,

Role, Data coupling

diagrams

Architectural

Design

Agent l, Service,

Acquaintance model

Agent classes,

Conversations

Agent acquaintance,

System Overview

Agent Descriptors

Protocols

Detailed

Design

 Agent’s internal

architectures,

Deployment

diagram

Process , Agent

Overview Diagrams,

and Capacity,

Capability overview,

Event, Data, and Plan

Fig. A.5: Illustrates the available activities in each development phase[2]

Methodology Application

ROADMAP Coarse-grained computational, complex, open systems

MaSE Heterogeneous multi agent systems

Prometheus Intelligent (BDI) agents’ systems

Fig. A.6: Illustrates the type of the system domain that each methodology is suitable for[2]

Methodology Development Tool

ROADMAP REBEL is a tool for building Goal Models and Role Models during the

analysis stage.

MaSE AgentTool, able to do printing, verification on developing system, and

generating a skeleton code in java.

Prometheus Prometheus Design Tool (PDT), which is able to do cross checking, saving

diagrams as pictures, JDE (JACK Development Environment) generates

JACK code.

Fig. A.7: Summarizes the toolkits that are available for each methodology[2]

93

Fig. A.8: Comparison of Concept[14]

94

MaSE Prometheus Tropos

Concepts & Properties

Autonomy H/M/DK H/NA/H H/M/M

Mental attitudes L/M/H H/M/H H

Proactive H/M/H H/M/DK H

Reactive M H/M/DK H/L/DK

Concurrency H/M/H M/L/DK H/M/H

Teamwork H/M/H N/L/NA H/H/M

Protocols H M/H/M NA/M/M

Situated M/L/H H H

Clear concepts SA/A/A A/A/DA SA/A/N

Concepts A/N/SA N SDA/N/DA

overloaded

Agent-oriented SA/A/A SA SA/A/SA

Fig. A.9: Comparing a methodology’s properties, attributes, process and pragmatics. Notation:

L for Low, M for medium, H for High, DK for Don ’t Know, SDA for Strongly Disagree, DA

for Disagree, NA for Not Applicable, N for Neutral, A for Agree, SA for Strongly Agree, for

no response. The first two entries in each column are the developers of the methodology, the

third is the student. A single entry in the column indicates that all three answers agreed.[7]

95

MaSE Prometheus Tropos

Concepts & Properties

Modelling & Notation

Static+Dynamic SA/A/A SA/A/A N/A/A

Syntax defined A/A/SA SA/A/A SA/N/A

Semantics A/SA/SA A SA/A/A

defined

Clear notation A SA/A/A SA/A/N

Easy to use SA/A/A A/N/A SA/A/N

Easy to learn N/N/A SA/NA/SA SA/N/A

Different views N/N/A A/A/SA SA/A/N

Language adequate & expressive SA/N/N A SA/A/N

Traceability A/SA/SA A A/N/A

Consistency SA/A/SA SA/A/A /A/DA

check

Refinement SA/A/A SA SA/A/DA

Modularity SA/A/A SA/SA/A SA/A/N

Reuse N/SA/A N/A/N /A/DA

Hierarchical modelling N/A/A SA/A/A SA/A/DA

Process

Requirements SPEH SPEH SPE

Architectural SPEH SPEH SPE

design

Detailed design SPEH SPEH SPE

Implementation SEH/SPE/S SPEH/S/n SE/SPE/SPEH

Testing & Debugging SPE/n/n SPEH/S/n n

Deployment SE/SPE/SPEH n n

Maintenance n/SPE/n n n

Pragmatics

Quality N/DA/A A/N/N DA/A/

Cost estimation /DA/SA DA/DA/N DA/N/

Management /DA/SA SDA/N/ SA/A/

decision

apps 21+ 6-20 1-5

Real apps no no no

Used by yes yes yes/no/no

non-creators

Domain specific no no yes/no/no

Scalable /N/N N/A/N N/N/

Distributed /SA/SA SA/A/N N/A/

Fig. A.10: Comparing methodology’s properties, attributes, process and pragmatics. Notation:

L for Low, M for medium, H for High, DK for Don ’t Know, SDA for Strongly Disagree, DA

for Disagree, NA for Not Applicable, N for Neutral, A for Agree, SA for Strongly Agree, for no

response. S for Stage mentioned, P for Process given, E for Examples given, H for Heuristics

given, n for none. The first two entries in each column are the developers of the methodology,

the third is the student. A single entry in the column indicates that all three answers agreed.[7]
96

Appendix B

Example of Generated DASH Rule Set Code

Content of the generated file Contract Net Protocol Participant.rset:

(rule-set Contract_Net_Protocol_Participant

(property

)

(initial_facts

(Contract_Net_Protocol_Participant :thread 0 :state init :max_thread 0)

)

(rule Contract_Net_Protocol_Participant_receive_CNP_cfp_on_Init_to_ComposingProposal

(Msg :performative CNP_cfp :content ?task :protocol_from ?pfrom) = ?msg

(Contract_Net_Protocol_Participant :state init :max_thread ?max_thread) = ?init

-->

(bind ?new_thread (+ ?max_thread 1))

(modify ?init:max_thread ?new_thread)

(bind ?new_state ?init)

(Modify ?new_state:thread ?new_thread)

(bind ?state ?new_state)

(make ?state)

(Modify ?state:state ComposingProposal)

(Modify ?state:partner ?msg:from)

97

(Modify ?state:partner_thread ?pfrom)

(make (CNP_compose_proposal :task ?task :state ?state))

(remove ?msg)

)

(rule Contract_Net_Protocol_Participant_receive_CNP_cfp_on_Init_to_ComposingProposal_from_user

(Msg :performative CNP_cfp :content ?task) = ?msg

(Contract_Net_Protocol_Participant :state init :max_thread ?max_thread) = ?init

-->

(bind ?new_thread (+ ?max_thread 1))

(modify ?init:max_thread ?new_thread)

(bind ?new_state ?init)

(Modify ?new_state:thread ?new_thread)

(bind ?state ?new_state)

(make ?state)

(Modify ?state:state ComposingProposal)

(Modify ?state:partner ?msg:from)

(make (CNP_compose_proposal :task ?task :state ?state))

(remove ?msg)

)

(rule Contract_Net_Protocol_Participant_receive_CNP_send_proposal_to_WaitingForAccept

(CNP_send_proposal :proposal ?proposal :timeout_after ?timeout_after :return_to ?interface) = ?command

(bind ?rs ?interface:state)

(Contract_Net_Protocol_Participant :state == ?rs:state :thread == ?rs:thread) = ?state

-->

(send :performative CNP_proposal :content ?proposal :to ?state:partner :protocol_to ?state:partner_thread

:protocol_from (Contract_Net_Protocol_Participant :thread ?state:thread))

(Modify ?state:state WaitingForAccept)

(alarm :after ?timeout_after :content (Contract_Net_Protocol_Participant :state WaitingForAccept

:thread ?state:thread))

98

(remove ?command)

)

(rule Contract_Net_Protocol_Participant_receive_CNP_refuse_to_Terminate

(CNP_refuse :return_to ?interface) = ?command

(bind ?rs ?interface:state)

(Contract_Net_Protocol_Participant :state == ?rs:state :thread == ?rs:thread) = ?state

-->

(Modify ?state:state Terminate)

(remove ?command)

)

(rule Contract_Net_Protocol_Participant_receive___Alarm_on_WaitingForAccept_to_Terminate

(Msg :performative __Alarm :content (Contract_Net_Protocol_Participant :thread ?athread

:state WaitingForAccept)) = ?msg

(Contract_Net_Protocol_Participant :state WaitingForAccept :thread == ?athread) = ?state

-->

(Modify ?state:state Terminate)

(remove ?msg)

)

(rule Contract_Net_Protocol_Participant_receive_CNP_accept_on_WaitingForAccept_to_PerforimgTask

(Msg :performative CNP_accept :content ?task :protocol_to (Contract_Net_Protocol_Participant

:thread ?tthread) :protocol_from ?pfrom) = ?msg

(Contract_Net_Protocol_Participant :state WaitingForAccept :thread == ?tthread) = ?state

-->

(Modify ?state:state PerforimgTask)

(Modify ?state:partner ?msg:from)

(Modify ?state:partner_thread ?pfrom)

(make (CNP_perform_task :task ?task :state ?state))

(remove ?msg)

99

)

(rule Contract_Net_Protocol_Participant_receive_CNP_task_succed_to_Terminate

(CNP_task_succed :result ?result :return_to ?interface) = ?command

(bind ?rs ?interface:state)

(Contract_Net_Protocol_Participant :state == ?rs:state :thread == ?rs:thread) = ?state

-->

(send :performative CNP_inform :content ?result :to ?state:partner :protocol_to ?state:partner_thread

:protocol_from (Contract_Net_Protocol_Participant :thread ?state:thread))

(Modify ?state:state Terminate)

(remove ?command)

)

(rule Contract_Net_Protocol_Participant_receive_CNP_task_failed_to_Terminate

(CNP_task_failed :return_to ?interface) = ?command

(bind ?rs ?interface:state)

(Contract_Net_Protocol_Participant :state == ?rs:state :thread == ?rs:thread) = ?state

-->

(Modify ?state:state Terminate)

(remove ?command)

)

(rule Contract_Net_Protocol_Participant_kill_terminated_thread

(Contract_Net_Protocol_Participant :state Terminate) = ?state

-->

(remove ?state)

)

)

100

