(1	Alloy nass%))	Liquidus (K)	Eutectic (K)	
	Al	Ca	α-Mg	α-Mg + C36	α-Mg + C14
AX23	2	3	896.4	· _	785.5
AX53	5	3	877.0	900.3	785.9
AX83	8	3	862.8	806.7	_

Table 2-1 誘導炉にて溶解・鋳造されたAX合金の凝固過程の例^[3]

Alloy (mass%)			Ca/Al mass%	Ca/Al at.%	Eutectic compou
	Al	Ca	ratio	ratio	nds
AX31	3	1	0.3	0.22	Al ₂ Ca
AX63	6	3	0.5	0.34	Al ₂ Ca
AX65	6	5	0.8	0.56	$Al_2Ca, \\ Mg_2Ca$

 Table 2-2

鉄鋳型で鋳造されたAX合金の合金元素濃度と晶出相の関係^[2] 赤字は計算して追記したat.%の比

変形機構	応力指数 n	活性化エネルギー $Q_{ m c}$
拡散クリープ		
体拡散クリープ	1	格子拡散 135 kJ/mol
粒界拡散クリープ	1	粒界拡散 92 kJ/mol
粒界すべり	2	格子拡散 135 kJ/mol 粒界拡散 92 kJ/mol
転位クリープ		
回復律速クリープ	5~7	格子拡散 135 kJ/mol 粒界拡散 92 kJ/mol 交差すべり ~220 kJ/mol
すべり律速クリープ	3~4	不純物拡散、相互拡散

Table 2-3

.

マグネシウムの変形機構と応力指数・活性化エネルギーの関係[15-18]

電子線反射方向g	消衰距離(nm)
1 100	191.341
1120	178.154
Ž 200	424.526
T 101	126.927
2 201	255.882
0002	102.835
1 102	292.080
1122	216.828
2202	496.676

Table 2-4

各電子線反射方向gにおける消衰距離(加速電圧200 kVの場合に補正済)[25]

Fig. 2-1 高周波誘導炉にて溶解・作製されたAX鋳造合金のミクロ組織^[2]

Fig. 2-2 軟鋼るつぼで溶解し、水冷銅鋳型で鋳造した Mg-4Al-2Sr-1Ca-0.3Mn(mass%)合金の、 熱間押出前後のミクロ組織^[8] (a)as-castおよび(b)as-extruded

Fig. 2-3 軟鋼るつぼで溶解し、水冷銅鋳型で凝固したAJC421合金の 熱間押出前後のクリープ曲線^[8](448 K 70 MPa)

Fig. 2-4 TM[®]法で成形されたAX63合金のミクロ組織 (BSE モード)

Fig. 2-5

TM[®]法で成形されたAX63合金中の元素分布 (a)SEM像 (BSEモード)(b)アルミニウム(c)カルシウムおよび(d)マンガン

x^{B} A C_{x} A x^{D} E x^{D} E $2 \mu m$					
	Mg	Al	Ca	Al : Ca	
Α	Bal.	10.33	2.78	4:1	
В	Bal.	10.75	3.08	3:1	
С	Bal.	7.31	4.10	3:2	
D	Bal.	7.08	2.57	3:1	
E	Bal.	10.28	3.28	3:1	

Fig. 2-6 TM[®]法で成形したAX63合金中のネットワーク状晶出相に行った点分析結果

Fig. 2-7 TM[®]法で成形されたAX63合金のクリープ曲線(523 K 110~150 MPa)

2

Fig. 2-8 TM[®]法で成形されたAX63合金のクリープ曲線(50 MPa)

Fig. 2-9

TM[®]法で成形されたAX63合金の最小ひずみ速度の応力依存性

Fig. 2-10 TM[®]法で成形されたAX63合金の引張降伏強度^[5]

Fig. 2-11 粒界における転位の発生・消滅モデル(source-sinkモデル)^[19]

Fig. 2-12 マグネシウムおよびアルミニウムの (a)格子自己拡散係数および(b)粒界自己拡散係数^[21,22]

応力,σ

Fig. 2-13 しきい応力の有無による最小ひずみ速度と応力の関係^[24]

Fig. 2-14 TM[®]法で成形されたAX63合金中の転位組織 (a)鋳造まま材 (b)573 Kで67 h熱処理材(c)573 K20 MPaで開始直後停止 および(d)573 K20 MPaで1.1 %変形材

Fig. 2-15 TM®法で成形されたAX63合金の熱処理による 転位密度と粒界被覆率の変化(573 K 67 h)

Fig. 2-16 TM[®]法で成形されたAX63合金の変形にともなう 転位密度と粒界被覆率の変化(573 K 20 MPa) 開始直後中断材は変形量<1 μm (ひずみ~0%)

B = [0002]

Fig. 2-17 TM[®]法で成形されたAX63合金を523 K50 MPaで 3 µm(ひずみ0.1%)変形させた際の粒界近傍の転位組織(gベクトルは決めず)

Fig. 2-18 微細な結晶粒径を持つマグネシウム展伸材の応力指数[16,26,27]

Fig. 2-19

TM[®]法で成形されたAX63合金と粒界すべりを生じる各合金の比較^[26,27]

Fig. 2-20

TM[®]法で成形されたAX63合金の最小ひずみ速度の温度依存性(40~70 MPa)

Fig. 2-21

TM[®]法で成形されたAX63合金の最小ひずみ速度の温度依存性(90~110 MPa)

Fig. 2-22

TM[®]法で成形されたAX63合金の最小ひずみ速度の温度依存性(130~150 MPa)

TM[®]法で成形したAX63合金の活性化エネルギーの応力依存性 (a)応力および(b)応力の逆数に対してプロット

Fig. 2-24 TM[®]法で成形されたAX63合金の 最小ひずみ速度を示すひずみで中断したクリープ試験片のミクロ組織

Fig. 2-25

TM®法で成形されたAX63合金の中断クリープ試験片の粒界被覆率

Fig. 2-26 AX52ダイカスト材のクリープパラメータ^[14] (a)応力指数および(b)活性化エネルギー

Fig. 2-27 AX52ダイカスト材の粒界被覆率変化^[29]

応力, σ

Fig. 2-28 粒界被覆率減少による最小ひずみ速度変化の模式図

Fig. 2-29

AX52ダイカスト材の応力指数の再計算

(実線はデータ点に対する近似曲線、点線が再計算用の補正曲線)[14]

Fig. 2-30 TM[®]法で成形されたAX63に熱処理(673 Kで100 h)を施した後のミクロ組織

Fig. 2-31

TM[®]法で成形されたAX63熱処理材のクリープ変形前後のミクロ組織 (523 K、90 MPa、11.8 %変形)

Fig. 2-32 TM[®]法で成形されたAX63熱処理材のクリープ曲線(473 K、90~110 MPa)

Fig. 2-33 TM[®]法で成形されたAX63熱処理材のクリープ曲線(498 K、70~110 MPa)

Fig. 2-34 TM[®]法で成形されたAX63熱処理材のクリープ曲線(90MPa)

Fig. 2-35 TM[®]法で成形されたAX63熱処理材のクリープ曲線(110MPa)

Fig. 2-37

TM®法で成形されたAX63熱処理材の最小ひずみ速度の温度依存性

Fig. 2-38 TM[®]法で成形されたAX63合金の熱処理前後 における最小ひずみ速度の変化(498 K、90 MPa)

Fig. 2-39

TM[®]法で成形されたAX63合金の熱処理前後における最小ひずみ速度の比較 (473 K、90~130 MPa)

