
TOHOKU UNIVERSITY

Graduate School of Information Sciences

Design Space Exploration of Vector Architectures for

Multimedia Applications

(マルチメディアアプリケーションのための
ベクトルアーキテクチャ設計)

A dissertation submitted for the degree Doctor of Philosophy (Information Sciences)

Department of Computer and Mathematical Sciences

by

Ye GAO

14 January 2014

Design Space Exploration of Vector Architectures for
Multimedia Applications

Ye Gao

Abstract

People have never ceased to aspire to a higher quality of media services. In order to
realize the high quality media service, next generation multimedia applications (MMAs)
will process an unprecedented amount of media data in real time. For example, a next
generation ultra-high definition video (8k video) needs to process 64x more data than
standard definition video, and a 3D computer visual algorithm for super resolution images
needs to process 25 - 250x more data than the current 3D computer visual algorithms.
In order to efficiently process these media data, both a high computing performance and
a high data transfer performance are required for the processors that execute the high
quality MMAs.

The hardware approaches to high performance media processing are mainly classified
into three categories: application-specific integrated circuits (ASICs), accelerators, and
ISA extensions to general-purpose processors (GPPs). This dissertation focuses on an ISA
extension to enhance the potential of GPPs on media processing because of the following
two reasons. First, there are characteristics on the kernels of MMAs. A portion of MMAs
kernels has a complicated control flow while some kernels require high throughput for data
processing. A GPP enhanced with an ISA extension could efficiently execute two kinds
of kernels. The GPP is in charge of executing kernels with complicated control flow, and
the ISA extension is in charge of kernels with high throughput data processing. Second,
with an increment of the varsities of MMAs, different kinds of MMAs are expected to
be executed on one platform. A GPP enhanced with an ISA extension can satisfy this
requirement, because its high programmability leads to a high productivity to design
various applications. Therefore, a GPP with an ISA extension is the main target discussed
in this dissertation.

Recently, the peak computing capability of GPP increases significantly by integrating
a large number of cores and/or increasing the width of SIMD execution units. However,
it is not effective in the future. With the failure of the Dennard scaling, core count scaling
may be in jeopardy, and it is not easy anymore to increase the computing performance by
straightforwardly increasing the number of cores or the width of SIMD execution units.
It becomes more and more crucial for processor designers to pay attention to improve the
efficiency of the processor in terms of computational efficiency and power efficiency.

Under these situations, this dissertation focuses on the vector architecture, which
is known for its high computational efficiency and high power efficiency, and designs a

i

vector extension to support the next generation media processing. The vector architecture
is considered a potential candidate for media processing because it can make a good use
of a plenty of data level parallelism (DLP) involved in MMAs. The objective of this
dissertation is to enhance GPPs with a media-oriented vector ISA extension (MVPX),
which can accelerate a wide range of MMAs at high power efficiency.

In order to achieve the objective, MVPX should overcome at least three issues as
follows. First, the conventional vector architecture cannot execute MMAs with short
vectors efficiently. Second, conventional multi-banked cache memories for vector archi-
tectures cannot achieve a high data transfer performance and low power consumption at
the same time for MMAs. Third, conventional methods to find the most power-efficient
configurations cost too much time to find the most power efficient configuration of the
vector architecture for MMAs.

In order to overcome these problems, the design space of the vector architecture is
explored to find the power efficient solution for a wide range of MMAs. First, the instruc-
tion issue policies of vector architecture have been explored, and an out-of-order vector
processing mechanism (OVPM) has been proposed to improve the computational efficient
of MMAs with short vectors by reducing the pipeline stalls. MMAs contain packs of
independent data that can be processed with the same operation in parallel. The pack is
called a vector in this chapter. The vector architecture can efficiently process the vectors
in MMAs. This is because it costs cycles on data dependency checking, pipeline startup
and loop control instructions only once per vector processing. By efficiently processing
the vectors, the vector architecture can potentially achieve a high computing potential for
MMAs. However, the conventional vector architecture cannot efficiently execute MMAs
with short vectors. Most of the conventional vector architectures employ the in-order
vector processing mechanism (IVPM). Although IVPM causes pipeline stalls due to keep-
ing the program sequence, for applications with long vectors, making a good use large
vector registers can hide those stalls. However, for applications with short vectors, the
large vector registers cannot be efficiently utilized and thus expose the pipeline stalls and
memory access latencies. The exposure leads to degradation of computational efficiency.

In order to reduce the pipeline stalls, this dissertation proposes OVPM. By using
OVPM, even though a certain vector instruction is stalled, the subsequent vector in-
struction enables to be executed, overtaking the stalled vector instruction. In this way,
the pipeline stalls can be reduced, which leads to the improvement of computational ef-
ficiency. In order to reduce the power consumption of OVPM, it shares the renaming
unit and commit unit with the GPP. This is because the heavy usages of the two units
by vector instructions and scalar instructions are in the different execution phases. As
the evaluation results, OVPM could achieve 3.25x higher computational efficiency than
IVPM only with a 7% power increase. Therefore, MVPX should adopt an out-of-order
vector issue policy in order to improve the power efficiency.

Second, the cache line sizes of multi-banked cache memory have been explored, and a
multi-banked cache memory for MVPX, called MVP-cache, has been proposed. MMAs re-
quire a high data transfer performance. Conventional vector architectures usually adopt a
multi-banked cache memory to improve the data transfer performance. However, conven-
tional multi-banked cache memories of vector processors cannot transfer data efficiently
for MMAs. In order to adopt multi-banked cache memories to MMAs, there are at least

ii

two requirements that should be considered. There are vectors of various lengths involved
in MMAs. Hence, the first requirement is that the multi-banked cache memory should ef-
ficiently transfer vectors of various lengths. Moreover, as the main execution environment
of MMAs, desktop computers invest so much energy consumption in a cache memory.
Hence, the other requirement is that the multi-banked cache memory should achieve a
low energy consumption. However, conventional multi-banked cache memories either have
a low data transfer efficiency for short vectors or cost high energy consumption on their
tag arrays.

In order to achieve the high data transfer performance at a low power consumption,
this dissertation proposes a multi-banked cache memory called MVP-cache. Unlike con-
ventional multi-banked cache memories that consist of one data array and one tag array,
MVP-cache associates one tag array with multiple independent data arrays of small-sized
cache lines. As a result, MVP-cache consumes less static power on its tag arrays. At the
same time, MVP-cache can also achieve a high efficiency on short vector data transfers
because the flexibility of data transfers can be improved by controlling data transfers of
each data array. As the evaluation results, MVP-cache can achieve a comparable perfor-
mance with the other competitive cache organizations while the energy consumption of
MVP-cache is smaller than those of the other. MVP-cache can also improve the power
efficiency of MVPX.

Third, the numbers of parallel pipelines in each VFU and cache ports have been
explored, and a performance-power optimization method (PPoM) has been proposed in
order to find the power-efficient configuration with a short estimation time. MMAs have a
various hardware requirement to MVPX to improve their performance. For some memory-
intensive MMAs, they require a large number of cache ports to improve the data transfer
performance. Meanwhile, the computationally-intensive MMAs require a large number of
parallel vector arithmetic units to improve the computing performance. If MVPX employs
a large amount of hardware to fit the maximum hardware requirement, MVPX wastes its
power consumption for the MMAs which do not need so much hardware. Meanwhile, if
MVPX employs a small amount of hardware, it loses performance for the MMAs which
have a high hardware requirement.

In order to match the various demands of MMAs, this dissertation proposes a PPoM
for MVPX in order to find the most power efficient configuration for each MMA. PPoM
contains a performance estimation model of the vector architecture to estimate the exe-
cution cycles and performance bottleneck of a certain MMA. The performance estimation
model is established based on the estimation and comparison of the enqueue and dequeue
speed of vector instruction issue queues. According to the estimated executed performance
bottleneck, the hardware resources will be increased to remove the bottleneck. In this
way, the proposed PPoM can find the optimal or sub-optimal configuration at runtime.
As the evaluation result, PPoM could obtain the most power-efficient configuration for
seven of nine MMAs, which takes less estimation and simulation time than conventional
approaches.

Enhanced with these proposed solutions, it is possible for MVPX to accelerate a wide
range of MMAs with a high power efficiency.

iii

Acknowledgements

This dissertation would not have been carried out without a lot of support of many people.
The author would like to acknowledge all of them gratefully

First of all, I would like to express grateful gratitude to Professor Hiroaki Kobayashi,
my supervisor, who was abundantly helpful and offered invaluable assistance. I benefited
immensely from not only his support, counsel, and encouragement, but also introduction
to research fields during the past eight years. I would like to thank Professor Michitaka
Kameyama and Professor Takafumi Aoki for their thoughtful review of this dissertation
and their helpful comments. I wish to express my gratitude to Associate Professor Hi-
royuki Takizawa and Associate Professor Ryusuke Egawa for their technical and personal
support and their hot encouragement.

I would like to thank Associate Professor Hideaki Goto, Associate Professor Kentaro
Sano, Assistant Professor Kazuhiko Komatsu and Dr. Masayuki Sato for their valuable
and helpful comments. Thanks go out to Ms. Maki Takahashi, Ms. Rikako Hasegawa,
and all the members of Cyberscience Center of Tohoku University for their support to my
research activities and my comfort laboratory life.

I would also like to express my appreciation to all the members of Kobayashi, Goto,
Takizawa and Egawa Laboratory, Graduate School of Information Sciences, Tohoku Uni-
versity. Gratefully thanks go to Mr. Yusuke Funaya, Dr. Yoshiei Sato and Dr. Musa for
their kind advice to my research and life Sincerely thanks go to Noki Shoji to establish
the power model of the vector processor.

I express the deep appreciation to my family. I want to thank my parents for their
affectionate encouragement and much support. I also want to thank my wife for emotional
support.

Ye GAO
Janurary 2014

iv

Contents

Abstract i

Acknowledgements iv

Chapter 1 Introduction 1

1.1 Background . 1

1.2 Objective of the Dissertation . 5

1.3 Organization of the Dissertation . 8

Chapter 2 An Out-of-Order Vector Processing Mechanism 10

2.1 Introduction . 10

2.2 DLP Potential of MMAs . 12

2.2.1 Vectorization Ratio . 12

2.2.2 Vector Length . 13

2.3 Problems of IVPM . 16

2.3.1 Related Work . 19

2.4 OVPM . 21

2.4.1 Overview of MVPX . 22

2.4.2 Out-of-Order Vector Processing Mechanism 23

2.5 Performance Evaluations . 25

2.5.1 Experimental Methodology . 25

2.5.2 Evaluation Results . 26

2.6 Conclusions . 31

v

Chapter 3 A Multi-banked Cache Memory Associating one Tag with

Multiple Data Array 32

3.1 Introduction . 32

3.2 Challenges for Designing a Multi-banked Cache Memory for MMAs 34

3.2.1 Problems of MBC-L . 34

3.2.2 Problems of MBC-S . 36

3.2.3 Related Work . 37

3.3 MVP-cache . 39

3.3.1 Organization of MVP-cache . 39

3.3.2 Data Transfer Control Information of MVP-cache 41

3.3.3 MVP-cache Crossbar Allocator . 42

3.3.4 Tag Array Conflicts of MVP-cache 43

3.3.5 Coherency of MVP-cache with L1 cache 44

3.4 Performance Evaluations . 46

3.4.1 Experimental Methodology . 46

3.4.2 Evaluation Results . 47

3.5 Conclusions . 55

Chapter 4 A Performance-Power Optimization Method for MVPX 56

4.1 Introduction . 56

4.2 Importance of Finding the Most Power-Efficient Configuration 59

4.2.1 Various Most Power-efficient Configurations for each

MMAs . 59

4.2.2 Requirements for Finding the Most Power-Efficient Configuration . 63

4.2.3 Related Work . 67

4.3 A Performance-Power Optimization Method for MVPX 69

4.3.1 Searching Method of PPoM . 69

4.3.2 Analytical Model of MVPX based on the Issue Queues 70

vi

4.3.3 Estimation of Power Consumption 73

4.3.4 Summary of PPoM . 74

4.4 Performance Evaluations . 77

4.4.1 Experimental Methodology . 77

4.4.2 Evaluation Results . 78

4.5 Conclusions . 82

Chapter 5 Conclusions 83

References 86

Publications 96

vii

List of Figures

Figure 1.1 Goal of this Dissertation. 2

Figure 1.2 Design Space Exploration of the Vector Architecture. 9

Figure 2.1 Vectorization Ratio. 12

Figure 2.2 Effect of MVL to Computational Efficiency and AVL. 15

Figure 2.3 Inefficiency of IVPM. 17

Figure 2.4 Potential of OVPM. 21

Figure 2.5 Block Diagram of OVPM. 22

Figure 2.6 Computational Efficiency of IVPM and OVPM. 27

Figure 2.7 Power Consumption Breakdown. 29

Figure 2.8 Energy Consumption of OVPM and IVPM. 30

Figure 3.1 Short Vector Data Transfer in MBC-L. 35

Figure 3.2 Short Vector Data Transfer in MBC-S. 36

Figure 3.3 Block Diagram of MVP-cache. 39

Figure 3.4 Generation of Request Info, Address Info and Masked Bits. 41

Figure 3.5 State Transmission Diagram. 44

Figure 3.6 Energy Reduction Effect of MVP-cache. 47

Figure 3.7 Data Transfer Performance of MVP-cache.. 48

Figure 3.8 Power Consumption Breakdown of MVP-cache. 49

Figure 3.9 Chip Area of MVP-cache. 50

viii

Figure 3.10 Comparison of Energy Reduction among MBC-S, MBC-L and MVP-

cache. 51

Figure 3.11 Average Energy Consumption and Execution Cycles of all Benchmark

Programs at Various Configuration of MVP-cache.. 52

Figure 3.12 Energy Consumption for Different Stride Width.. 53

Figure 4.1 Energy Consumption of clip at Different Numbers of VFUs and Cache

Ports. 59

Figure 4.2 Energy Consumption of power at Different Numbers of VFUs and Cache

Ports. 60

Figure 4.3 Energy Consumption of fft at Different Numbers of VFUs and Cache

Ports. 60

Figure 4.4 Energy Consumption of face at Different Numbers of VFUs and Cache

Ports. 60

Figure 4.5 Energy Consumption of vips at Different Numbers of VFUs and Cache

Ports. 61

Figure 4.6 Energy Consumption of MxM at Different Numbers of VFUs and Cache

Ports. 61

Figure 4.7 Energy Consumption of VxM at Different Numbers of VFUs and Cache

Ports. 61

Figure 4.8 Energy Consumption of sphinx at Different Numbers of VFUs and

Cache Ports. 62

Figure 4.9 Energy Consumption of ray at Different Numbers of VFUs and Cache

Ports. 62

Figure 4.10 Execution Cycles of clip at Different Numbers of VFUs and Cache

Ports. 63

Figure 4.11 Execution Cycles of power at Different Numbers of VFUs and Cache

Ports. 63

ix

Figure 4.12 Execution Cycles of fft at Different Numbers of VFUs and Cache Ports. 64

Figure 4.13 Execution Cycles of face at Different Numbers of VFUs and Cache

Ports. 64

Figure 4.14 Execution Cycles of vips at Different Numbers of VFUs and Cache

Ports. 64

Figure 4.15 Execution Cycles of MxM at Different Numbers of VFUs and Cache

Ports. 65

Figure 4.16 Execution Cycles of VxM at Different Numbers of VFUs and Cache

Ports. 65

Figure 4.17 Execution Cycles of sphinx at Different Numbers of VFUs and Cache

Ports. 65

Figure 4.18 Execution Cycles of ray at Different Numbers of VFUs and Cache

Ports. 66

Figure 4.19 Flowchart of PPoM. 75

Figure 4.20 Comparison of Energy Consumption of the Configuration Found by

PPoM. 80

x

List of Tables

Table 2.1 Vector Length. 14

Table 2.2 Configuration of MVPX and Memory Sub-System.. 25

Table 2.3 Benchmark Programs. 26

Table 3.1 Configuration of MVPX and Memory Sub-System.. 46

Table 4.1 Baseline Configuration of MVPX for PPoM. 77

Table 4.2 Table of peak power consumption (W) of MVPX in Different Configurations.

78

Table 4.3 Comparison of the Most Power-Efficient Configurations Found by PPoM

and Exhaustively Simulating the All Possible Combination. 79

Table 4.4 Comparison of the number of Simulation Times and Estimation Times. 81

Table 4.5 The number of Estimation Times for each MMA. 81

xi

Chapter 1

Introduction

1.1 Background

People have never ceased to aspire to a higher quality of media services. In order to

realize the high quality media service, next generation multimedia applications (MMAs)

will process an unprecedented amount of media data in real time. For example, a next

generation ultra-high definition video (8k video) needs to process 64x more data than

standard definition video [1] [2], and a 3D computer visual algorithm for super resolution

images [3] needs to process 25 - 250x more data than the current 3D computer visual

algorithms. In order to efficiently process these media data, both a high computing

performance and a high data transfer performance are required for the media processors

that execute the high quality MMAs.

In addition to the performance requirements from MMAs, the media processors should

also achieve a high power efficiency. Desktop computers are considered as the main

computer systems to execute the high quality MMAs. Since the size of desktop computers

cannot be significantly varied, the performance of cooling units of the desktop computers

is limited. Hence, in order to avoid the overheat of the processors, their power budgets,

in terms of thermal design power (TDP), are also restricted. Consequently, it is required

for the processors to achieve a power-efficient execution for MMAs.

1

1.1. Background

Programmability	

Po
w

er
 E

ffi
ci

en
cy
	

Goal of this
dissertation	

Evolution of ASICs	

Evolution of Accelerators	

Evolution of GPPs with ISA extensions	

MMX	

SSE	

AVX	

GPGPU	

(Fully 	

Programmable)	

Graphics Accelerators 	

(Fixed Function) 	

GPU 	

(Partially 	

Programmable) 	

Figure 1.1: Goal of this Dissertation.

The processors to execute MMAs are also required to have a high programmability. In

the future, more and more MMAs will be executed on one platform. For example, people

play 3D games, edit videos and pictures and listen to music on their desktop computers.

This requires that a processor to execute MMAs should have a high programmability.

Many researchers have described the benefits of high programmability [4] [5] [6]. The

benefits include time-to-market by parallel developing hardware and software, easiness to

fix software and prototyping bugs and variety of executable applications. Consequently,

the processors to execute MMAs should have a high programmability as well as high

power efficiency.

The hardware approaches for high performance media processing are mainly classi-

fied into three categories: application-specific integrated circuits (ASICs) [7], accelera-

tors [8] [9] [10], and SIMD ISA extensions to general-purpose processors (GPPs) [11] [12].

Figure 1.1 shows the evolutions of these three approaches. ASICs aspire to extremely

2

1.1. Background

high power efficiency for one MMA. However, the lack of hardware adaptivity to various

MMAs makes the ASIC approach mismatch the high programmability requirement.

The accelerators such as graphics processing units (GPUs) could achieve high power

efficiency. Since limited programmability of accelerators hinders their uses on various

applications, they evolve to improving their power efficiency and programmability in

order to accelerate to a variety of applications. However, the accelerator approach lacks

the support to legacy MMAs. The abandon of existing MMAs is not a wisdom decision

while it cost too much human resource and time to redesign the legacy programs for the

new accelerators [13].

The SIMD ISA extensions of GPPs could achieve a high programmability [14]. Com-

pared to the other two approaches, SIMD ISA extensions have two advantages. One is

that a GPP with an SIMD ISA extension enables to execute legacy MMAs without the

redesign of the applications [15]. The other one is that a GPP with an ISA extension

could efficiently execute vectorizable and sequential kernels, both of which are existed in

MMAs [16]. Therefore, this dissertation focuses on the ISA extension approach to the

performance improvement of MMAs.

Recently, the peak computing performance of the SIMD extensions increase signif-

icantly by increasing the width of SIMD execution units. For example, Intel’s SIMD

extensions MMX [17], SSE [18], AVX [12], AVX2 [19] adopt SIMD width of 64-bit, 128-

bit, 256-bit and 512-bit, respectively. However, with the failure of Dennard scaling [20],

straightforwardly increasing the width of SIMD execution units cannot be improve the

power efficiency any more [21] [22]. It is necessary to consider an efficient way to use the

SIMD execution units. One approach is to deeply pipeline the SIMD execution units and

use a large amount data to fill up the pipelines.

Indeed, there is such an architecture. That is the vector architecture [23]. The vector

architecture is usually used in high performance computing systems, or so called super-

computers [24] [25] [26]. The applications in the high performance computing domains

employ packs of independent data that can be processed with the same operation in par-

3

1.1. Background

allel. The packs of data are called vector, and the number of data in a pack is called

vector length in this dissertation. Since the applications in high performance computing

domains usually have a long vector in their algorithms [27] [28], the vector architecture

usually employs large vector registers to store the long vectors and fill up the deeply

pipelined vector functional units (VFUs) and vector load and store unit (VLSU). In this

way, the stalls due to data dependency and latencies of VFUs and VLSU enable to be

hide, thus leading to a high efficient use of VFUs and VLSU. Since MMAs also contains

a mass of data parallel processing, the vector architecture is also a promoting approach

to improving the power efficiency of ISA extensions for MMAs.

4

1.2. Objective of the Dissertation

1.2 Objective of the Dissertation

The objective of this dissertation is to establish a design methodology for microproces-

sors that accelerate a wide range of MMAs at high power efficiency. To this end, this

dissertation proposes a media-oriented vector ISA extension (MVPX) to enhance GPPs.

In order to achieve a power-efficient execution by using MVPX, there are at least three

issues as follows.

First, MMAs with short vectors cannot be efficiently executed on the conventional

vector architectures, which adopt an in-order issue policy. In the case of short vector

processing, the pipeline stalls due to the in-order issue policy and memory access latencies

are easily to be exposed. The exposure causes the degradation of computational efficiency,

leading to low power-efficient execution for MMAs with short vectors.

Second, conventional multi-banked cache memories for vector architectures cannot

achieve a high data transfer performance and low power consumption at the same time

for MMAs. In order to improve the data transfer performance, conventional vector archi-

tectures employ a multi-banked cache memory. For a multi-banked cache memory, cache

line size is a key factor to affect the data transfer performance and power consumption.

A multi-banked cache memory with small sized cache lines (MBC-S) could achieve a high

data transfer performance for various MMAs, while a multi-banked cache memory with

large sized cache lines (MBC-L) could achieve a low power consumption on its tag arrays.

However, MBC-S consumes a large power consumption on tag arrays, and MBC-L has

an inefficiency on short vector processing. Therefore, conventional multi-banked cache

memories cannot achieve a high data transfer performance at a low power consumption.

Third, conventional vector architectures cannot achieve a power-efficient execution

for all MMAs. Although different MMAs have various hardware requirements, conven-

tional vector architectures fix the amounts of hardware resources. Therefore, in order

to improve the power efficiency of MVPX, it is necessary to reconfigure the amounts of

hardware resources at runtime to obtain the most power-efficient configuration of each

5

1.2. Objective of the Dissertation

MMA. However, when applying conventional parameter searching methods to the vector

architecture designed for MMAs, they costs too long time to find the most power-efficient

configuration.

In order to resolve these problems, this dissertation explores the design space of vector

architectures. Design space exploration means the process of analyzing several ”function-

ally equivalent” implementation alternatives to identify an optimal solution [29]. The

design spaces discussed in this dissertation include four important factors. They are issue

policies of the vector architectures, cache line size of multi-banked cache memory, the

number of parallel pipelines in each VFU, and the number of cache ports. The issue poli-

cies of vector architecture should be explored because they could potentially affect the

power efficiency of short vector processing. In addition, the cache line sizes are explored

in order to improve power-efficient data transfer for all MMAs. At last, the numbers

parallel pipelines and cache ports should be explored in order to find the proper amounts

of hardware resources to realize power-efficient execution for any MMAs. These four fac-

tors form two 3D design spaces as shown in Figure 1.2. By exploring the design space of

vector architectures, it is possible to clarify what kind of approaches is effect to improve

the power efficiency of MVPX.

The design space exploration of vector architectures is divided into three stages, each

of which proposes an approach to the power efficiency improvement of MVPX. In the first

stage, the instruction issue policies of vector architecture will be explored, and an out-of-

order vector processing mechanism (OVPM) is proposed to improve the computational

efficient by reducing the pipeline stalls. By using OVPM, even though a certain vector

instruction is stalled, the subsequent vector instruction enables to be executed, overtaking

the stalled vector instruction. In this way, the pipeline stalls can be reduced, which leads

to the improvement of power efficiency of MVPX.

In the second stage, the cache line sizes of multi-banked cache memory will be explored,

and a multi-banked cache memory for MVPX, called MVP-cache, will be proposed. MVP-

cache associates single tag array with multiple data array. It is possible to achieve a high

6

1.2. Objective of the Dissertation

data transfer performance for short vectors and low power consumption on tag array.

This is because the relationship between the size of cache lines and the number of tags

is decoupled. As a result, MVP-cache could improve data transfer performance of short

vectors by adopting a small cache line size. MVP-cache could also reduce the power

consumption by increase the number of data arrays that associated with the same tag

array. In this way, MVP-cache could achieve a power-efficient data transfer for MMAs.

In the third stage, the numbers of parallel pipelines in each VFU and cache ports will

be explored, and a performance-power optimization method (PPoM) will be proposed in

order to find the most-power efficient configuration for each MMA at the runtime. PPoM

contains an analytical model established for MVPX to estimate the execution cycles and

performance bottleneck of a certain MMA. The numbers of parallel pipelines and cache

ports will be searched base on the greedy algorithm. By using PPoM, the most power-

efficient configuration can be find at runtime.

7

1.3. Organization of the Dissertation

1.3 Organization of the Dissertation

The rest of the dissertation is organized as follows. Chapter 2 proposes OVPM in order

to improve the potential of vector architecture on short vector processing. Chapter 3

presents a multi-banked cache memory that associates one tag array with multiple data

arrays. Such a multi-banked cache memory reduces the power consumption on tag arrays

and improves the data transfer performance on short vectors. Chapter 4 describes PPoM

for MVPX. By this method, it is possible to find the power-optimal or sub-optimal con-

figuration at runtime. Chapter 5 concludes the dissertation and describes the future work

of this dissertation.

8

1.3. Organization of the Dissertation

#
 c

ac
h
e

p
o
rt

s

parallel pipelines

sizes of cache line

#
 c

ac
h
e

p
o
rt

s

parallel pipelines
 c

ac
h
e

p
o
rt

s

parallel pipelines
 c

ac
h
e

p
o
rt

s

parallel pipelines

#
 c

ac
h
e

p
o
rt

s

parallel pipelines

#
 c

ac
h

e
p

o
rt

s

parallel pipelines

In-order issue policy Out-of-order issue

#
 c

ac
h

e
p

o
rt

s

parallel pipelines

Explore the issue policies of the vector architecture

explore the cache line size of multi-banked cache memory

explore the numbers of cache ports and parallel pipelines

Which policy is power efficient for MMAs?

Which combination of the numbers of

cache ports and parallel pipelines is

power efficient for MMAs

Figure 1.2: Design Space Exploration of the Vector Architecture.

9

Chapter 2

An Out-of-Order Vector Processing

Mechanism

2.1 Introduction

MMAs contain packs of independent data that can be processed with the same operation

in parallel [30]. The pack is called a vector in this chapter. The vector architecture can

efficiently process the vectors in MMAs. This is because it costs cycles on data dependency

checking, pipeline startup and loop control instructions only once per vector processing

[15]. By efficiently processing the vectors, the vector architecture can potentially achieve

a high computing potential for MMAs.

Although conventional vector architectures are good at processing long vectors, MMAs

with short vectors cannot be efficiently executed on them. If the vector length is short,

the pipeline latencies and memory access latencies are easy to be exposed. Such expo-

sures make VFUs and memory buses underutilized, and thus, cause the degradation of

computational efficiency. The objective of this chapter is to improve the computational

efficiency of MVPX on MMAs with short vectors. In order to achieve the objective, the

instruction issue policy of MVPX is explored.

Most of the conventional vector architectures employ the in-order vector processing

10

2.1. Introduction

mechanism (IVPM). Although IVPM causes pipeline stalls due to keeping the program

sequence, for applications with long vectors, making a good use large vector registers can

hide those stalls. However, for applications with short vectors, the large vector registers

cannot be efficiently utilized and thus expose the pipeline stalls and memory access laten-

cies. The exposure leads to degradation of computational efficiency. Therefore, OVPM is

proposed in this chapter in order to improve the computational efficiency of MMAs with

short vectors.

The rest of this chapter is organized as follows. Section 2.2 confirms the data level

parallelism involved in MMAs and analyzes their vector lengths. Section 2.3 clarifies

the inefficiency of IVPM. Section 2.4 proposes the architecture of OVPM. Section 2.5

evaluates the performance and power consumption of OVPM, and Section 2.6 concludes

this chapter.

11

2.2. DLP Potential of MMAs

99.4% 99.6% 98.9% 98.3% 98.2% 98.4% 99.0% 98.2% 98.9%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

sphinx ray MxM VxM face vips clip fft power

V
ec

to
ri

za
ti

o
n

 R
a
ti

o

Figure 2.1: Vectorization Ratio.

2.2 DLP Potential of MMAs

In this section, the potential of DLP in MMAs is discussed based on their vectorization

ratios and vector lengths. Then, the problems of conventional vector architectures on

executing MMAs are clarified.

2.2.1 Vectorization Ratio

In this subsection, the vectorization ratio is used to verify that vector architectures can

potentially achieve high performances on MMAs. As the preliminary evaluation, this

dissertation uses nine MMAs to evaluate the potential of DLP in MMAs. The detail of

the benchmark programs describes in Table 2.3.

The vectorization ratio is defined as the ratio of the vectorized calculation time to the

overall calculation time [24]. According to Amdahl’s law [31], the performance speedup

can be expressed as Equation (2.1).

12

2.2. DLP Potential of MMAs

Speedup =
1

(1− P) + P
N

, (2.1)

where P indicates the proportion of a program that can be parallelized, and N is the

speedup ratio of the parallel part.

In the case of vector processing, P is the vectorization ratio. Therefore, a high vec-

torization ratio means that the application has a potential to achieve a high performance

by using vector architectures. According to Amdahl’s law, there is no significant speedup

by using the vector architectures, unless the vectorization ratio is very high, e.g. 90% or

more. Furthermore, a high vectorization ratio also indicates that a compiler has been

able to exploit abundant DLP. A high vectorization ratio is also crucial to take advantage

of the computational performance of vector architectures. Therefore, there are software

tuning techniques, such as loop sequence changing and inline expansion, to increase the

vectorization ratio.

Figure 2.1 presents the vectorization ratios of some typical multimedia application

kernels [32] [33] [3]. After some simple software tunings, the vectorization ratios of all

the benchmarks exceed 98%. Besides, the vectorization ratio becomes higher than 99%

in three of the nine benchmarks. These results show that MMAs contain massive DLP,

which can be easily exploited by a compiler with simple software tunings, and thus have

a potential to achieve a high performance by vector processing.

2.2.2 Vector Length

Vector Length of MMAs

A vector length in this chapter means the number of elements simultaneously operated by

vector architectures. The performance of MMAs on the vector architecture also depends

on their vector lengths, because the overheads for the execution of scalar instructions and

the vector pipeline latency are required for starting up a vector pipeline. Thus, a long

vector length is needed to hide these overheads. Generally speaking, the vector length

13

2.2. DLP Potential of MMAs

Table 2.1: Vector Length.

Benchmarks sphinx face ray vips M x M V x M clip fft power

MVL32 32 28.83 31.76 26.33 31.25 31.25 32 32 32

Average MVL64 64 57.67 63.53 39.5 62.5 62.5 64 32 32

Vector MVL128 128 86.5 120 79 125 125 64 32 32

Length MVL256 256 173 216 79 250 250 64 32 32

MVL512 512 173 360 79 500 500 64 32 32

Vector Length 4096 173 1080 79 1000 1000 64 32 32

should be longer than 20 [28] in order to hide the start-up overhead. Table 2.1 shows

the vector length of benchmark programs. Most of the applications have a long vector,

meaning that the MMAs have a potential to hide the vector pipeline start-up overheads.

Average Vector Length

The average vector length (AVL) is the average number of data parallel operations per

vector instruction and is defined by

AV L =
V L

Vnum

, (2.2)

where Vnum is the number of vector instructions and VL denotes the vector length. Vnum

is calculated as follows:

Vnum =

⌈
V L

MV L

⌉
, (2.3)

where MVL is the maximum number of elements that can be processed by one vector

instruction. If AVL is close to MVL, which implies the vector hardware resources are

efficiently utilized.

Table 2.1 also describes AVL in different values of MVL. For MxM, ray and VxM,

AVL is always close to MVL. In face and vips, AVL becomes obviously shorter than MVL

14

2.2. DLP Potential of MMAs

16%

29%

49%

61% 62% 62%

0%

10%

20%

30%

40%

50%

60%

70%

MVL8 MVL16 MVL32 MVL64 MVL128 MVL256

C
o

m
p

u
ta

ti
o

n
a

l
E

ff
ic

ie
n

cy

Average Computational Efficiency

Figure 2.2: Effect of MVL to Computational Efficiency and AVL.

if MVL is longer than the vector lengths of those programs. Although vector length of

raytracer is slightly longer than that of MxM, its Vnum of ray is larger than MxM ’s. As

a result, AVL of ray is smaller than that of MxM.

In order to investigate the effect of changing the vector length, the performance of

SIMD architectures is evaluated in the difference cases of MVL by using nine media

applications listed in Table 2.3. In the evaluation, the number of parallel degree is set

at eight, which refers to the recent SIMD extensions and assumes that there are no

pipeline stalls and sufficient data transmission capability with a view to purely observing

the influence of AVL. The average computational efficiency and AVL of all benchmark

programs with the change of MVL are shown in Figure 2.2. MV L8 means that at most

eight elements can be processed by one instruction, which is the configuration of modern

SIMD extensions, such as Intel’s AVX [12], when processing floating point elements. The

configurations of MVL that is longer than 64 represent current vector machines. For

example, Cray X1 [26] and NEC SX-9 [25] can process at most 64 and 256 elements

respectively by one instruction.

The evaluation result shows, as a popular approach to accelerate MMAs, existing

15

2.3. Problems of IVPM

SIMD extensions have a limitation to process a large amount of data. Even the lat-

est SIMD extension, AVX, can only process eight double precision floating data by one

instruction. Such a short MVL is not enough for the next generation MMAs. Differ-

ent from SIMD extensions, the MVL of vector architectures is much longer than that of

SIMD extensions. AVL enables to become longer with the increment of MVL, according

to Equations (2.2) and (2.3). Longer AVL enables to keep VFUs pipelines and VLSU

busy. Thus, vector architectures can tolerate long memory access latencies and more

efficiently use VFUs.

Moreover, compared with SIMD extensions, vector architectures also support more

kinds of memory access patterns including stride memory access and indexed memory

access and a masked vector processing mechanism. In addition, vector architectures have

a vector length register that specifies the vector length for the current operation [15]. The

flexible vector length makes vector architectures more easily accommodate programs that

naturally have shorter vectors than the maximum vector length supported by hardware.

Therefore, vector architectures have a high potential to improve the power efficiency of

MMAs.

2.3 Problems of IVPM

Vector architectures can tolerate the long access latency naturally by employing large vec-

tor register files and a deeply pipelined VLSU [15]. Since one vector instruction processes

a large number of data to fill in the VLSU pipeline stages, the memory access latency of

these data can be hidden in a pipeline fashion. This method is effective for MMAs with

long vectors because there are sufficient data to fill up the VLSU pipeline stages. However,

when a MMA with short vectors is executed, the pipeline stalls would frequently occur,

and thus expose the long access latency. This problem severely degrades the performance

especially if the vector architecture adopts only in-order vector processing mechanism

(IVPM).

16

2.3. Problems of IVPM

for(i = 0; i < N; i ++)

{

1: vload va0, addr1

2: vload va1, addr2

3: vadd va2, va0, va1

4: vstore va2, addr3

}

P
ip

el
in

e
st

ag
e

VLSU Pipeline

VFUs Pipeline

VLSU Pipeline

vload

vadd

vstore

vload vload

vadd

vstore

vload

cycles

①：Stall cycles due to the in-order issue policy

②:Stall cycles that can be hidden by using vector registers

exposed stall cycles

Vector

Operations

cycles

P
ip

el
in

e
st

ag
e

t1 t2 t3 t4

t1 : First group of vector data is input to the vector pipelines

t2 : Last group of vector data is input to the vector pipelines

t3 : First group of vector data is output from the vector pipelines

t4 : Last group of vector data is output from the vector pipelines
* The number of groups of vector data equals to the number of parallel vector

pipelines

Example of Vector Code s Illustration of a time-space diagram s

Figure 2.3: Inefficiency of IVPM.

To discuss the inefficiency of IVPM, the behavior of a simple vector program is shown

in Figure 2.3 by using a time-space diagram. In the time-space diagram, each parallelo-

gram shows a vector operation. Variables t1 to t4 denote four special moments of vector

operations. The detailed description of them is shown in Figure 2.3.

In Figure 2.3, a vector store instruction in the first iteration is stalled in the issue

stage. It blocks the subsequent instructions, such as the vector load instruction in the

second iteration, from being issued. The same stall will occur in each iteration, resulting

in inefficient use of memory bandwidth and a large performance loss. The behavior of

IVPM is summarized as follows.

1. The first and second instructions: Vector load instructions, vload, are decoded and

executed by generating the memory addresses at the address generation unit (AGU).

17

2.3. Problems of IVPM

2. The third instruction: A vector addition instruction, vadd, is decoded and then

stalled in the issue stage until va0 and va1 are ready.

3. The fourth instruction: A vector store instruction vstore is stalled in the decode

stage unless the previous instruction vadd is issued, because of the in-order execution

policy for the conventional vector architectures. Then, it is stalled in the issue stage,

waiting for the results of the vadd due to the input data dependency.

4. The fifth instruction: The first instruction of the second iteration (vload) is stalled in

the decode stage, unless the last instruction (vstore) of the first iteration is issued,

no matter whether its operands are ready or not. This makes the first vload of

the second iteration expose the memory latency. The exposure of memory latency

occurs in each iteration. The subsequent instructions show the same behavior as

these five instructions.

The exposed stall cycles due to IVPM can be expressed as the following equation.

stallexposed = stalltotal − stallhide, (2.4)

where stalltotal denotes the total stall cycles due to IVPM, and stallhide represents the stall

cycles that can be hidden by using vector register files. In Figure 2.3, stalltotal and stallhide

are denoted by 1⃝ and 2⃝, respectively. From Figure 2.3, it is obvious that stalltotal is the

pipeline latency of VFUs and VLSU before the stalled instruction. Hence,

stalltotal =
∑

Latencypipeline. (2.5)

On the other hand, stallhide is the chime of a vector instruction [23], which can be ex-

pressed as follows.

stallhide = Chimevector =
min(LL,MV L)

Nparallel

, (2.6)

where Nparallel denotes the parallel degree of pipelined VFUs. Using Equations (2.5) and

18

2.3. Problems of IVPM

(2.6), Equation (2.4) can be rewritten as the following expression.

stallexposed =
∑

Latencypipeline −
min(LL,MV L)

Nparallel

, (2.7)

where LL stands for a loop length of the program and MVL means the maximum number

of vector elements that can be processed by one vector instruction. Equation (2.6) shows

that the effect of hiding stalls by using vector register files is positively related to the

vector length, and Equation (2.7) means that the shorter vector length is, the more stalls

will be exposed. That is why IVPM is inefficient on executing MMAs with short vectors.

2.3.1 Related Work

So far, many approaches have been proposed for vector architectures to hide the long

access latency. Kozyrakis et al. have proposed delayed vector pipelines [34]. The delayed

vector pipelines enable a vector arithmetic instruction to be issued right after its previous

instruction and delay its actual execution for the worst case memory access latency. In

this way, the issued arithmetic instruction would not block the successive vector memory

instruction, thus hiding the access latencies. However, recent vector architectures have

cache memories, and the delayed vector pipelines cannot be applied to vector architectures

with a cache memory because the postponed execution for the worst case memory access

latency eliminates the effects of cache hits.

Decoupled executions are also proposed for vector architectures [35] [36]. The de-

coupled architectures separate a vector instruction sequence into multiple streams. By

simultaneously executing the multiple streams, a memory access stream could keep is-

suing no matter whether the other streams are blocked or not. The successively issued

vector memory instructions enable to transfer data by only paying for access latency once.

However, instructions in each stream should still be issued strictly following the program

sequence, where it is possible to cause pipeline stalls and expose the access latency. There-

fore, a new approach should be considered to efficiently avoid pipelines stalls and tolerate

19

2.3. Problems of IVPM

long access latency.

20

2.4. OVPM

Pipeline stage

VLSU Pipeline

VFUs Pipeline

VLSU Pipeline

vload

vadd

vstore

vload vload

vadd

vstore

vload

cycles

vload overtakes the vadd and vstore in the previous iteration due to OoO processing

Pipeline stage

VLSU Pipeline

VFUs Pipeline

VLSU Pipeline

vload

vadd

vstore

vload vload

vadd

vstore

vload
cycles

Exe. Cycles Reduced

IVPM

OVPM

Figure 2.4: Potential of OVPM.

2.4 OVPM

MMAs with short vectors cannot be executed efficiently due to the exposure of pipeline

stalls. An out-of-order execution is one of the most effective ways to eliminate pipeline

stalls and hide memory access latencies. Figure 2.4 compares IVPM and OVPM using

time-space diagrams. In OVPM, an instruction is issued as soon as its operands are ready,

even though its precedent instructions have not been issued yet. Therefore, the issue and

execution of instruction vload in the second iteration can overtake those of the vadd and

vstore instructions in the first iteration. In this way, even MMAs with short vectors

can also efficiently use deeply pipelined VLSU to hide the access latencies. One of the

biggest problems to apply an out-of-order execution to a vector architecture is its high

power consumption. However, with the development of process technologies, the hardware

becomes cheaper and cheaper than before. The control units for reducing pipeline stalls

do not consume so much power as before. Moreover, OVPM can potentially improve the

utilization of memory bandwidth and shorten the execution time of MMAs. Therefore,

21

2.4. OVPM

LSU FUs
General Purpose

Registers

Decoder

I Cache Fetcher
Vector Memory

Instruction Buffer

Vector Arithmetic

Instruction Buffer

Vector Arithmetic

Issue Queue

V
ecto

r

F
u
n
ctio

n
 U

n
its

V
ecto

r

R
eg

isters

V
ecto

r L
o
ad

S
to

re U
n
it

General Purpose Processor OVPM

Main Memory

MVP-cache

Vector Memory

Issue Queue

D Cache

Rename Unit
Scalar Reorder

Buffer

Commit Unit

Scalar Issue Unit

Figure 2.5: Block Diagram of OVPM.

from the viewpoint of energy consumption, it is worth to adopt OVPM.

2.4.1 Overview of MVPX

Figure 2.5 illustrates the block diagram of MVPX. White blocks represent the compo-

nents of GPP, while gray blocks presents the components of MVPX. Additionally, two

instruction buffers are installed to schedule vector instructions and realize the out-of-

order issues. The vector execution unit consists of parallelized vector lanes. In each lane,

a deeply pipelined functional unit and a vector instruction chaining mechanism are used

to improve the computational efficiency. VLSU manages the data transfer between the

memory sub-system and vector register files. It mainly contains the parallelized address

generation units for vector memory instructions and the vector load/store queues, which

keep the information for memory accesses.

22

2.4. OVPM

2.4.2 Out-of-Order Vector Processing Mechanism

Three units are necessary to realize OVPM. They are a renaming unit, a reorder unit and

a commit unit. The renaming unit is used to remove the name dependencies and check

the true data dependence among vector instructions. The commit unit is used to manage

the retirement of vector register files in the register alias table. Only after all preceding

instructions have been committed, the vector register file used in the vector instruction is

returned to the free list. Since the heavy usages of the rename unit and commit unit by

scalar instructions and vector instruction are in the different execution phase of MMAs,

OVPM and the GPP could share the rename unit and commit unit without performance

degradation. In this way, the power consumption of OVPM could be reduced.

In order to issue vector instructions in an out-of-order fashion, OVPM employs two new

instruction buffers: a vector arithmetic instruction buffer (VAIB) and a vector memory

instruction buffer(VMIB), in the vector datapath as the reorder buffers. Vector instruc-

tions in the two buffers would be traversed to detect the states of the operands. When

operands of a vector instruction have been prepared, it could be issued no matter whether

there are its precedent vector instructions in the program sequence or not.

There are two approaches to out-of-order execution. One approach is implemented by

using reservation stations, such as Intel’s P6 [37]. The other approaches is implemented

by using the physical register files, such as Alpha21264 [38]. This chapter adopts the latter

one because it is more power efficient than the former one for vector architectures. The re-

order buffers of the reservation station based approach need to hold all the input/output

vector data. Hence, those buffers need to hold multiple copies of the same vector data in

different entries if the input operands of the two vector instructions are the same. Holding

the duplicated data in the re-order buffers consumes a lot of power, especially for long

vector data. Meanwhile, the re-order buffers of the physical register file based approach

only hold the pointers to input/output physical vector register files to store the vector

data. In this way, the physical register file based approach does not need any copy of

23

2.4. OVPM

vector data. As a result, the physical register file based approach consumes less power in

re-order buffers than the reservation station based approach.

The behavior of vector instructions in the datapath is shown as follows, referring to

Figure 2.5. Firstly, the instruction fetcher of the scalar unit takes instructions from the

instruction cache memory and sends them to the decoder. Then, the decoder detects

the class of the instructions. If a decoded instruction is a vector arithmetic instruction,

the decoded information of the instruction is stored in VAIB. If a decoded instruction

is a vector memory access instruction, its decoded information is stored in VMIB. In

the instruction issue stage, an instruction in VAIB is delivered to the vector arithmetic

issue queue (VAIQ) as long as the input/output operands of the first instruction stored in

VAIB are ready for execution. The vector instructions in VAIQ wait for the availability

of VFUs. If they have available access ports, instructions are issued from VAIQ until the

number of issued instructions reaches the issue width. A memory access instruction is

divided into two sub-operations, an address generation operation and a memory access

operation. In the address generation operation, the instruction is also forwarded to VAIQ

to wait for the availability of AGU. In the memory access operation, the instructions in

VMIB are delivered to the vector memory instruction issue queue (VMIQ) as long as the

operands, such as addresses and output/input registers, of the memory access instructions

are ready. The memory accesses are performed by VLSU. Finally, the results from the

execution stage and memory access stage update the corresponding registers.

24

2.5. Performance Evaluations

2.5 Performance Evaluations

2.5.1 Experimental Methodology

Table 2.2: Configuration of MVPX and Memory Sub-System.

Parameters Value
Process Technology 32 nm
Processor Frequency 1GHz

Vector ALU Pipeline Latency 10 cycles
Vector Multiplier Pipeline Latency 15 cycles
Vector Division Pipeline Latency 20 cycles

Number of Vector Lanes 8
Number of Architectural Vector Registers 16

Number of Physical Vector Registers 96
Entries per Vector Register 128 entries

The size of VMIB and VAIB 128 entries
Number of Cache Ports 16

Cache Capacity 2 MB
Cache Bandwidth 128 bytes/cycle

Cache Line Size of MVP-cache 8 bytes
MVP-cache Access Latency 30 cycles

A simulator of vector extension with OVPM is developped based on the SimpleScalar

toolset [39] to investigate its performance on media workloads. McPAT0.8 [40] is used to

simulate OVPM power consumption. The specifications of OVPM are listed in Table 2.2.

The GPP is modeled as a 4-way superscalar processor, and OVPM employs 8-way parallel

pipelined VFUs.

Nine multimedia benchmark programs in Table 2.3 are used to evaluate OVPM. The

benchmark programs of clip, fft and power are three hot kernels of the 3-D computer

visual algorithm for super resolution images [3]. MxM and VxM are programs of matrix

multiplications, which are commonly used in MMAs. The other four benchmark programs

are the kernels of MMAs selected from the PARSEC benchmark suite [32] and the ALP-

bench benchmark suite [33]. Both of them include emerging MMAs that contain massive

25

2.5. Performance Evaluations

Table 2.3: Benchmark Programs.

Benchmarks Categories Vector Length
sphinx speech recognition 4096

face face recognition 173
ray animation 1080
vips image processing 79
clip computer vision 64
fft computer vision 32

power computer vision 33
MxM Matrix Multiplication 1000
VxM Vector-Matrix Multiplication 1000

DLP. The benchmark programs are compiled by a PISA cross-compiler, so as to generate

assembly codes defined in the SimpleScalar toolset. For the vector codes, there are many

mature vector compilers such as NEC’s C compiler of SX-9 (sxcc) [41]. However, since

SimpleScalar does not support the cross-compilation with sxcc, the benchmark programs

are firstly vectorized automatically by using sxcc. Then, referring to the assembly code

generated by sxcc, vector instructions are manually inserted into the assembly code files

generated by the PISA cross-compiler. Finally, the assembly code files are translated to

binary codes as the inputs of the simulator.

In order to take a closer look at the evaluation results, the benchmark programs are

classified into the short vector category and the long vector category. The short vector

category contains the benchmark programs face, vips, clip, fft, and power. The other

benchmark programs including ray, VxM, MxM and sphinx are classified to the long

vector category.

2.5.2 Evaluation Results

Computational Efficiency of IVPM and OVPM

The computation efficiencies of IVPM and OVPM are compared in order to demonstrate

the effective of OVPM. Here, the computational efficiency is defined by the ratio of sus-

26

2.5. Performance Evaluations

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

R
el

a
ti

v
e

V
M

B
C

s

C
o

m
p

u
ta

ti
o

n
a

l
E

ff
ic

ie
n

cy

IVPM SIMD OVPM Relative VMBC

Figure 2.6: Computational Efficiency of IVPM and OVPM.

tained performance to peak performance. The higher the computational efficiency means

the better use of vector execution units. Specially, the computational efficiency of 100

% means that the MMA always makes the full use of the vector execution units during

the execution. The evaluation results show the maximum performance of IVPM with

OVPM when changing the size of vector registers. The sizes of vector registers for IVPM

and OVPM are 512 entries and 128 entries, respectively. This evaluation also compares

the proposal with a SIMD extension, which one of the most popular approaches to me-

dia processing. According to the configuration of the latest SIMD extensions, Intel¡¯s

AVX2 [19], it is assumed that the SIMD extension in this evaluation can process up to

eight double-precision floating- point values or 512-bit integer values by one instruction,

and it can also perform an out-of-order execution.

Figure 2.6 shows that the computational efficiency of OVPM is always higher than

that of IVPM. The improvement of computational efficiency is derived from the good use

of VFUs due to avoiding some of the pipeline stalls. With the help of the out-of-order

issue policy, even if OVPM employs vector register of a smaller size, it still enables to

effectively hide the memory access latency and pipeline latency of VFUs. Specially, the

27

2.5. Performance Evaluations

benchmark programs classified to the short vector category show significant performance

improvement. In those benchmark programs, short vector operations cannot be always

overlapped with memory operations in the case of IVPM. As a result, they easily expose

the pipeline stalls, leading to the low computational efficiency. OVPM could efficiently

reduce these stalls, and thereby allow vector extension to achieve a much higher efficiency

on processing short vectors. In spite of the significant performance improvement, their

computational efficiencies are still less than 50 %. This is because their vectorization

ratios are lower than those of other benchmark programs.

OVPM also shows a higher performance than the SIMD extension for both of the

MMAs in the short and long vector categories. This is because the limited number of

elements that can be processed by one instruction restricts the performance improvement

by the SIMD extension. OVPM can handle up to 128 vector data by one instruction,

while SIMD can only process eight elements at most. Even for the MMAs in the short

vector category, the vector lengths of these applications are still longer than the vector

length that can be processed by one SIMD instruction. Therefore, the SIMD extension

cannot make a good use of DLP in the MMAs. In contract to the SIMD extension, OVPM

efficiently exploits the DLP in MMAs. As a result, the deep vector pipeline can be filled

in to tolerate the long access latencies, and thus improve the performance of MMAs.

This evaluation confirms that OVPM has a higher performance than a currently popular

approach to MMAs.

To confirm that OVPM improve the computational efficiency of MMAs with short

vectors by reducing the pipeline stalls, the stalled cycles of VLSU pipeline are evalu-

ated, in terms of vector memory blank cycles (VMBCs). VMBCs are the accumulation

of the exposed VLSU pipeline stalls. For a given program, a VMBC becomes smaller

if the period of underutilizing memory bandwidth is shorter. Therefore, a small VMBC

means an efficient use of memory bandwidth. Figure 2.6 shows the relative VMBCs of

OVPM against IVPM. VMBCs of all the benchmark programs are reduced when employ-

ing OVPM, especially for the programs classified to short vector categories. Compared

28

2.5. Performance Evaluations

Figure 2.7: Power Consumption Breakdown.

with the efficiency improvement, VMBCs decrease as the speedup ratio increases. This

proves that the main factor of performance improvements by the proposed architecture is

an efficient use of the memory bandwidth. One exception is the benchmark program ray.

This is because most of the pipeline stall happened in VFUs in the case of IVPM. Conse-

quently, these evaluations clarify that OVPM could improve the computational efficiency

on short vector processing by reduce the pipeline stalls.

Breakdown of Power Consumption

Figure 2.7 shows the power breakdowns of OVPM and IVPM. OVPM can be implemented

with only a 7% higher power consumption than IVPM because it shares the renaming

unit and commit unit with the scalar unit. The additional power consumption of OVPM

comes from vector register files, vector reorder buffers, and load and store queues. OVPM

adopts a larger number of physical vector register files than IVPM. Those vector register

files are used for register renaming in order to omit name dependencies. Moreover, OVPM

29

2.5. Performance Evaluations

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

R
el

at
iv

e
En

er
gy
	

OVPM	
 IVPM	

Figure 2.8: Energy Consumption of OVPM and IVPM.

consumes additional power for realizing the out-of-order execution of vector instructions

by using the vector reorder buffers. The load and store queues of OVPM also achieve

a higher power consumption than those of IVPM because they install new hardware to

detect the load-store coherency.

Figure 2.8 shows the energy consumption of IVPM and OVPM. OVPM achieves a

lower energy consumption than IVPM, especially for the MMAs with short vectors. This

is because OVPM could significantly shorten the execution times of MMAs with short

vectors at a low additional power cost. Consequently, this evaluation confirms that it is

worth to invest some power budget to OVPM for media processing from the point of view

of power efficiency.

30

2.6. Conclusions

2.6 Conclusions

Aiming to enhance the potential of GPPs on MMAs, a vector extension with OVPM has

been proposed. OVPM overcomes the inefficiencies in executing MMAs by conventional

vector architectures, which obey an in-order instruction issue policy. OVPM is imple-

mented by using two instruction buffers. The two instruction buffers ensure that vector

instructions can be issued as long as their operands are ready. The evaluation results

show that OVPM obtains 3.25x speedup on average with only 7% additional power con-

sumption. The results indicate that OVPM could improve the power efficiency of MVPX

for all MMAs.

31

Chapter 3

A Multi-banked Cache Memory

Associating one Tag with Multiple

Data Array

3.1 Introduction

Vector processors, used in high-end computing systems are famous for their high data

transfer performance [26]. However, the high data transfer performance leads to enormous

costs in terms of chip area, power consumption and energy consumption. For instance, the

vector processor of an SX-9 supercomputer system employs 8960 I/O pins for simultaneous

data transfers from/to main memory units [42]. The large number of I/O pins is the main

reason to make the chip area reach nearly 400 mm2 and consume up to 240 W [43].

Moreover, a lot of energy is consumed on off-chip memory accesses, which consumes 70%

of the energy consumption of an SX-9 node including 16 processors and 1 TB shared

memories [44]. These costs are too expensive for desktop computers, which is the main

execution platform of MMAs. Therefore, the high bandwidth memory sub-systems cannot

straightforwardly transplant to desktop computers.

In the previous researches of high performance computing system domains, it has been

32

3.1. Introduction

shown that a multi-banked cache memory could effectively reduce the energy consumption

caused by high data transfer performance of vector processors [45] [46] [26] [47] [48].

At the same time, several literatures have also reported that MMAs have high data

reusability [49] [50]. Therefore, the multi-banked cache memory also has a high potential

for MMAs.

However, conventional multi-banked cache memories of vector processors cannot trans-

fer data efficiently for MMAs. In order to adopt multi-banked cache memories to MMAs,

there are at least two requirements that should be considered. There are vectors of various

lengths involved in MMAs. Hence, the first requirement is that the multi-banked cache

memory should efficiently transfer vectors of various lengths. Moreover, as the main exe-

cution environment of MMAs, desktop computers invest so much energy consumption in

a cache memory. Hence, the other requirement is that the multi-banked cache memory

should achieve a low energy consumption. However, conventional multi-banked cache

memories either have a low data transfer efficiency for short vectors or cost high energy

consumption on their tag arrays. Therefore, the purpose of this chapter is to improve the

data transfer performance of multi-banked cache memories for MMAs with short vectors

at a low energy consumption on tag arrays.

To this end, this chapter proposes a multi-banked cache memory for vector processors

called MVP-cache. Unlike conventional multi-banked cache memories that consist of

one data array and one tag array, MVP-cache associates one tag array with multiple

independent data arrays of small-sized cache lines. As a result, MVP-cache consumes less

static power on its tag arrays. At the same time, MVP-cache can also achieve a high

efficiency on short vector data transfers because the flexibility of data transfers can be

improved by controlling data transfers of each data array.

The rest of the chapter is organized as follows. Section 3.2 clarifies the challenges for

designing a multi-banked cache memory for MMAs. Section 3.3 describes the details of

MVP-cache, and Section 3.4 evaluates the performance of MVP-cache. Section 3.5 gives

the conclusions of this chapter.

33

3.2. Challenges for Designing a Multi-banked Cache Memory for MMAs

3.2 Challenges for Designing a Multi-banked Cache

Memory for MMAs

This section aims to clarify the problems of conventional multi-banked cache memories

and obtain some ideas to the design of MVP-cache.

Multi-banked cache memories have a considerable potential to improve data trans-

fer performance. Those cache memories consist of multiple independent cache banks,

called sub-caches, and each sub-cache is connected to vector register files via intercon-

nection fabric. When a cache hit occurs in a multi-banked cache memory, data can be

simultaneously transferred from/to multiple independent sub-caches. In this way, multi-

banked cache memories enable to improve the data transfer performance. Although the

multi-banked cache memories bring additional energy consumption for vector processors,

it is smaller than the energy saving induced by reducing the number of off-chip memory

accesses.

Conventional multi-banked cache memories can be classified into the multi-banked

cache memories of a large cache lines (MBC-L) [51] and of a small cache lines (MBC-

S) [47]. In this chapter, a multi-banked cache memory is classified into MBC-S if its

cache line size is equal to or smaller than 8 bytes, otherwise classified into MBC-L. The

problems of MBC-L and MBC-S are described as follows.

3.2.1 Problems of MBC-L

MBC-L allocates several data elements with consecutive addresses in the same sub-cache.

Figure 3.1 shows an example of MBC-L. There are four sub-caches, and each of them can

transfer 64-bit data per cycle. The cache line size of this MBC-L is assumed at 32 bytes.

A data layout of a vector V is shown in Figure 3.1. V represents a vector of double-

precision floating-point values. It is assumed that V contains eight elements. In this case,

since each cache line can store four data elements, the consecutive elements V[0] to V[3]

34

3.2. Challenges for Designing a Multi-banked Cache Memory for MMAs

64 bits 64 bits

Tag

Array

Data

Array
Sub-cache 0

Vector Register Files

0 1 2 3

Sub-cache 1

4 5 6 7

Sub-cache 2 Sub-cache 3

Under-

utilized

Under-

utilized

Interconnection

64 bits 64 bits

64 bits 64 bits 64 bits 64 bits

Tag

Array

Data

Array

Tag

Array

Data

Array

Tag

Array

Data

Array

cache line

(32 bytes)

Figure 3.1: Short Vector Data Transfer in MBC-L.

are stored in the sub-cache0, and elements V[4] to V[7] are stored in the sub-cache1.

The problem of MBC-L is that MMAs with short vectors cannot make a good use of

its high cache bandwidth. Figure 3.1 illustrates the problem of using MBC-L for MMAs

with short vectors. The vector V only has eight elements. Those eight elements are stored

in the cache lines of sub-cache0 and sub-cache1, and there are no data stored in the cache

lines of sub-cache2 and sub-cache3. Therefore, the data can be only transferred from

sub-cache0 and sub-cache1 can transfer data in parallel. Since two of four sub-caches are

underutilized, the sustained bandwidth only reaches half of the peak bandwidth.

In practical uses, the underutilization of sub-caches due to short vectors will be more

serious than the example. The vector V is assumed to be double-precision floating-point

values in Figure 3.1. In a realistic situation, single-precision floating-point values or integer

values are also commonly used in MMAs. Since the size of these data is smaller than those

of double-precision floating-point values, there are more data that are concentrated on

one sub-cache. This will potentially lead to more underutilized sub-caches. Moreover, to

obtain a high cache bandwidth, a large number of sub-caches would be employed. Espasa

et al. [47] have proposed a MBC-L for a vector ISA extension. Their MBC-L adopts 16

sub-caches and the cache line size of each sub-cache is 64 bytes equaling the size of eight

35

3.2. Challenges for Designing a Multi-banked Cache Memory for MMAs

Vector Register Files

Interconnection

Tag

Array

0

Data

Array
Tag

Array

Data

Array

Tag

Array

Data

Array
Tag

Array

Data

Array

Sub-cache 0 Sub-cache 1 Sub-cache 2 Sub-cache 3

1 2 3

4 5 6 7

64 bits 64 bits 64 bits 64 bits

64 bits 64 bits 64 bits 64 bits

cache line

(8 bytes)

Figure 3.2: Short Vector Data Transfer in MBC-S.

double-precision floating-point elements. This configuration means that, if the length of

a double-precision floating-point vector is shorter than 128, its data transfer potential

would be underutilized.

3.2.2 Problems of MBC-S

In contrast to MBC-L, MBC-S enables to efficiently transfer short vector data. Since each

cache line of MBC-S can store one or two double-precision floating-point data, consecutive

elements could be dispersed to the different sub-caches. Figure 3.2 illustrates a data layout

in the case of MBC-S of eight-byte cache lines. In this case, consecutive elements V[0] to

V[3] are dispersed in the sub-cache0 to sub-cache3, respectively because each cache line

can only store one double-precision floating-point element. By the full use of sub-caches,

MBC-S enables to transfer short vector data at a high bandwidth.

However, the smaller cache line size of MBC-S means more cache lines and thus more

cache tags. As a result, MBC-S needs larger tag arrays and a higher energy consumption

36

3.2. Challenges for Designing a Multi-banked Cache Memory for MMAs

than MBC-L. Because each cache line should have a cache tag, MBC-S has to install

larger tag arrays than MBC-L. The increase in tag array size leads to high energy con-

sumption. Although many researchers have proposed several techniques to reduce the

energy consumption of cache memories [52], most of them reduce the energy consumption

of data arrays. Therefore, the energy consumption of tag arrays will become more and

more serious.

3.2.3 Related Work

Espasa et al. have proposed an out-of-order vector architecture [53] and have applied

it to Tarantula [47], a vector extension to an Alpha processor. The cache mechanism

of Tarantula, which is categorized into MBC-L, employs 16 sub-caches and an address

re-ordering algorithm [54] to reduce the bank conflictions. However, performance degra-

dation of MMAs with short vectors could occur due to inefficient short vector transfers

for MBC-L.

Batten et al. have noted that not only access latency of memory sub-systems but also

their bandwidth is very important to improve the application performance [48]. They have

proposed an inexpensive non-blocking cache memory for vector architectures to improve

the bandwidth and reduce the access latency of memory sub-systems. Musa et al. have

designed a vector cache for vector architectures [51]. The vector cache introduces a bypass

mechanism and miss status handling registers to improve the sustain memory bandwidth

to next generation vector supercomputers. However, both of the two proposals adopt

MBC-S and cause high energy consumption in the tag arrays.

To sum up the above discussion, when considering the design of MVPX for desktop

computers, neither of the two configurations of multi-banked cache memories can satisfy

requirements of a high data transfer performance at low energy consumption. MBC-

L cannot transfer short vectors efficiently, and MBC-S consumes a large energy on tag

arrays. Therefore, a new organization of a multi-banked cache memory is needed to

37

3.2. Challenges for Designing a Multi-banked Cache Memory for MMAs

overcome the drawbacks of MBC-L and MBC-S.

38

3.3. MVP-cache

V

V

Sub-Cache n-1

Tag

Array 0

…

Data Array

0

Data Array

1

Data Array

n-1

AGU

Request

Queue 0
Request info

Address info

masked bits

Request

Queue n-1

…

Data Array

0

Data Array

1

Data Array

n-1
Sub-Cache 0

…

Tag Array

n-1

…

…
Crossbar

Vector Register Files

To Cache Controller

Allocator Cache Controller

Vector Unit

MVP-cache

Figure 3.3: Block Diagram of MVP-cache.

3.3 MVP-cache

The purpose of MVP-cache is to increase the data transfer performance for short vectors

at a low energy consumption. The design of MVP-cache makes a full use of the advantages

of MBC-L and MBC-S. Essentially, MBC-L costs less energy on tag arrays than MBC-S

because one cache tag is associated with a large cache line. Meanwhile, MBC-S is more

efficient than MBC-L for short vector data transfers because consecutive vector elements

are dispersed across different sub-caches due to the small-sized cache line. Therefore, the

key idea of this approach is to associate multiple independent data arrays of the same

size with one tag array.

3.3.1 Organization of MVP-cache

Figure 3.3 shows the organization of MVP-cache. As mentioned above, MVP-cache asso-

ciates one tag array with multiple data arrays with small-sized cache lines in a sub-cache.

39

3.3. MVP-cache

Each of data arrays adopts an eight-byte cache line, which is the size of double-precision

floating-point values, and independently connects to cache ports of the vector unit via a

crossbar. The cache lines that are associated with the same tag act as an atomic unit of

data management and miss handling.

For data transfers of MVP-cache, if a cache hit occurs, cache lines that are associated

with the same tag will be transferred. However, sometimes only a portion of data arrays

in a sub-cache need to transfer their data. Transferring the unnecessary data to vector

register files means a waste of energy consumption and bandwidth of MVP-cache. There-

fore, MVP-cache controls which data should be transferred, by adding a new field in a

cache request, called Masked Bits. If a masked bit is set to one, data should be transferred

from the corresponding data array to the vector register file, otherwise the data transfer

is disabled. By using masked bits, MVP-cache avoids transferring the unnecessary data

and improves its energy efficiency.

MVP-cache could potentially satisfy the requirement of high data transfer performance

for short vectors at a low energy consumption. First, because one tag array manages

multiple data arrays in a sub-cache, the size of tag arrays is much smaller than that of

MBC-S. It is assumed that the cache capacity and cache line size of MVP-cache are the

same as those of MBC-S. In the case where MVP-cache associates one tag array with n

data arrays, the size of tag arrays of MVP-cache is n times smaller than that of MBC-S.

Second, MVP-cache can tolerate even shorter vectors than MBC-L. It is assumed that,

in a typical case, the cache line size of data array of MVP-cache is 8 bytes, and that of

MBC-L is 64 bytes. The number of data arrays of MVP-cache is NMV P , and the number

of data arrays of MBC-L is NMBCL. For a unit stride access of double-precision floating-

point data, at least NMV P elements are needed for the full use of cache bandwidth. As

analyzed in Section 3.2.1, for MBC-L, in order to make a full use of cache bandwidth,

the vector length of applications should be longer than 8×NMBCL. When achieving the

same cache bandwidth, the value of NMV P is equal to that of NMBCL. Thus, MVP-cache

needs eight times less data elements than MBC-L to fully use the cache bandwidth. In

40

3.3. MVP-cache

Masked bits
Masked bits

Masked bits
Masked bits

Block ID
Block ID

Block ID
Block ID

Bytes in
Cache line

Data
Array ID

Sub-
cache ID

Set ID Cache Tag

(2) Decode the Data Array
ID to masked bits

00 -> 0001
01 -> 0010
10 -> 0100
11 -> 1000

(3) Check the address
whether same or not

(4) Merge the cache port IDs, addresses and
masked bits, which addresses are the same

AGU
(1) Generate memory access
addresses and cache port IDs

(5) Dispatch the final address to
corresponding request queue

Request Q 0 Request Q 1 Request Q n-1

Cache
Port ID

Set no. Cache Tag Masked bits Bytes in
Cache line

Sub-
cache ID

Set ID Cache Tag Masked bits
Cache
Port ID

Cache
Port ID

Cache
Port ID

Cache
Port ID

Request info. Address info. Masked bits

Ex.

Figure 3.4: Generation of Request Info, Address Info and Masked Bits.

other words, MVP-cache is potentially more efficient for MMAs with short vectors than

MBC-L.

3.3.2 Data Transfer Control Information of MVP-cache

In order to control the data transfer of MVP-cache, its cache controller needs some cache

access information including Request Info, Address Info and Masked Bits. Request info

stores information of the cache port IDs requested by a cache access. Address Info is the

target address of the cache access. Masked Bits own the hints that which data arrays in a

sub-cache should carry out data transfers. Address Info is used to judge if a cache access

hits or misses, while Request Info and Masked Bits are used by the crossbar allocators to

generate the connections between MVP-cache and vector register files.

The cache access information is generated according to memory addresses and stored

in the data request queues. The generation steps of Request Info, Address Info and Masked

Bits are shown in Figure 3.4 and described as follows.

Step 1 Generate the memory addresses accessed by a vector load/store instruction, and

41

3.3. MVP-cache

determine the cache port IDs used for the accesses. For each address, cache tag,

set ID, sub-cache ID, data Array ID and bytes in a cache line can be

obtained according to the configuration of MVP-cache.

Step 2 Decode data array IDs to set masked bits. If the data array ID of a memory

access is n, the n th masked bit should be set as one, because the data array ID

means that the specified data array owns the data that should be transferred.

Step 3 Check whether there are the same memory addresses in the generated addresses.

The cache tag, set ID and sub-cache ID of all access addresses are compared

each other. If they are the same, it means that they would access the same set of

the data arrays in the same sub-cache.

Step 4 If there are the same memory addresses, their cache port IDs, memory ad-

dresses, and masked bits are merged to generate Request Info, Address Info, and

Masked Bits, respectively. For Masked Bits, they are merged by using the bit-wise

OR operation with the other masked bits. For cache port IDs, they are merged by

using logical SHIFT and bit-wise AND operations to hold the whole information.

Step5 Dispatch the final results to the corresponding request queues according to the

Sub-cache ID.

3.3.3 MVP-cache Crossbar Allocator

The MVP-cache controller adopts an n × m allocator to control the crossbar, where n

denotes the number of data arrays of all sub-caches, and m means the number of cache

ports. The base design of the allocator and crossbar is described in [55] [56]. The input

of the allocator is a request matrix R = (ri,j)n×m, where the element ri,j = 1 means that

data array i needs to use cache port j. The output of the allocator is a grant matrix

G = (gi,j)n×m, where the element gi,j = 1 means that data array i is allowed to use cache

port j. G = (gi,j)n×m is used to configure the crossbar of MVP-cache.

42

3.3. MVP-cache

Algorithm 1 Generation of Request Matrix R = (ri,j)n×m Using Masked Bits and Re-
quest Info.

1: for i = 0→ n− 1 do
2: for j = 0→ m− 1 do
3: if globalMaskBit[i] == 1 and j == globalRequestInfo[i] then
4: r[i][j]← 1
5: else
6: r[i][j]← 0
7: end if
8: end for
9: end for

MVP-cache uses Masked Bits to control which data array transfers the data to vec-

tor registers. Therefore, it is also necessary to designs an algorithm that generates the

request matrix R = (ri,j)n×m with the concern of Masked Bits. The algorithm is shown

in Algorithm 1. The globalMaskBit[i] and globalRequestInfo[i] mean the Masked Bits

and Request Info of all sub-caches, respectively. They are generated by combining the

local Masked Bits and Request Info of each sub-caches together. By using Algorithm 1,

Masked Bits can be used to control data transfers that are really necessary for the vector

unit as mentioned in Section 3.3.1.

3.3.4 Tag Array Conflicts of MVP-cache

The memory accesses to the different sets in the same sub-cache cannot be performed

simultaneously because a sub-cache can only judge whether a cache access hits or misses

once per cycle. In this chapter, such a situation is called a tag array conflict. Tag array

conflicts frequently occur in the case of stride accesses. The wider the stride width is, the

more tag array conflicts occur.

In this chapter, two parameters of MVP-cache are tuned in order to reduce the number

of tag array conflicts in stride memory accesses. One is the numbers of sub-caches. The

other one is the numbers of data arrays in one sub-cache. Increasing the number of

sub-caches increases the probability that memory accesses are dispersed across different

sub-caches, while increasing the number of data arrays increases the probability that

43

3.3. MVP-cache

State

0

State

1

VLD / early eviction signal

VST / early eviction signal

SLD /

SST /

VLD /

VST /

Input / Output

SLD /

SST /

Figure 3.5: State Transmission Diagram.

memory accesses are concentrated on the same set in the same sub-cache. Increasing the

numbers of data arrays or sub-caches also brings extra energy consumption in MVP-cache.

However, this chapter considers that the overhead is small because the stride width of an

MMA is less than three in most cases [54].

3.3.5 Coherency of MVP-cache with L1 cache

As shown in Figure 3.3, both the L1 data cache memory and the vector unit can read

and write data from/to MVP-cache. Therefore, the coherency between the L1 data cache

memory and MVP-cache should be considered. Essentially, this problem equals to which

cache memory owns the latest data. Therefore, this section describes a state machine to

record the ownership of latest data.

From the view point of a memory sub-system, the L1 data cache memory and MVP-

cache can be directly accessed. Hence, only two internal states are needed for the state

machine. It is defined that State0 means that MVP-cache owns the latest data, and

State1 means that the L1 data cache memory also owns the latest data. The varieties of

data requirement are considered as the inputs of the state machine. There are four inputs

44

3.3. MVP-cache

including combinations of data load and store requirement from the vector unit and the

L1 data cache memory. They are vector load (VLD), vector store (VST) directly to the

MVP-cache, and scalar load (SLD), scalar store (SST) to the L1 data cache memory. The

output signals are used to control the data transfers between the L1 data cache memory

and MVP-cache.

Figure 3.5 shows inputs, outputs, and the state transmissions of the state machine.

For State0, in the cases of VLD and VST, the state would not be changed because the

ownership of the data is not changed. Meanwhile, in the cases of SLD and SST, the

cache line would be transferred from/to the L1 data cache memory, and the ownership is

changed. Therefore, in these cases, the state transits to State1. For State1, in the cases of

VLD and VST, it is necessary to update cache lines because the latest data are stored in

the L1 data cache memory. Therefore, a signal would be send to the L1 data cache memory

to invalidate the corresponding cache line and update MVP-cache. Such a behavior is so-

called early eviction, and its mechanism has been proposed in many literatures [57] [58].

Then, data are transferred to/from the vector unit and the state transits to State0. In

this state, if the input is the SLD and SST, the state does not transit, due to no change

in ownership. In this way, the cache coherency can be guaranteed.

45

3.4. Performance Evaluations

Table 3.1: Configuration of MVPX and Memory Sub-System.

Parameters Value
Process Technology 32 nm
Processor Frequency 1GHz

Vector ALU Pipeline Latency 10 cycles
Vector Multiplier Pipeline Latency 15 cycles
Vector Division Pipeline Latency 20 cycles

Number of Vector Lanes 8
Number of Architectural Vector Registers 16

Number of Physical Vector Registers 96
Entries per Vector Register 128 entries

The size of VMIB and VAIB 128 entries
The size of Vector Load and Store Queue 512 entries

Number of Cache Ports 8
Cache Capacity 2 MB

Cache Bandwidth 64 bytes/cycle
Cache Line Size of MVP-cache 8 bytes

MVP-cache Access Latency 20 cycles
Number of Sub-caches 4

Number of Data Arrays in a Sub-cache 8
Memory Bandwidth 32 bytes/cycle

Main Memory Latency 100 cycles
Cache Line Size of MBC-S 8 bytes
Cache Line Size of MBC-L 64 bytes

MBC-L Access Latency 10 cycles
MBC-S Access Latency 10 cycles

Number of Sub-caches of MBC-S and MBC-L 32

3.4 Performance Evaluations

3.4.1 Experimental Methodology

A simulator of MVP-cache has been developed based on the SimpleScalar toolset [39]. The

simulator also adopts OVPM proposed in Chapter 2 to estimate the performance of MVP-

cache. McPAT0.8 [40] and CACTI6.5 [59] are used to evaluate the energy consumption

of MVP-cache. The OVPM specification of MVP-cache MBC-S, and MBC-L are listed in

Table 3.1. The cache line sizes of MVP-cache, MBC-S, and MBC-L are 8 bytes, 8 bytes

46

3.4. Performance Evaluations

0%
20%
40%
60%
80%
100%
120%

0
0.2
0.4
0.6
0.8

1
1.2

H
it

 R
a

te
s

R
el

a
ti

v
e

E
n

er
g
y

w/o MVP-cache w/ MVP-cache cache hit rates

Figure 3.6: Energy Reduction Effect of MVP-cache.

and 64 bytes, respectively. To fairly compare performances of the three kinds of cache

memories, their cache capacities and cache bandwidths are set to the same values. All the

three multi-banked memories support the interleaved memory access to hide the access

latencies and avoid bank conflicts. The benchmark programs used in this chapter are the

same as Chapter 2.

3.4.2 Evaluation Results

Energy Reduction of MVP-cache

Since data transfers from MVP-cache do not need to go through I/O pins, they consume

less energy than those from an off-chip memory. However, MVP-cache itself also consumes

a certain energy. Therefore, the energy consumption with an off-chip memory is evaluated

in order to clarify energy reduction effects by introducing MVP-cache.

Figure 3.6 illustrates the evaluation results. The energy consumption of VPM with

MVP-cache is compared to that without MVP-cache. For all benchmark programs except

vips, the memory sub-system with MVP-cache consumes less energy. The main factor

of energy reduction is that MVP-cache reduces the number of off-chip memory accesses.

Therefore, the energy saving effects of MVP-cache are proportional to the cache hits of

each MMA. In the case of vips, since there are no data that can be reused, the memory

47

3.4. Performance Evaluations

0.00

0.20

0.40

0.60

0.80

1.00

1.20

R
el

a
ti

v
e

S
u

st
a

in
ed

 D
a

ta

T
ra

n
sf

er
 P

er
fo

rm
a

n
ce

MBC-S MBC-L MVP-cache

Figure 3.7: Data Transfer Performance of MVP-cache.

sub-system with MVP-cache consumes a bit higher energy than that without MVP-cache.

The results show that energy consumption saved by MVP-cache is much larger than that

it costs. Therefore, adding MVP-cache is an effective way to save the energy consumption

of VPM for desktop computers.

Data Transfer Performance of MVP-cache

Figure 3.7 compares sustained bandwidths of MBC-S, MBC-L and MVP-cache, which are

normalized by the bandwidth of MBC-S. MVP-cache attains almost the same performance

as MBC-S, and a higher performance than MBC-L. The performance improvement against

MBC-L is significant for MMAs in the short vector category. Hence, memory intensive

MMAs with short vectors such as clip can achieve the greatest performance improvement

in all the benchmark programs. Note that there is no performance improvement by MVP-

cache in the benchmark vips even though it belongs to the short vector category. This

is because there is no data reusability in this benchmark program. These results suggest

that MVP-cache can transfer short vector data more efficiently than MBC-L.

48

3.4. Performance Evaluations

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

MBC-S MBC-L MVP-cache

Po
w

er
 C

on
su

m
pt

io
n

(W
)	

data arrays
static power

data arrays
dynamic power

tag arrays
static power

tag arrays
dynamic power

interconnection
static power

interconnection
dynamic power

Figure 3.8: Power Consumption Breakdown of MVP-cache.

Power Consumption and Area Breakdown

Another key factor to affect the energy is power consumption. Figure 3.8 illustrates

the power consumption breakdowns of MVP-cache, MBC-S, and MBC-L. Compared with

MBC-S, MVP-cache has less power consumption on tag arrays because multiple data array

associated with the same tag array. In this way, the size of tag array could be reduced.

The reduction of tag size lead to smaller area for tag arrays as shown in Figure 3.9. As

a result of small area of tag arrays in MVP-cache, the static power consumption of tag

arrays of MVP-cache is reduced. Moreover, the dynamic power consumption of tag arrays

of MVP-cache can be also reduced compared with that of MBC-S. This is because sharing

tag array with multiple data arrays could reduce the size of each tag. Therefore, the power

consumption on driving tag arrays become lower than MVP-S. As a result, the dynamic

power consumption of tag array of MVP-cache is also reduced. Meanwhile, MVP-cache

49

3.4. Performance Evaluations

0

5

10

15

20

25

MBC-L MCS-S MVP-cache

A
re

a
 (

m
m

2
)

data arrays tag arrays interconnection

Figure 3.9: Chip Area of MVP-cache.

has to adopt more sub-caches to reduce the tag array conflicts. Hence, it costs more power

on data arrays and the interconnection between cache and vector register files.

Figure 3.9 compares chip area of MVP-cache with that of MBC-S and MBC-L. The

evaluation results show that the tag array area of MVP-cache is smaller than MBC-

S. Although the complicated interconnection of MVP-cache takes a larger chip area, the

total size of MVP-cache is still smaller than MBC-S. This results confirm that MVP-cache

could effectively reduce the tag array size by associating one tag array with multiple data

arrays.

Energy Reduction by MVP-cache

Energy consumption of MVP-cache is compared with that of MBC-S and MBC-L. Fig-

ure 3.10 shows the energy consumptions normalized by that of MBC-S. Except for the

benchmark programs vips and fft, MVP-cache achieves a lower energy consumption for

MMAs in the short vector category because it can transfer short vector data more effi-

ciently than MBC-L and cost less power on tag arrays than MBC-S. vips is an exception

50

3.4. Performance Evaluations

0

0.2

0.4

0.6

0.8

1

1.2

R
el

a
ti

v
e

E
n

er
g

y
 C

o
n

su
m

p
ti

o
n

 MBC-S MBC-L MVP-cache

Figure 3.10: Comparison of Energy Reduction among MBC-S, MBC-L and MVP-
cache.

because there is no data reusability in this benchmark program. For the benchmark pro-

gram fft, MVP-cache consumes a higher energy than MBC-L because it only obtains a

slight performance improvement from MVP-cache. On the other hand, for MMAs in long

vector categories, MVP-cache achieves a lower energy consumption than MBC-S but a

slightly higher energy consumption than MBC-L because these MMAs obtain little perfor-

mance improvement from MVP-cache. Since the energy reduction effect of MVP-cache in

the short vector category is larger than its energy consumption overhead in the long vec-

tor category, MVP-cache obtains the lowest energy consumption on average. Therefore,

MVP-cache is a low energy approach to the improvement of the data transfer performance.

Design Space Exploration of MVP-cache

As mentioned in Section 3.4, it is necessary to clarify the trade-off between the perfor-

mance and energy consumption when adjusting the numbers of data arrays and sub-

caches. Increasing the numbers of data arrays and sub-caches would effectively reduce

the performance degradation caused by stride accesses. Meanwhile, a large number of

51

3.4. Performance Evaluations

0.E+00

1.E+06

2.E+06

3.E+06

4.E+06

5.E+06

6.E+06

7.E+06

0

0.01

0.02

0.03

0.04

0.05

0.06

su
b

-c
ac

h
e

1
2

8

su
b

-c
ac

h
e

6
4

su
b

-c
ac

h
e

3
2

su
b

-c
ac

h
e

1
6

su
b

-c
ac

h
e

8

su
b

-c
ac

h
e

4

su
b

-c
ac

h
e

2

su
b

-c
ac

h
e

1

su
b

-c
ac

h
e

6
4

su
b

-c
ac

h
e

3
2

su
b

-c
ac

h
e

1
6

su
b

-c
ac

h
e

8

su
b

-c
ac

h
e

4

su
b

-c
ac

h
e

2

su
b

-c
ac

h
e

1

su
b

-c
ac

h
e

3
2

su
b

-c
ac

h
e

1
6

su
b

-c
ac

h
e

8

su
b

-c
ac

h
e

4

su
b

-c
ac

h
e

2

su
b

-c
ac

h
e

1

su
b

-c
ac

h
e

1
6

su
b

-c
ac

h
e

8

su
b

-c
ac

h
e

4

su
b

-c
ac

h
e

2

su
b

-c
ac

h
e

1

su
b

-c
ac

h
e

8

su
b

-c
ac

h
e

4

su
b

-c
ac

h
e

2

su
b

-c
ac

h
e

1

data static energy (J) data dynamic energy (J) tag static energy (J)

tag dynamic energy (J) crossbar static energy (J) crossbar dynamic energy (J)

A
v

er
ag

e
E

n
er

g
y

 (
J)

C
y

cles

data array 128 data array 64 data array 32 data array 16 data array 8

Figure 3.11: Average Energy Consumption and Execution Cycles of all Benchmark
Programs at Various Configuration of MVP-cache.

data arrays would lead to a high power consumption on the crossbar between data arrays

and cache ports of the vector unit. Moreover, increasing the number of sub-caches would

increase the energy consumption of tag arrays.

Figure 3.11 shows average energy consumption breakdowns and execution cycles of

all benchmark programs with the charge of the numbers of sub-caches and data arrays.

Sub-cache n (n=8, 16, 32, 64, 128) and data array m (m=1, 2, 4, 8, 16, 32, 64, 128)

represent that the numbers of sub-caches and data arrays are n and m, respectively. The

division of n and m denotes the number of data arrays that are associated with one tag

array.

With the decrease in the number of data arrays, the energy consumption of the crossbar

is also reduced. It achieves a reasonable value in the case of 16 data arrays. At the same

time, when the 16 data arrays share one tag array, the energy consumption of the tag

array is reduced significantly. Although the average execution cycles of MMAs increase

due to stride accesses, the decrease of performance is much smaller than the reduction in

energy consumption. Therefore, one tag array associated with 16 data arrays is the most

52

3.4. Performance Evaluations

0

0.2

0.4

0.6

0.8

1

1.2

R
el

a
ti

v
e

E
n

er
g
y

data128_sub128 data128_sub64 data128_sub32

data128_sub16 data128_sub8 data128_sub4

data128_sub2 data128_sub1 data64_sub64

data64_sub32 data64_sub16 data64_sub8

data64_sub4 data64_sub2 data64_sub1

data32_sub32 data32_sub16 data32_sub8

data32_sub4 data32_sub2 data32_sub1

data16_sub16 data16_sub8 data16_sub4

data16_sub2 data16_sub1 data8_sub8

data8_sub4 data8_sub2 data8_sub1

0.24

0.29

0.34

0.39

0.44

0.49

R
el

a
ti

v
e

E
n

er
g

y

data16_sub1

data32_sub1

data32_sub8

data 16 sub 1

data 16 sub 1

Stride 1

Stride 2

data 16 sub 1

data 32 sub 1

Stride 3

Stride 4

data 32 sub 1

data 32 sub 1

Stride 5

Stride 6

data 32 sub 8

data 32 sub 8

Stride 7

Stride 8

Lowest

Energy

Configuration

Stride

Width

Figure 3.12: Energy Consumption for Different Stride Width.

energy efficient configurations for the MMAs.

Energy Consumption for Different Stride Widths

In order to investigate energy consumptions in the cases of different stride widths, MVP-

cache is evaluated by using some micro benchmark programs. The micro benchmark pro-

grams are designed as an addition of two vectors with different stride widths. Figure 3.12

shows the energy consumption of different MVP-cache configurations. Sub n (n=8, 16,

32, 64, 128) and data array m (m=1, 2, 4, 8, 16, 32, 64, 128) represent that the numbers of

sub-caches and data arrays are n and m, respectively. The results are normalized against

the energy consumption in the case of 128 data arrays and 128 sub-caches.

With increase of stride widths, the impacts from stride accesses would also increase,

which leads to further performance degradation. Hence, in the cases of stride widths

ranged from 1 to 8, the lowest energy configurations of MVP-cache is different. The

configuration of 16 data arrays sharing one tag array, 32 data arrays sharing one tag

array and 32 data array sharing four tag arrays achieve the lowest energy consumptions

for stride widths ranging from 1 to 3, 4 to 6, and 7 to 8, respectively. On average, these

three configurations achieve almost the same energy consumption. However, since the

stride widths of most of the MMAs is less than three [54], the configuration of 16 data

53

3.4. Performance Evaluations

arrays sharing one tag array is considered as the most efficient for MMAs. This result is

also in accord with the result in Section 3.4.2.

54

3.5. Conclusions

3.5 Conclusions

In order to match the demands of high data transfer performance and low energy con-

sumption, MVP-cache is designed and evaluated. It associates one tag array with multiple

data arrays to reduce the energy consumption of tag arrays and improve the efficiency

on short vector data transfers. Based on the performance evaluations with MMAs, the

effects of MVP-cache are discussed in terms of data transfer performance improvement

and energy reduction. The evaluation results show that MVP-cache can achieve a com-

parable performance with the other competitive cache organizations, while the energy

consumption of MVP-cache is smaller than those of the other. It is also found that the

configuration of 16 data arrays associated with one tag array is a reasonable configura-

tion for media benchmark programs used in this chapter. When the ranges of MMAs

extend, it is also possible to use the same methodology mentioned in this chapter to find

a reasonable configuration.

As the future work of this chapter, the implantation of MVP-cache will be considered

by using the 3D integration technologies in order to further reduce the energy consump-

tion.

55

Chapter 4

A Performance-Power Optimization

Method for MVPX

4.1 Introduction

This chapter aims to improve the power efficiency of MVPX by satisfying the hardware

requirements of each MMA. Chapters 2 and 3 introduced the mechanisms to improve the

computing performance and data transfer performance of MVPX. In those two chapters,

the number of parallel pipelines in each VFU and the number of cache ports are fixed

for all MMAs. However, each MMA has its own performance requirement. For some

memory-intensive MMAs, they require a large number of cache ports to improve the data

transfer performance. Meanwhile, the computationally-intensive MMAs require a large

number of parallel pipelines to improve the computing performance. If the numbers of

hardware resources are fixed, MVPX cannot always achieve power-efficient for all MMAs.

When MVPX employs a large amount of hardware resources to fit the maximum hardware

requirement, MVPX wastes its power consumption for the MMAs which do not need so

much hardware. On the other hand, if MVPX employs a small amount of hardware, it

loses performance for the MMAs, which need more hardware resources to improve their

performance.

56

4.1. Introduction

A common approach to this problem is to employ a large amount of hardware resources

and turn off the unnecessary ones for each application by using power gating techniques

[60] [61]. Many kinds of hardware resources could be the power gating candidates, such

as cache memories [62], arithmetic function units [63] [64] and cache ports [65] [66]. This

chapter focuses on the number of parallel pipelines in each VFU and the number of cache

ports because they are the most important parameters to affect the performance and

power consumption of MVPX. Therefore, in order to achieve a power-efficient execution

for any MMAs, it is important to find the proper numbers of the two parameters.

In the previous researches, either a simulation approach [67] [68] or an analytic ap-

proach [69] [70] has been used to find the most power-efficient configuration of processors.

The simulation approach uses performance and power simulators of processors to obtain

the execution cycles and power consumptions for all possible combinations of hardware re-

sources. Then, the most power-efficient configuration could be found by sorting the energy

consumption of all possible configurations. Since the most power-efficient configuration

for an MMA may vary during the execution, the configuration should be dynamically

optimized at runtime. Therefore, it is necessary to find the most power-efficient config-

uration as quickly as possible. However, the simulation approach takes a long time to

find the most power-efficient configuration due to a long simulation time to obtain the

execution cycles and power consumption for a configuration and exhaustively simulating

all possible configurations.

Meanwhile, the analytic approach estimates the performance and power consump-

tion of a processor by using an analytic model established for a processor. Analytical

approaches cost a shorter time than simulation approaches because of the quicker estima-

tions of execution cycles and power consumption by using an analytical model. However,

the problem of the analytic approach is that it still exhaustively estimates the execution

cycles and power consumption for all possible configurations, which is the waste of time

on a large amount of unnecessary estimation.

In order to find the most power-efficient configuration as quickly as possible, this chap-

57

4.1. Introduction

ter proposes a performance-power optimization method (PPoM) for MVPX. Motivated by

the avoidance of unnecessary estimation, PPoM adopts the greedy searching method to

find the most power-efficient configuration. PPoM examines the performance bottleneck

of a certain configuration, and only estimates the execution cycles and power consump-

tion of the configuration, which could remove the current performance bottleneck. In this

way, a large amount of unnecessary estimation could be avoided. Moreover, for the sake

of a quick examination of the performance bottleneck and estimation of execute cycles

and power consumption, this chapter proposes an analytic model by using the enqueue

and dequeue throughputs of issue queues. This is because the enqueue and dequeue

throughputs could reflect the utilization of hardware resources.

58

4.2. Importance of Finding the Most Power-Efficient Configuration

4.2 Importance of Finding the Most Power-Efficient

Configuration

In this section, the requirements for finding the most power efficient configuration are clar-

ified by the observation of the performance of MMAs on MVPX at various configurations.

Then, this section discusses related work in order to show the problems of conventional

approaches.

4.2.1 Various Most Power-efficient Configurations for each

MMAs

0.E+00

5.E-02

1.E-01

2.E-01

2.E-01

port4 port8 port16 port32 port64

E
n

e
rg

y
 C

o
n

su
m

p
ti

o
n

 (
J

)

pipe4 pipe8 pipe16 pipe32 pipe64

Lowest

Energy

Figure 4.1: Energy Consumption of clip at Different Numbers of VFUs and Cache
Ports.

Figures 4.1 to 4.9 show the energy consumption at various numbers of parallel pipelines

in each VFU and cache ports. The arrows in the figures show the most power-efficient

configuration. Each benchmark program requires a different configuration to achieve the

highest power efficiency due to various hardware requirements. Computationally-intensive

MMAs, such as ray, require a large number of parallel pipelines in each VFU to improve

the computing performance, while memory-intensive MMAs such as MxM require a large

number of cache ports to improve the data transfer performance. On the other hand, the

59

4.2. Importance of Finding the Most Power-Efficient Configuration

0.E+00

5.E-02

1.E-01

2.E-01

2.E-01

3.E-01

3.E-01

4.E-01

4.E-01

port4 port8 port16 port32 port64

E
n

er
g

y
 C

o
n

su
m

p
ti

o
n

 (
J

)
pipe4 pipe8 pipe16 pipe32 pipe64

Lowest

Energy

Figure 4.2: Energy Consumption of power at Different Numbers of VFUs and Cache
Ports.

0.E+00

2.E-01

4.E-01

6.E-01

8.E-01

1.E+00

1.E+00

1.E+00

2.E+00

port4 port8 port16 port32 port64

E
n

er
g

y
 C

o
n

su
m

p
ti

o
n

 (
J

)

pipe4 pipe8 pipe16 pipe32 pipe64

Lowest

Energy

Figure 4.3: Energy Consumption of fft at Different Numbers of VFUs and Cache
Ports.

0.E+00

2.E-01

4.E-01

6.E-01

8.E-01

1.E+00

1.E+00

1.E+00

port4 port8 port16 port32 port64

E
n

er
g

y
 C

o
n

su
m

p
ti

o
n

 (
J

)

pipe4 pipe8 pipe16 pipe32 pipe64

Lowest

Energy

Figure 4.4: Energy Consumption of face at Different Numbers of VFUs and Cache
Ports.

60

4.2. Importance of Finding the Most Power-Efficient Configuration

0.E+00

5.E-03

1.E-02

2.E-02

2.E-02

3.E-02

port4 port8 port16 port32 port64

E
n

er
g

y
 C

o
n

su
m

p
ti

o
n

 (
J

)
pipe4 pipe8 pipe16 pipe32 pipe64

Lowest

Energy

Figure 4.5: Energy Consumption of vips at Different Numbers of VFUs and Cache
Ports.

0.E+00

2.E-01

4.E-01

6.E-01

8.E-01

1.E+00

1.E+00

1.E+00

2.E+00

2.E+00

port4 port8 port16 port32 port64

E
n

er
g

y
 C

o
n

su
m

p
ti

o
n

 (
J

)

pipe4 pipe8 pipe16 pipe32 pipe64

Lowest

Energy

Figure 4.6: Energy Consumption of MxM at Different Numbers of VFUs and Cache
Ports.

0.E+00

5.E-03

1.E-02

2.E-02

2.E-02

3.E-02

port4 port8 port16 port32 port64

E
n

er
g

y
 C

o
n

su
m

p
ti

o
n

 (
J

)

pipe4 pipe8 pipe16 pipe32 pipe64

Lowest

Energy

Figure 4.7: Energy Consumption of VxM at Different Numbers of VFUs and Cache
Ports.

61

4.2. Importance of Finding the Most Power-Efficient Configuration

0.E+00

5.E-03

1.E-02

2.E-02

2.E-02

3.E-02

3.E-02

port4 port8 port16 port32 port64

E
n

er
g

y
 C

o
n

su
m

p
ti

o
n

 (
J

)

pipe4 pipe8 pipe16 pipe32 pipe64

Lowest

Energy

Figure 4.8: Energy Consumption of sphinx at Different Numbers of VFUs and Cache
Ports.

0.E+00

2.E-01

4.E-01

6.E-01

8.E-01

1.E+00

port4 port8 port16 port32 port64

E
n

er
g

y
 C

o
n

su
m

p
ti

o
n

 (
J

)

pipe4 pipe8 pipe16 pipe32 pipe64

Lowest

Energy

Figure 4.9: Energy Consumption of ray at Different Numbers of VFUs and Cache
Ports.

62

4.2. Importance of Finding the Most Power-Efficient Configuration

performance improvement cannot always match the overheads on power consumption.

As results, the most power-efficient configurations of each MMA are various. Therefore,

MVPX should adjust the numbers of parallel pipelines in each VFU and cache ports for

each MMA, and the accuracy of finding the most power-efficient configuration determines

the benefit of the reconfiguration capability.

4.2.2 Requirements for Finding the Most Power-Efficient Con-

figuration

0.E+00

1.E+06

2.E+06

3.E+06

4.E+06

5.E+06

6.E+06

port4 port8 port16 port32 port64

E
x

ec
u

ti
o

n
 C

y
cl

es

pipe4 pipe8 pipe16 pipe32 pipe64

Figure 4.10: Execution Cycles of clip at Different Numbers of VFUs and Cache
Ports.

0.E+00

2.E+06

4.E+06

6.E+06

8.E+06

1.E+07

1.E+07

port4 port8 port16 port32 port64

E
x

ec
u

ti
o

n
 C

y
cl

es

pipe4 pipe8 pipe16 pipe32 pipe64

Figure 4.11: Execution Cycles of power at Different Numbers of VFUs and Cache
Ports.

63

4.2. Importance of Finding the Most Power-Efficient Configuration

0.E+00

5.E+06

1.E+07

2.E+07

2.E+07

3.E+07

3.E+07

4.E+07

4.E+07

5.E+07

port4 port8 port16 port32 port64

E
x

ec
u

ti
o

n
 C

y
cl

es

pipe4 pipe8 pipe16 pipe32 pipe64

Figure 4.12: Execution Cycles of fft at Different Numbers of VFUs and Cache Ports.

0.E+00

5.E+06

1.E+07

2.E+07

2.E+07

3.E+07

3.E+07

4.E+07

4.E+07

port4 port8 port16 port32 port64

E
x

ec
u

ti
o

n
 C

y
cl

es

pipe4 pipe8 pipe16 pipe32 pipe64

Figure 4.13: Execution Cycles of face at Different Numbers of VFUs and Cache
Ports.

0.E+00
5.E+04
1.E+05
2.E+05
2.E+05
3.E+05
3.E+05
4.E+05
4.E+05
5.E+05
5.E+05

port4 port8 port16 port32 port64

E
x

ec
u

ti
o

n
 C

y
cl

es

pipe4 pipe8 pipe16 pipe32 pipe64

Figure 4.14: Execution Cycles of vips at Different Numbers of VFUs and Cache
Ports.

64

4.2. Importance of Finding the Most Power-Efficient Configuration

0.E+00

1.E+07

2.E+07

3.E+07

4.E+07

5.E+07

6.E+07

port4 port8 port16 port32 port64

E
x

ec
u

ti
o

n
 C

y
cl

es

pipe4 pipe8 pipe16 pipe32 pipe64

Figure 4.15: Execution Cycles of MxM at Different Numbers of VFUs and Cache
Ports.

0.E+00
5.E+04
1.E+05
2.E+05
2.E+05
3.E+05
3.E+05
4.E+05
4.E+05
5.E+05
5.E+05
6.E+05
6.E+05
7.E+05

port4 port8 port16 port32 port64

E
x

ec
u

ti
o

n
 C

y
cl

es

pipe4 pipe8 pipe16 pipe32 pipe64

Figure 4.16: Execution Cycles of VxM at Different Numbers of VFUs and Cache
Ports.

0.E+00

1.E+05

2.E+05

3.E+05

4.E+05

5.E+05

6.E+05

7.E+05

8.E+05

9.E+05

port4 port8 port16 port32 port64

E
x

ec
u

ti
o

n
 C

y
cl

es

pipe4 pipe8 pipe16 pipe32 pipe64

Figure 4.17: Execution Cycles of sphinx at Different Numbers of VFUs and Cache
Ports.

65

4.2. Importance of Finding the Most Power-Efficient Configuration

0.E+00

5.E+06

1.E+07

2.E+07

2.E+07

3.E+07

3.E+07

port4 port8 port16 port32 port64

E
x

ec
u

ti
o

n
 C

y
cl

es

pipe4 pipe8 pipe16 pipe32 pipe64

Figure 4.18: Execution Cycles of ray at Different Numbers of VFUs and Cache
Ports.

The execution time and power consumption are two important factors to affect the

power efficiency. Regarding the power consumption, the peak power consumption of

MVXP in each configuration is used, which is independent to MMAs. This is means that

the most power-efficient configuration of MMAs is different with each others because the

numbers of hardware resources have different impacts on different MMAs. Therefore, it

is possible to obtain the requirements to PPoM by investigating the execution cycles of

each MMA on MVPX with various configurations.

Figures 4.10 to 4.18 show the execution cycles of MMAs on MVPX with various

configurations. The results show that the performance of MMAs does not change across

different configurations in some cases. For example, in Figure 4.10, increasing the number

of parallel pipelines of VFUs in the case of four cache ports does not reduce the execution

cycles of the benchmark program clip. This is because data transfer performance is the

bottleneck at that time. Therefore, the increase in the number of parallel pipeline makes

no sense, while increasing the number of cache ports is the right way to improve the

performance of the benchmark program clip in the case of four cache ports. Such a result

means that it is necessary to estimate the performance bottleneck in order to obtain a

hint that is used to detect the shortage of hardware resources for a certain MMA. In this

way, the unnecessary estimation can be avoided.

66

4.2. Importance of Finding the Most Power-Efficient Configuration

Furthermore, Figures 4.10 to 4.18 also show that, in some cases, even though the

hardware resources are increased, the execution time is ideally reduced. In addition to

computing and data transfer performances, the time for waiting for dependent data is

a key factor that significantly affects the performance on executing MMAs. There are

a lot of reasons that lead to a long waiting time due to dependent data, such as cache

misses of MVP-cache, the exposure of the latency of VFUs due to short vectors, and so

on. The long waiting time for data dependency will restrict the performance improvement

even with the increase in the number of hardware resources. Therefore, it is necessary

to estimate the execution cycles with the consideration of the data dependency waiting

time.

4.2.3 Related Work

Several researches have shown how to find the most power-efficient configuration on a

vector processor. Shoji [68] has obtained the most power-efficient configuration by estab-

lishing Pareto frontiers for some MMAs and finding the most power-efficient configuration

on the Pareto frontiers. Sato [67] has proposed a greedy algorithm based on the roofline

model in order to find the proper number of vector cores for for highly power-efficient

execution. Both of the two researches obtain the most power-efficient configuration by

executing the MMAs several times by using various configurations. Although both of the

researches could find the most power-efficient configuration, it is quite time-consuming on

the simulation. Hence, they cannot be used at runtime.

To reduce the execution time for configuration searching, performance and power

consumption need to be estimated without executing the program [69] [71]. In recent re-

searches, many performance anlytical models are based on machine learning or regression

analysis. Martinez et al. [72] have proposed a coordinated hardware resource manage-

ment framework for chip multiprocessors by using a performance estimation model based

on machine learning. Matthew et al. [73] have proposed an analytical model by using

67

4.2. Importance of Finding the Most Power-Efficient Configuration

regression analysis in order to find the minimized number of threads, which have no per-

formance degradation. The advantage of these approaches is that they can coordinate a

large variety of parameters together and anticipate the performance when they changed.

These approaches need a training stage in order to improve the prediction accuracy. The

training stage still takes a long time to achieve a high accuracy. Moreover, since these

approaches cannot predict what is the performance bottleneck of an application, they

have to exhaustively search the possible combinations of all parameters.

Michaud et al. [70] have observed that the issue IPC and the number of instructions

in the instruction issue queue follow a Power-Law relationship [74]. Tejas et al. [75] have

exploited this relationship and proposed an analytical model with concerns about penalties

of data cache misses, instruction cache misses and branch prediction misses. This model is

considered under the assumption that the dominant factor for the processor performance is

the issue IPC. This is true in the case where a superscalar processor executes an application

with massive instruction-level parallelism. However, in the case of a vector processor, the

performance is often determined by a performance bottleneck due to the shortage of

a certain kind of hardware resources, such as the number of parallel pipelines in each

VFU. Therefore, this model is not appropriate for MVPX because it cannot predict the

performance bottleneck of MVPX for a given application. Hence, the exhaustive search

of possible combinations of all parameters takes a long time to find a power-efficient

configuration.

68

4.3. A Performance-Power Optimization Method for MVPX

4.3 A Performance-Power Optimization Method for

MVPX

4.3.1 Searching Method of PPoM

In order to find the most power-efficient configuration as quickly as possible, PPoM adopts

the greedy searching method instead of exhaustive searching method to find the most

power-efficient configuration in order to reduce the unnecessary estimations. PPoM ex-

amines the performance bottleneck of a certain configuration, and only estimates the

execution cycles and power consumption of the configuration, which could remove the

current performance bottleneck. In this way, a large amount of unnecessary estimation

could be avoided.

PPoM consists of three main steps. In the first step, the performance bottleneck of an

MMA is examined for the current configuration, and the number of the hardware resource

is increased, which enables to remove the performance bottleneck. In the second step, the

performance bottleneck and the execution cycles is revised by using an analytical model

of VPMs, and the power consumption of the revised configuration is obtained by using

a power consumption matrix. In the third step, the energy consumption of the current

configuration is compared to that of the revised configuration. If the energy consumption

of the revised configuration is lower than that of the current configuration, the revised

configuration would be used for the next evaluation steps. These three steps are iterated

until a most power-efficient configuration is obtained and hence the revised configuration

is expected to consume more energy than the current one.

69

4.3. A Performance-Power Optimization Method for MVPX

4.3.2 Analytical Model of MVPX based on the Issue Queues

Issue Queues of MVPX

There are two issue queues in the MVPX as shown in Figure 2.5. One is used for vector

memory instructions called VMIQ. The other one is used for vector arithmetic instructions

called VAIQ. When all the operands of a vector instruction are ready, the vector instruc-

tion will be dispatched into VMIQ or VAIQ. The number of instructions dispatched into

the issue queue per cycle is called enqueue throughput. The enqueue throughput reflects

the operands waiting time of a vector instruction. The longer the operand waiting time is,

the lower the enqueue throughput achieves. Meanwhile, vector instructions in VMIQ and

VAIQ wait for available cache ports and VFUs, respectively. If the hardware resources

become available, the the instruction will be issued. The number of instructions issued

from the issue queue per cycle is called dequeue throughput. The dequeue throughput

implies the throughput to operate a vector instruction. The more hardware resources

MVPX employs, the higher dequeue throughput achieves.

Estimation of Performance Bottleneck

The estimation of performance bottleneck for a certain MMA means to estimate what

kind of hardware resources, in terms of VFUs and cache ports, are deficient for the MMA.

If a deficiency occurs, the corresponding issue queue will be filled up because dequeue

throughput cannot catch up with the enqueue throughput. Therefore, the performance

bottleneck can be estimated by comparing the enqueue and dequeue throughputs. If

the dequeue throughput of VMIQ is higher than the enqueue throughput of VMIQ, the

data transfer performance is the performance bottleneck. If the dequeue throughput of

VAIQ is higher than the enqueue throughput of VAIQ, the computing performance is the

performance bottleneck. In this way, the performance bottleneck can be estimated by

using enqueue and dequeue throughputs of issue queues of MVPX.

70

4.3. A Performance-Power Optimization Method for MVPX

Estimation of Execution Cycles

The estimation method of execution cycles by using dequeue is described as follows.

As mentioned above, the performance bottleneck makes a certain issue queue filled up.

This means that the corresponding hardware resource is used all the time during the

execution. Therefore, the execution cycles are approximated with the utilization cycles

of the hardware resource, which has the performance bottleneck.

The utilization cycles of the hardware resource which is the bottleneck for the MMA

can be Equation (4.1).

Cyclesutilization = Iissued × CPIissued, (4.1)

where Cyclesutilization denotes utilization cycles of the hardware resource which is the bot-

tleneck, and Iissued and CPIissue denote the number of instructions and cycles per instruc-

tion (issue CPI) for the hardware resource, respectively. Since the dequeue throughput is

the number of instructions that can be issued to hardware resources in each cycle (issue

IPC), CPIissue is the reciprocal of the dequeue throughput as expressed in Equation 4.2.

CPIissued =
1

IPCIssued

=
1

Throughputdequeue
, (4.2)

By using Equations (4.1) and (4.2), the execution cycles of a MMA can be calculated by

using dequeue throughpurt.

Changes of Enqueue and Dequeue Throughputs the New Hardware Configu-

ration.

In order to estimate the performance bottleneck and execution cycles after increasing

the amount of hardware resources, it is necessary to estimate the enqueue and dequeue

throughputs of the new hardware configuration. When the amount of hardware resources

is increased, the throughput to operate a vector instruction will be increased. Therefore,

71

4.3. A Performance-Power Optimization Method for MVPX

dequeue throughput will be increased as follows. In the case of the increase in the number

of parallel pipelines in each VFU,

DArevised =
Prevised

Prevised

×DAbefore, (4.3)

DMrevised = DMcurrent, (4.4)

where DArevised, DMrevised and Prevised mean dequeue throughput of VAIQ, dequeue through-

put of VMIQ, the number of parallel pipelines after the increase in parallel pipelines,

respectively. DAcurrent, DMcurrent and Pcurrent mean dequeue throughput of VAIQ, de-

queue throughput of VMIQ, the number of parallel pipelines before the increase in parallel

pipelines, respectively.

In the case of the increase in the number of cache ports,

DArevised = DAcurrent, (4.5)

DMrevised =
CPcurrent × (1−HR) + CPrevised ×HR

CPcurrent

×DMbefore, (4.6)

where CPrevised and CPcurrent denote the numbers of parallel pipelines after and before

the increase in the number of cache ports, respectively. HR means the cache hit rate of

the MMA.

Moreover, the increase in the number of hardware resources also means the increase

in the throughput to remove data dependency. Therefore, the enqueue throughput will be

increased as follows.

In the case of the increase in the number of parallel pipelines in each VFU,

EArevised =
Pcurrent × (1−K) + Prevised ×K

Pcurrent

× EAcurrent, (4.7)

EMrevised =
Pcurrent × (1− S) + Prevised × S

Pcurrent

× EMcurrent, (4.8)

72

4.3. A Performance-Power Optimization Method for MVPX

where EArevised, EMrevised and EAcurrent, EMcurrent mean enqueue throughput of VAIQ,

enqueue throughput of VMIQ after and before the increase in number of parallel pipelines,

respectively. K denotes a ratio of the number of vector arithmetic instructions that

are data dependent on the vector arithmetic instruction to the total number of vector

arithmetic instructions. S denotes a ratio of vector store instructions to total vector

memory instructions.

In the case of the increase in the number of cache ports,

EArevised =
CPcurrent × (1− AL×HR) + CPrevised × AL×HR

CPcurrent

× EAcurrent, (4.9)

EMrevised =
CPcurrent × (1−ML×HR) + CPrevised ×ML×HR

CPcurrent

× EMcurrent, (4.10)

where AL denotes a ratio of the number of vector arithmetic instructions that are data

dependent on the vector load instruction to the total number of vector arithmetic in-

structions. ML denotes a ratio of the number of vector memory instructions that are

data dependent on the vector load instruction to the total number of vector memory

instructions.

4.3.3 Estimation of Power Consumption

In order to find the most power-efficient configuration for each MMA, the power con-

sumption of MVPX in different configurations should be discussed. In this chapter, peak

power consumption is considered as the power consumption of hardware resources. peak

power consumption refers to the maximum amount of heat generated by the processor,

processor, for which the cooling system in a computer is required. peak power consump-

tion is used for the evaluation in this chapter because it is necessary to avoid the overheat

due to a wrong estimation. peak power consumption can be approximated by the sum

of peak dynamic power consumption and static power consumption. The values of peak

power consumption of various parameters can be known at the processor design stage.

73

4.3. A Performance-Power Optimization Method for MVPX

Therefore, it can be assumed that such a table is stored in the MVPX.

It can be expressed as a 2-D array named TDP[M][N], where M and N are the maxi-

mum number of parallel pipelines and cache ports, respectively. The power consumption

of a certain configuration can be obtained by specifying the numbers of parallel pipelines

and cache ports as shown in Equation (4.11).

Power = TDP [P][CP], (4.11)

where P and CP are the specified numbers of parallel pipelines and cache ports.

4.3.4 Summary of PPoM

Figure 4.19 summarises the flow of PPoM. Overall, PPoM will iterate several times to

estimate the performance bottleneck and execution cycles. This is because the perfor-

mance bottleneck may be changed when the amount of hardware resource is increased. In

order to start up PPoM, a MMA should be executed once to collect the initial information

about the MMA. The initial information includes cache hit rate, enqueue throughput and

dequeue throughput at the base configuration which is the configuration at the lowest

power consumption. The initial information also contains K, S, ML and AL, which are

the dependency ratios of instructions used in Equations (4.3) to (4.10).

In detail, firstly, the amount of hardware resources should be increased according to

the performance bottleneck. Then, the enqueue throughput and dequeue throughput are

estimated using Equations (4.3) to (4.10). After that, power consumption is estimated

according to Equations (4.11). Then, the performance bottleneck after the increase in

the number of hardware resources should be estimated. According to the bottleneck, the

execution cycles can be generated by using Equations (4.1) and (4.2). Since PPoM aims

to find the most power-efficient configuration, the performance improvement is compared

with the increase of power consumption. If the performance improvement is higher than

the increase of power consumption, PPoM will try the configuration so as to remove

74

4.3. A Performance-Power Optimization Method for MVPX

Bottleneckcurrent?

CPrevised =

CPcurrent * 2

Estimate

Enqueue/Dequeue

Speed of Issue Queue

Estimate

Exe. Cyclesrevised

Prevised =

Pcurrent * 2

Estimate

Powerrevised

Powercurrent =

Powerrevised

CPcurrent = CPrevised

Pcurrent = Prevised

Data Transfer Performance

is the bottleneck

Computing Performance

is the bottleneck

Bottleneckrevised?

Estimate

Enqueue/Dequeue

Speed of Issue Queue

Estimate

Exe. Cyclesrevised

Exe. Cyclescurrent =

Exe. Cyclesrevised

Exe. Cyclesrevised

Exe. Cyclescurrent

Powercurrent

Powerrevised
>

Yes

No

Finish

Start

Bottleneckcurrent
=Bottleneckrevised

Record Parameter

CP = CPcurrent

P = Pcurrent

Data Transfer Performance

is the bottleneck
Computing Performance

is the bottleneck

Figure 4.19: Flowchart of PPoM.

75

4.3. A Performance-Power Optimization Method for MVPX

the current bottleneck. Otherwise, PPoM records the configuration before increasing the

amount of hardware resources as the most power-efficient configuration.

76

4.4. Performance Evaluations

4.4 Performance Evaluations

4.4.1 Experimental Methodology

Table 4.1: Baseline Configuration of MVPX for PPoM.

Parameters Value
Process Technology 32 nm
Processor Frequency 1GHz

Vector ALU Pipeline Latency 10 cycles
Vector Multiplier Pipeline Latency 15 cycles
Vector Division Pipeline Latency 20 cycles

Number of Vector Lanes 4
Number of Architectural Vector Registers 16

Number of Physical Vector Registers 96
Entries per Vector Register 256 entries

The size of VMIB and VAIB 128 entries
The size of Vector Load and Store Queue 512 entries

Number of Cache Ports 4
Cache Capacity 2 MB

Cache Line Size of MVP-cache 8 bytes
MVP-cache Access Latency 20 cycles

Number of Sub-caches 8
Number of Data Arrays in a Sub-cache 32

Memory Bandwidth 32 bytes/cycle
Main Memory Latency 100 cycles

PPoM is integrated into the simulator of MVPX. As mentioned in Section 4.3.4, PPoM

should use the execution information which needs to be collected using a baseline config-

uration of MVPX. The baseline configuration of MVPX is summarized in Table 4.1. The

numbers of cache ports and parallel pipelines in each VFU are set to be 4. For PPoM,

when the amount of hardware resources needs to be increased, the number of cache ports

or parallel pipelines is doubled. The numbers of cache ports and parallel pipelines in

each VFU range from 4 to 64. This is because when the amount of hardware resources is

increased from 64 to 128, the peak power consumption of would become more than two

times higher as shown in Table 4.2, while the performance improvement is twofold. The

77

4.4. Performance Evaluations

Table 4.2: Table of peak power consumption (W) of MVPX in Different Configura-
tions.

port4 port8 port16 port32 port64
pipe4 5.18 5.63 7.06 12.09 31.41
pipe8 6.91 7.36 8.78 13.82 33.14
pipe16 10.36 10.81 12.23 17.27 36.59
pipe32 17.26 17.71 19.14 24.17 43.49
pipe64 32.78 33.23 34.66 39.69 59.01

benchmark programs used in this chapter are the same as those in Chapters 2 and 3.

4.4.2 Evaluation Results

In order to evaluate the effectiveness of PPoM, this chapter first compares the most power-

efficient configuration found by PPoM with that of the best configuration. Then, this

chapter compares the energy consumptions of various configurations including the config-

uration found by the proposed PPoM, the lowest power consumption configuration, the

highest performance configuration, the most power-efficient configuration for each MMA

and the most power-efficient configuration averaged in all MMAs, in order to show that

the configuration found by PPoM achieves a high power efficiency. At last, this chapter

compares the numbers of simulation and estimation of PPoM with those of conventional

approaches to confirm that PPoM could find the most power-efficient configuration more

quickly.

Accuracy of PPoM

Table 4.3 shows the most power-efficient configurations found by PPoM and by exhaus-

tively simulating all possible combinations. The results from exhaustively simulating all

possible combinations can be considered as the correct answer of the best configuration.

In this evaluation, seven out of nine benchmark programs can obtain the best configu-

ration by using PPoM. For the benchmark programs of fft and sphinx, PPoM is failed

78

4.4. Performance Evaluations

Table 4.3: Comparison of the Most Power-Efficient Configurations Found by PPoM
and Exhaustively Simulating the All Possible Combination.

Benchmarks Proposal Simulation Same Configuration
face pipe4 port8 pipe4 port8 Yes
vips pipe4 port4 pipe4 port4 Yes
clip pipe8 port16 pipe8 port16 Yes

power pipe16 port8 pipe16 port8 Yes
MxM pipe4 port8 pipe4 port8 Yes
VxM pipe4 port8 pipe4 port8 Yes
ray pipe32 port16 pipe32 port16 Yes

sphinx pipe4 port8 pipe8 port16 No
fft pipe4 port4 pipe16 port16 No

because there is no significant performance improvement unless the numbers of parallel

pipelines and cache ports are increased at the same time. Such a situation occurs because

the computing performance and data transfer performance are well balanced in a certain

configuration. However, since PPoM can only increase one kind of hardware resources

each time, it fails to find the lowest energy consumption for the benchmark programs of

fft and sphinx.

Energy Consumption of the Configuration Found by PPoM

In order to show that MVPX can obtain a high power efficiency by using the configuration

found by PPoM, the energy consumptions of MVPX using various configurations are eval-

uated. The evaluated configurations include the configuration found by PPoM along with

the configurations with the lowest power consumption, the highest power consumption

and the lowest energy consumption.

Figure 4.20 shows the evaluation results normalized by the energy consumption of

the lowest energy consumption. Averagely, the energy consumption of the configuration

found by the proposal is only 7% higher than that of the lowest energy consumption.

This is because PPoM can find the optimal configurations of most benchmark programs

except for fft and sphinx. Even in the case of the benchmark programs fft and sphinx,

79

4.4. Performance Evaluations

0

1

2

3

4

5

6

7

8

9

face vips clip power fft MxM VxM sphinx ray avg.

R
el

at
iv

e
E

ne
rg

y
C

on
su

m
pt

io
n

lowest power highest performance optimal proposal

Figure 4.20: Comparison of Energy Consumption of the Configuration Found by
PPoM.

configurations found by the proposed PPoM can still achieves the second lowest energy

consumption. Therefore, the configuration found by the proposed PPoM enables MVPX

to obtain a high power efficiency for each MMA.

The number of Simulation and Estimation

In order to show the quickness of finding the high power efficiency configuration, the

numbers of simulation and estimation of the proposal are compared with those of con-

ventional approaches mentioned in Section4.2.3. Table 4.4 summarizes the comparison

results. The exhaustive method is to execute or simulate all possible combinations of

hardware resources [68]. Greedy with simulation method is to use the greedy algorithm

and roofline model to find the configuration [67]. Since there are five parameters for cache

ports and five parameters for parallel pipelines, the number of all possible combinations of

80

4.4. Performance Evaluations

Table 4.4: Comparison of the number of Simulation Times and Estimation Times.

The Number of The Number of
Approaches Estimation Times Simulation Times

Proposal 1 to 10 1
Simulation Method [68] 0 25

Greedy with Roofline [67] 0 1 to 10
Analysis Model [70] 25 1

Table 4.5: The number of Estimation Times for each MMA.

The Number of Estimation
Benchmarks Times (Proposal) Configuration

face 2
vips 1
clip 4

power 4
MxM 2
VxM 2

sphinx 2
ray 6
fft 1

parameters and the maximum number of searching times by using greedy algorithms are

25 and 10, respectively. The analysis model [70] is to establish a performance estimation

model to substitute for the real execution of a certain application. Therefore, the number

of estimation times of analysis method is the same as that of simulation times of the ex-

haustive method. For PPoM, it needs to obtain some application information in advance

of searching an appropriate configuration using the greedy algorithm. Therefore, PPoM

needs to simulate the MMA once, and perform the estimation at most 10 times. The num-

bers of the estimation are listed in Table 4.5. Through the comparison, it is shown that

PPoM achieves the least simulation times and estimation times. Consequently, PPoM

can fast find the high power efficiency configuration.

81

4.5. Conclusions

4.5 Conclusions

This chapter proposes and evaluates PPoM in order to improve the power efficiency by

matching the different hardware requirement of MMAs. PPoM contains a analytical

model of MVPX by using enqueue throughput and dequeue throughput to estimate the

performance and power consumption of MVPX in different configurations. The analytical

model could be also used to estimate the performance bottleneck of MMAs. Base on the

thought of the greedy algorithm, PPoM increases the amount of hardware resource so

as to remove the performance bottleneck. The evaluation results show that PPoM could

obtain the most power-efficient configuration for seven out of nine MMAs by uses less

estimation and simulation times than conventional approaches.

Although the numbers of cache ports and parallel pipelines are two most important

parameters to influence performance and power consumption of MVPX, the importance

of other parameters such as MVL, MVP-cache capacity and so on cannot be ignored.

Therefore, as the future work of this chapter, it is necessary to establish a PPoM that

enables to consider various kinds of parameters at the same time.

82

Chapter 5

Conclusions

This dissertation explores the design space of vector architectures in order to design a

vector extension to acceleration a wide range of MMAs at a high power efficiency. Al-

though the vector architecture is considered as a potential high power efficiency approach

to media processing, there are still several issues for vector architectures to efficiently

execute MMAs.

First, the conventional vector architecture cannot execute MMAs with short vectors

efficiently. Second, conventional multi-banked cache memories for vector architectures

cannot achieve a high data transfer performance and low power consumption at the same

time for MMAs. Third, conventional methods to find the most power-efficient configu-

ration cost too much time to find the most power efficient configuration of the vector

architecture for MMAs.

In order to overcome these problems, the design space of the vector architecture is

explored to find the power efficient solution for a wide range of MMAs.

Several solutions have been proposed in this dissertation to address these issues, in-

cluding:

• OVPM: OVPM could effectively reduce the stalls due to short vectors.

• MVP-cache: MVP-cache adopts a single tag array associated with multiple data

83

arrays. Such an organization could effectively reduce the power consumption of tag

array, and improve the short vector data transfers.

• PPoM: enables to reduce the simulation times and found the optimal configuration

in low power consumption

In Chapter 2, the instruction issue policies of vector architecture have been explored,

and OVPM has been proposed to improve the computational efficient by reducing the

pipeline stalls. The objective of Chapter 2 is to improve the computational efficiency of

MMAs with short vectors. In order to achieve the objective, OVPM has been proposed.

By using OVPM, even though a certain vector instruction is stalled, the subsequent vector

instruction enables to be executed, overtaking the stalled vector instruction. In this way,

the pipeline stalls can be reduced, which leads to the improvement of computational

efficiency. As a result, OVPM could achieve 3.25x higher computational efficiency than

IVPM only with a 7% power increase. Therefore, MVPX should adopt an out-of-order

vector issue policy in order to improve the power efficiency.

In Chapter 3, the cache line sizes of multi-banked cache memory have been explored,

and a multi-banked cache memory for MVPX, called MVP-cache has been proposed. The

objective of Chapter 3 is to enable multi-banked cache memory to efficiently transfer the

short vector with low power consumption on tag arrays. MVP-cache associates single

tag array with multiple data array. It is possible to achieve a high data transfer per-

formance for short vectors and a low power consumption on tag array. This is because

the relationship between the size of cache lines and the number of tags is decoupled. As

a result, MVP-cache can achieve a comparable performance with the other competitive

cache organizations, while the energy consumption of MVP-cache is smaller than those

of the other. MVP-cache can also improve the power efficiency of MVPX

In Chapter 4, the numbers of parallel pipelines in each VFU and cache ports have been

explored, and a PPoM has been proposed in order to find the power-efficient configuration

with a short estimation time. PPoM contains a performance estimation model of the

84

vector architecture to estimate the execution cycles and performance bottleneck of a

certain MMA. The numbers of parallel pipelines and cache ports have been searched

base on the greedy algorithm. By using the proposed PPoM, the optimal or sub-optimal

configuration can be found in a short time. As a result, PPoM could obtain the most

power-efficient configuration for seven of nine MMAs, which takes less estimation and

simulation time than conventional approaches. Therefore, the proposed PPoM can also

improve the power efficiency of MVPX.

These proposed solutions have solved the issues on different layers of the existing

vector architecture for MMAs. Enhanced with these proposed solutions, it is possible for

MVPX to accelerate a wide range of MMAs with a high power efficiency.

There are two main future works for this dissertation. First, 3D integrated MVPX

should be considered. The implementation of MVPX is not considered in this dissertation.

As shown in Chapter 3, the crossbar between OVPM and MVP-cache consume a large

power. In order to further improve the power efficiency of MVPX, a 3D stacked imple-

mentation of crossbars, MVP-cache and OVPM should be considered. Second, a PPoM

that can consider more amounts of hardware resources should be considered. Although

the numbers of cache ports and parallel pipelines are two most important parameters to

influence performance and power consumption of MVPX, the importance of other param-

eters such as MVL, MVP-cache capacity and so on cannot be ignored. Therefore, it is

necessary to establish a PPoM that enables to consider various kinds of parameters at the

same time.

85

References

References

[1] N. Sei and M. Shuichi, “Development of Real-time Encoder for 8K Ultra-high Defini-

tion Ttelevision ,” in Proceedings of Intelligent Signal Processing and Communication

Systems, 2010 International Symposium, ser. ISPACS ’10, 2010, pp. 1–4.

[2] International Telecommunication Union: ITU, “BT.2020 : Parameter Values for

Ultra-high Definition Television Systems for Production and International Pro-

gramme Exchange,” http://www.itu.int/rec/R-REC-BT.2020-0-201208-I, 2012.

[3] M. Miura, K. Fudano, K. Ito, K. Aoki, H. Takizawa, and H. Kobayashi, “GPU

Implementation of Phase-Based Stereo Correspondence and Its Application,” in 2012

IEEE International Conference on Image Processing, ser. ICIP2012, 2012, pp. 1697–

1700.

[4] H. Park, Y. Park, and S. Mahlke, “Polymorphic Pipeline Array: A Flexible Multi-

core Accelerator With Virtualized Execution For Mobile Multimedia Applications,”

in Proceedings of the 42nd Annual IEEE/ACM International Symposium on Microar-

chitecture, ser. MICRO 42, 2009, pp. 370–380.

[5] Y. Lin, H. Lee, M. Woh, Y. Harel, S. Mahlke, T. Mudge, C. Chakrabarti, and

K. Flautner, “SODA: A Low-power Architecture for Software Radio,” in Proceedings

of the 33rd annual international symposium on Computer Architecture, ser. ISCA

’06, 2006, pp. 89–101.

86

References

[6] Y. Lee, R. Avizienis, A. Bishara, R. Xia, D. Lockhart, C. Batten, and K. Asanović,

“Exploring the tradeoffs between programmability and efficiency in data-parallel ac-

celerators,” in Proceedings of the 38th annual international symposium on Computer

architecture, 2011, pp. 129–140.

[7] N. Wu, M. Wen, W. Wu, J. Ren, H. Su, C. Xun, and C. Zhang, “Streaming HD H.264

Encoder on Programmable Processors,” in Proceedings of the 17th ACM international

conference on Multimedia, ser. MM ’09, 2009, pp. 371–380.

[8] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash, P. Dubey, S. Junkins,

A. Lake, J. Sugerman, R. Cavin, R. Espasa, E. Grochowski, T. Juan, and P. Han-

rahan, “Larrabee: A Many-core x86 Architecture for Visual Computing,” in SIG-

GRAPH ’08: ACM SIGGRAPH 2008 Papers, 2008, pp. 1–15.

[9] A. Lefohn, M. Houston, J. Andersson, U. Assarsson, C. Everitt, K. Fatahalian, T. Fo-

ley, J. Hensley, P. Lalonde, and D. Luebke, “Beyond Programmable Shading (Parts

I and II),” in SIGGRAPH ’09: ACM SIGGRAPH 2009 Courses, 2009, pp. 1–312.

[10] J. Park, G. Bikshandi, K. Vaidyanathan, P. T. P. Tang, P. Dubey, and

D. Kim, “Tera-scale 1d fft with low-communication algorithm and intel®

xeon phi™ coprocessors,” in Proceedings of SC13: International Conference

for High Performance Computing, Networking, Storage and Analysis, ser. SC

’13. New York, NY, USA: ACM, 2013, pp. 34:1–34:12. [Online]. Available:

http://doi.acm.org/10.1145/2503210.2503242

[11] J.-C. Chiu, Y.-L. Chou, and H.-Y. Tzeng, “A Multi-Streaming SIMD Architecture for

Multimedia Applications,” in Proceedings of the 6th ACM Conference on Computing

frontiers, 2009, pp. 51–60.

[12] Intel, “Intel 64 and IA-32 Architectures Optimization Reference Manual,”

http://software.intel.com/en-us/avx/, 2011.

87

References

[13] K. Asanovic, R. Bodik, J. Demmel, T. Keaveny, K. Keutzer, J. Kubiatowicz, N. Mor-

gan, D. Patterson, K. Sen, J. Wawrzynek, D. Wessel, and K. Yelick, “A View of the

Parallel Computing Landscape,” Commun. ACM, vol. 52, no. 10, pp. 56–67, 2009.

[14] D. Talla, L. K. John, and D. Burger, “Bottlenecks in Multimedia Processing with

SIMD Style Extensions and Architectural Enhancements,” IEEE Transactions on

Computers, vol. 52, pp. 35–46, 2003.

[15] J. Gebis and D. Patterson, “Embracing and Extending 20th-Century Instruction Set

Architectures,” IEEE Computer, vol. 40, no. 4, pp. 68–75, April 2007.

[16] P. Yongjun, J. K. P. Jason, P. Hyunchul, and M. Scott, “Libra: Tailoring SIMD Exe-

cution using Heterogeneous Hardware and Dynamic Configurability,” in Proceedings

of the 45nd Annual IEEE/ACM International Symposium on Microarchitecture, ser.

MICRO 45, dec. 2012, pp. 84–95.

[17] A. Peleg, S. Wilkie, and U. Weiser, “Intel MMX for Multimedia PCs,” Comm. ACM,

1997.

[18] S. Thakkar and T. Huff, “The Internet Streaming SIMD Extensions,” IntelTechnology

Journal, pp. 26–34, May 1999.

[19] J. Reinders and J. Reinders, “Avx-512 instructions,” 2013.

[20] R. Dennard, F. Gaensslen, H.-N. Yu, V. LEO RIDEOVT, E. Bassous, and A. R.

Leblanc, “Design of ion-implanted mosfet’s with very small physical dimensions,”

Solid-State Circuits Society Newsletter, IEEE, vol. 12, no. 1, pp. 38–50, 2007.

[21] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and D. Burger, “Dark

silicon and the end of multicore scaling,” in Proceedings of the 38th Annual Interna-

tional Symposium on Computer Architecture, 2011, pp. 365–376.

[22] M. Taylor, “A landscape of the new dark silicon design regime,” Micro, IEEE, vol. 33,

no. 5, pp. 8–19, 2013.

88

References

[23] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative Approach

Fifth Edition. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2011.

[24] T. Watanabe, “Instruction Set Architecture for a Series of Vector Processors and

Their Performance Evaluations,” Ph.D. dissertation, University of Tohoku, 2005.

[25] T. Soga, A. Musa, Y. Shimomura, R. Egawa, K. Itakura, H. Takizawa, K. Okabe,

and H. Kobayashi, “Performance evaluation of NEC SX-9 Using Real Science and

Engineering Applications,” in SC ’09: Proceedings of the Conference on High Per-

formance Computing Networking, Storage and Analysis, 2009, pp. 1–12.

[26] D. Abts, A. Bataineh, S. Scott, G. Faanes, J. Schwarzmeier, E. Lundberg, T. John-

son, M. Bye, and G. Schwoerer, “The Cray BlackWidow: a Highly Scalable Vector

Multiprocessor,” in SC ’07: Proceedings of the 2007 ACM/IEEE Conference on

Supercomputing, 2007, pp. 1–12.

[27] Y. Sato, R. Nagaoka, A. Musa, R. Egawa, H. Takizawa, K. Okabe, and H. Kobayashi,

“Performance Tuning and Analysis of Future Vector Processors Based on the Roofline

Model,” in Proceedings of the 10th workshop on MEmory performance: DEaling with

Applications, systems and architecture, ser. MEDEA ’09, 2009, pp. 7–14.

[28] A. Musa, “High Performance Memory Architecture for Vector Processors,” Ph.D.

dissertation, University of Tohoku, 2009.

[29] S. Mohanty, V. K. Prasanna, S. Neema, and J. Davis, “Rapid design space

exploration of heterogeneous embedded systems using symbolic search and

multi-granular simulation,” in Proceedings of the Joint Conference on Languages,

Compilers and Tools for Embedded Systems: Software and Compilers for Embedded

Systems, ser. LCTES/SCOPES ’02. New York, NY, USA: ACM, 2002, pp. 18–27.

[Online]. Available: http://doi.acm.org/10.1145/513829.513835

89

References

[30] K. Diefendorff and P. Dubey, “How Multimedia Workloads Will Change Processor

Design,” IEEE Computer, vol. 30, pp. 43–45, 1997.

[31] G. M. Amdahl, “Validity of the Single Processor Approach to Achieving Large Scale

Computing Capabilities,” in AFIPS ’67 (Spring): Proceedings of the April 18-20,

1967, spring joint computer conference, 1967, pp. 483–485.

[32] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC Benchmark Suite:

Characterization and Architectural Implications,” Princeton University, Tech. Rep.,

January 2008.

[33] M. Li, R. Sasanka, S. V. Adve, Y. Chen, and E. Debes, “The ALPBench Benchmark

Suite for Complex Multimedia Applications,” in Proceedings of the IEEE Interna-

tional Workload Characterization Symposium, 2005.

[34] C. Kozyrakis, “Vector vs. Superscalar and VLIW Architectures for Embedded Mul-

timedia Benchmarks,” in Proceedings of the 35th Annual IEEE/ACM International

Symposium on Microarchitecture, 2002, pp. 283–293.

[35] C. Kozyrakis and D. Patterson, “Overcoming the limitations of conventional vector

processors,” in Proceedings of the 30th annual international symposium on Computer

architecture. ACM, 2003, pp. 399–409.

[36] R. Espasa and M. Valero, “Decoupled vector architectures,” in High-Performance

Computer Architecture, 1996. Proceedings., Second International Symposium, 1996,

pp. 281–290.

[37] Intel, “P6 Family of Processors Hardware Developer’s Manual,” Intel White Paper,

1998.

[38] R. E. Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro, vol. 19, no. 2, pp.

24–36, Mar. 1999.

90

References

[39] T. Austin, E. Larson, and D. Ernst, “SimpleScalar: An Infrastructure for Computer

System Modeling,” Computer, vol. 35, no. 2, pp. 59–67, 2002.

[40] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P. Jouppi,

“McPAT: an Integrated Power, Area, and Timing Modeling Framework for Multi-

core and Manycore Architectures,” in Proceedings of the 42nd Annual IEEE/ACM

International Symposium on Microarchitecture, ser. MICRO 42, 2009, pp. 469–480.

[41] Y. Yokoya, Y. Kudoh, T. Hayasaka, J. Traeff, H. Ritzdorf, and Y. Hayashi, “The

Compilers and MPI Library for SX-9,” NEC Corporation, Tech. Rep., 2008.

[42] S. Nakazato, S. Tagaya, N. Nakagomi, T. Watai, and A. Sawamura, “Hardware

Technology of the SX-9 (1): Main System,” NEC TECHNICAL JOURNAL, vol. 3,

pp. 15–18, 2008.

[43] K. Umezawa, H. Hamaguchi, T. Takeda, T. Hosaka, M. Natori, and T. Nagata,

“Packaging Technology of the SX-9,” NEC TECHNICAL JOURNAL, vol. 3, pp.

29–33, 2008.

[44] F. Rudolf, in SC ’10: Proceedings of the Conference on High Performance Computing

Networking, Storage and Analysis, 2010.

[45] Y. Funaya, R. Egawa, H. Takizawa, and H. Kobayashi, “Cache Partitioning Strate-

gies For 3-D Stacked Vector Processors ,” in Proceedings of 3D Systems Integration

Conference (3DIC), 2010 IEEE International, 2010, pp. 1– 6.

[46] A. Musa, Y. Sato, T. Soga, K. Okabe, R. Egawa, H. Takizawa, and H. Kobayashi,

“A Shared Cache for a Chip Multi Vector Processor,” in MEDEA ’08: Proceedings

of the 9th workshop on MEmory performance, 2008, pp. 24–29.

[47] R. Espasa, F. Ardanaz, J. Emer, S. Felix, J. Gago, R. Gramunt, I. Hernandez,

T. Juan, G. Lowney, M. Mattina, and A. Seznec, “Tarantula: a vector extension to

91

References

the alpha architecture,” in Proceedings of the 29th annual international symposium

on Computer architecture, 2002, pp. 281–292.

[48] C. Batten, R. Krashinsky, S. Gerding, and K. Asanovic, “Cache Refill/Access De-

coupling for Vector Machines,” in MICRO 37: Proceedings of the 37th annual

IEEE/ACM International Symposium on Microarchitecture, 2004, pp. 331–342.

[49] A. Shahbahrami, B. Juurlink, and S. Vassiliadis, “A Comparison Between Proces-

sor Architectures for Multimedia Applications,” in Proc. 15th Annual Workshop on

Circuits, Systems and Signal Processing, 2004, pp. 138–152.

[50] C. Bienia, “Benchmarking modern multiprocessors,” Ph.D. dissertation, Princeton

University, January 2011.

[51] A. Musa, Y. Sato, T. Soga, R. Egawa, H. Takizawa, K. Okabe, and H. Kobayashi,

“Effects of MSHR and Prefetch Mechanisms on an On-Chip Cache of the Vector

Architecture,” in Parallel and Distributed Processing with Applications, 2008. ISPA

’08. International Symposium on, 2008, pp. 335–342.

[52] I. Kotera, K. Abe, R. Egawa, H. Takizawa, and H. Kobayashi, “Power-aware Dy-

namic Cache Partitioning for CMPs,” Transactions on high-performance embedded

architectures and compilers III, pp. 135–153, 2011.

[53] R. Espasa, M. Valero, and J. E. Smith, “Out-of-order vector architectures,” in Pro-

ceedings of the 30th Annual ACM/IEEE International Symposium on Microarchitec-

ture, 1997, pp. 160–170.

[54] A. Seznec and R. Espasa, “Conflict-free accesses to strided vectors on a banked

cache,” IEEE Trans. Comput., vol. 54, no. 7, pp. 913–916, Jul. 2005.

[55] W. Dally and B. Towles, Principles and Practices of Interconnection Networks. San

Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2003.

92

References

[56] K. Sewell, R. Dreslinski, T. Manville, S. Satpathy, N. Pinckney, G. Blake, M. Cies-

lak, R. Das, T. Wenisch, D. Sylvester, D. Blaauw, and T. Mudge, “Swizzle-switch

networks for many-core systems,” Emerging and Selected Topics in Circuits and

Systems, IEEE Journal on, vol. 2, no. 2, pp. 278–294, 2012.

[57] H.-S. Lee, G. Tyson, and M. Farrens, “Eager writeback-a technique for improving

bandwidth utilization,” in Microarchitecture, 2000. MICRO-33. Proceedings. 33rd

Annual IEEE/ACM International Symposium on, 2000, pp. 11–21.

[58] J. Stuecheli, D. Kaseridis, D. Daly, H. Hunter, and L. John, “Coordinating dram and

last-level-cache policies with the virtual write queue,” Micro, IEEE, vol. 31, no. 1,

pp. 90–98, 2011.

[59] N. Muralimanohar, R. Balasubramonian, and N. Jouppi, “Optimizing nuca organi-

zations and wiring alternatives for large caches with cacti 6.0,” in Proceedings of the

40th Annual IEEE/ACM International Symposium on Microarchitecture, 2007, pp.

3–14.

[60] M. B. Henry and L. Nazhandali, “From transistors to nems: Highly efficient power-

gating of cmos circuits,” J. Emerg. Technol. Comput. Syst., vol. 8, no. 1, pp. 2:1–2:18,

Feb. 2012. [Online]. Available: http://doi.acm.org/10.1145/2093145.2093147

[61] A. B. Kahng, S. Kang, T. Rosing, and R. Strong, “Tap: Token-based adaptive power

gating,” in Proceedings of the 2012 ACM/IEEE International Symposium on Low

Power Electronics and Design, ser. ISLPED ’12. New York, NY, USA: ACM, 2012,

pp. 203–208. [Online]. Available: http://doi.acm.org/10.1145/2333660.2333711

[62] M. Sato, Y. Tobo, R. Egawa, H. Takizawa, and H. Kobayashi, “A Flexible Insertion

Policy for Dynamic Cache Resizing Mechanisms,” in Cool Chips XV (COOL Chips),

2013 IEEE, 2013, pp. 1–3.

93

References

[63] C.-C. Yeh, K.-C. Chang, T.-F. Chen, and C. Yeh, “Maintaining performance on

power gating of microprocessor functional units by using a predictive pre-wakeup

strategy,” ACM Trans. Archit. Code Optim., vol. 8, no. 3, pp. 16:1–16:27, Oct. 2011.

[Online]. Available: http://doi.acm.org/10.1145/2019608.2019615

[64] P.-H. Wang, C.-L. Yang, Y.-M. Chen, and Y.-J. Cheng, “Power gating strategies on

gpus,” ACM Trans. Archit. Code Optim., vol. 8, no. 3, pp. 13:1–13:25, Oct. 2011.

[Online]. Available: http://doi.acm.org/10.1145/2019608.2019612

[65] H. Matsutani, M. Koibuchi, D. Ikebuchi, K. Usami, H. Nakamura, and H. Amano,

“Ultra fine-grained run-time power gating of on-chip routers for cmps,” in

Proceedings of the 2010 Fourth ACM/IEEE International Symposium on Networks-

on-Chip, ser. NOCS ’10. Washington, DC, USA: IEEE Computer Society, 2010,

pp. 61–68. [Online]. Available: http://dx.doi.org/10.1109/NOCS.2010.16

[66] R. Das, S. Narayanasamy, S. K. Satpathy, and R. G. Dreslinski, “Cat-

nap: Energy proportional multiple network-on-chip,” SIGARCH Comput.

Archit. News, vol. 41, no. 3, pp. 320–331, Jun. 2013. [Online]. Available:

http://doi.acm.org/10.1145/2508148.2485950

[67] Y. Sato, “A program optimization strategy for vector architectures with cache mech-

anisms,” Ph.D. dissertation, Tohoku University, 2012.

[68] N. Shoji, “Power-performance model for a media-oriented vector architecture,” Mas-

ter’s thesis, Tohoku University, 2013.

[69] C. Ykman-Couvreur, P. A. Hartmann, G. Palermo, F. Colas-Bigey, and L. San,

“Run-time resource management based on design space exploration,” in Proceedings

of the Eighth IEEE/ACM/IFIP International Conference on Hardware/Software

Codesign and System Synthesis, ser. CODES+ISSS ’12. New York, NY, USA: ACM,

2012, pp. 557–566. [Online]. Available: http://doi.acm.org/10.1145/2380445.2380530

94

References

[70] T. S. Karkhanis and J. E. Smith, “A first-order superscalar processor model,” in

Proceedings of the 31st Annual International Symposium on Computer Architecture,

ser. ISCA ’04. Washington, DC, USA: IEEE Computer Society, 2004, pp. 338–.

[Online]. Available: http://dl.acm.org/citation.cfm?id=998680.1006729

[71] G. Mariani, G. Palermo, V. Zaccaria, and C. Silvano, “Design-space exploration and

runtime resource management for multicores,” ACM Trans. Embedded Comput. Syst.,

vol. 13, no. 2, p. 20, 2013.

[72] J. Martinez and E. Ipek, “Dynamic multicore resource management: A machine

learning approach,” Micro, IEEE, vol. 29, no. 5, pp. 8–17, 2009.

[73] M. Curtis-Maury, F. Blagojevic, C. D. Antonopoulos, and D. S. Nikolopoulos,

“Prediction-based power-performance adaptation of multithreaded scientific codes,”

IEEE Trans. Parallel Distrib. Syst., vol. 19, no. 10, pp. 1396–1410, Oct. 2008.

[Online]. Available: http://dx.doi.org/10.1109/TPDS.2007.70804

[74] P. Michaud, A. Seznec, and S. Jourdan, “An exploration of instruction

fetch requirement in out-of-order superscalar processors,” Int. J. Paral-

lel Program., vol. 29, no. 1, pp. 35–58, Feb. 2001. [Online]. Available:

http://dx.doi.org/10.1023/A:1026431920605

[75] S. Eyerman, L. Eeckhout, T. Karkhanis, and J. E. Smith, “A perfor-

mance counter architecture for computing accurate cpi components,” SIG-

PLAN Not., vol. 41, no. 11, pp. 175–184, Oct. 2006. [Online]. Available:

http://doi.acm.org/10.1145/1168918.1168880

95

Publications

Publications

Journal

1. Ye Gao, Masayuki Sato, Ryusuke Egawa, Hiroyuki Takizawa, and Hiroaki Kobayashi:

MVP-cache: A Multi-Banked Cache Memory for Energy-Efficient Vector Process-

ing of Multimedia Applications. IEICE Transaction on Information and Systems)

[Conditional Acception] [Chapter 3]

Conference Papers

1. Ye Gao, Masayuki Sato, Ryusuke Egawa, Hiroyuki Takizawa, and Hiroaki Kobayashi:

A Performance-Power Optimization Method for Vector Processing Mechanisms.

Cool Chips XV (COOL Chips), pp.1-3, 14-16 April 2014.] [Under Review] [Chap-

ter 4]

2. Ye Gao, Naoki Shoji, Ryusuke Egawa, Hiroyuki Takizawa, and Hiroaki Kobayashi:

Design and Evaluation of a Media-oriented Vector Processor with a Multi-banked

Cache Memory. The 11th IEEE Symposium on Embedded Systems for Real-Time

Multimedia (ESTIMedia2013), 3-4 October 2012. [Chapter 3]

3. Ye Gao, Ryusuke Egawa, Hiroyuki Takizawa, and Hiroaki Kobayashi: An out-of-

order vector processing mechanism for multimedia applications. In Proceedings of

the 9th conference on Computing Frontiers (CF ’12), pp. 233-236, 15-17 April 2012.

[Chapter 2]

96

Publications

4. Ye Gao, Naoki Shoji, Ryusuke Egawa, Hiroyuki Takizawa, and Hiroaki Kobayashi: A

media-oriented vector architectural extension with a high bandwidth cache system.

Cool Chips XV (COOL Chips), pp.1-3, 18-20 April 2012. [Chapter 4]

5. Ye Gao, Ryusuke Egawa, Hiroyuki Takizawa, and Hiroaki Kobayashi: MVPX: A

Media-oriented Vector Processing Mechanism. The 7th internetional conference on

High Performance and Embedded Architectures an Computers, 2012. [Chapter 4]

6. Ye Gao, Ryusuke Egawa, Hiroyuki Takizawa, and Hiroaki Kobayashi: A Load-

Forwarding Mechanism for the Vector Architecture in Multimedia Applications,

In the Proceeding of 13th EUROMICRO Conference on Digital System Design,

September 1st to 3rd, 2010 France. [Chapter 2]

7. Ye Gao, Ryusuke Egawa, Hiroyuki Takizawa, Hiroaki Kobayashi: An Out-of-order

Vector Processing Mechanism for Multimedia Applications. In the Proceeding of

Summer United Workshops on Parallel, Distributed and Cooperative Processing

2010, August 3rd to 5th, 2010, Kanazawa, Japan [Chapter 2]

97

