氏名・(本籍)	村田 徹
学 位 の 種 類	理学博士
学位記番号	理 第 3 6 7 号
学位授与年月日	昭和47年11月29日
学位授与の要件	学位規則第5条第2項該当
最終学歷	昭和 34年 3月 早稲田大学第一理工学部応用物理学科卒業
学位論文題目	²⁶ Mg (p, p) ²⁶ Mg 反応による ²⁷ Al励起準位
論文審查委員	(主查) 教授森田 右 教授石松 敏之 ^{助教授} 字井 治生 ^{助教授} 庄田勝房

論 文 目 次

第 1章 序 論
第 1章 核構造と共鳴現象
第 1章 研究の目的
第 17章 実験方法
第 17章 実験結果
第 17章 実験結果の解析
第 17章 考察と結論

論 文 内 容 要 旨

第1章序 論

複合核過程による核反応につき概観し、本研究のデータ解析に用いる核反応断面積公式の導入と Rマトリックスによる共鳴核反応の形式論につき述べた。

第1章 核構造と共鳴現象

共鳴現象を 核構造の立場から考察し、本研究に関連ある Nilsson モデル、ドアウエイ状態、 アイソバリックアナログ状態等につき共鳴エネルギー、共鳴巾を中心に論じた。

第Ⅲ章 研究の目的

中重核のアイソバリックアナログ共鳴については、これまでに多くのデータが集積され、その励 起機構について実験、理論ともに明確にされているが、s - d シェル核についてはアナログ準位の 明確な対応がなされているものが少ない。更にs - d シェル核についてはNilssonモデルのよう な集団運動モデルが一般に適用されるが、この様な歪んだ核についてはアナログ準位励起の様子が 球形核のそれとは異ると考えられ、その機構を調べることは興味ある問題である。又、これ等の核 につきアナログ準位の対応が得られれば、陽子により励起されるエネルギーの高い複合核状態での 核の歪み等の集団運動パラメータが決定され、その構造解明の手がかりが得られよう。又、アナロ グ準位以外の共鳴準位がNilssonモデルによりどの程度説明しうるかを調べることも興味ある 問題であろう。

以上の観点より²⁶Mg(p・p)²⁶Mg反応による²¹A1励起準位の研究を行った。

第Ⅳ章, 第Ⅴ章 実験方法及び実験結果

バンデグラーフ型加速器により加速された陽子を²⁶ Mgターゲットに照射し、重心系での散乱角 度 90.0 ° 125.3° · 165.6 ° で²⁶ Mgによる陽子の弾性散乱断面積の測定を行った。この測定の入 射陽子エネルギー範囲は実験室系で 1.2 MeV から 3.0 MeV で、そのエネルギー分解能は約 2.5 keV 測定のエネルギーステップは約 1.5 keV である。

断面積の絶対値は共鳴準位の存在が認められなかったエネルギーの低い部分での計数値をクーロン 散乱と剛体球散乱の断面積の計昇値に規格化して定めた。

この断面積測定の誤差は4~5%である。結果を第1図に示す。この図には約34本の共鳴ビーク が認められる。

第11章 実験結果の解析

測定された断面積には多くの共鳴構造が認められ、しかも、かなり接近して同じ軌道角運動量の 準位が励起される傾向があるため、普通に用いられる単準位断面積公式で解析することは困難であ る。しかし、一般の多チャネル準 位の断面積公式には各チャネルの共鳴バラメータが含まれてお り、弾性散乱断面積のみではそれ等をすべて決定することは出来ない。しかし、本測定のエネルギー範囲では $(p \cdot p')$, $(p \cdot a)$ 反応がきまり大きくないと考えられ、関与するのは $(p \cdot r)$. $(p \cdot p)$ 反応のみとみなしうる。従って、この解析では全巾 Γ と陽子巾 Γ_p のみを共鳴巾のパラ メータとした多準位断面積公式をRマトリックス理論より導いた。この際、同じスピンパリティの 準位は同じreduced widthの比を有すると仮定した。この仮定は単チャネルの場合には正確 な断面積を与える。以上の如く導いた多準位断面積公式の計算コードを作成し実験結果の解析を行 った。この計算コードでは共鳴エネルギー E_R ・共鳴準位のスピンJ、軌道角運動量 1.共鳴巾 Γ . Γ_P を入力パラメータとして計算を行うが、同時に計算に考慮することの出来る準位数は最大27本 である。

この解析により観測された34本の共鳴を冉現することが出来たが、この計算では入射陽子ビーム エネルギーの拡がり ΔE_P を無視したので共鳴巾が ΔE_P 程度の準位に対しては、計算に使用した Γ の値は実際に比してかなり大きく、 Γ_P は逆に小さな値をとっている。ただし、次章で述べる準 位に対しては ΔE_P の補正を行った。

断面積の計算結果を第1図に実線で示した。又、この解析で得られた共鳴パラメータを第1表に掲 げた。

第11章 考察と結論

この様にして得られた²¹ A1の励起準位は²¹ Mgのアナログ準位(アイソバリックスピンT=3/2) と²¹ A1の基底状態と同じアイソバリックスピン(T=1/2)を有する準位とから成立っているこ ととなる。従って、これ等T=3/2とT=1/2の準位構造はそれぞれ²¹ Mgと²¹ A1の低励起準位 構造を説明する核モデルにより解釈されると考えられよう。これ等の構造はNilssonモデルによ り説明されることが多い。使って、この測定で得られた²¹ A1の励起準位構造を、共鳴巾の比較的大 大きな準位を中心に、Nilssonモデルにより考察することを試みた。

まづ. 核の重みがない場合につきT = 3/2. T = 1/2状態に対するポテンシャルを求め. その単 一粒子準位を計算した。これ等ポテンシャルの深さはT = 3/2とT = 1/2の基底準位の陽子束縛 エネルギーを冉現するように定め. その共鳴より単一粒子準位を得た。この結果 $E_P = 1 \sim 3$ MeV ではT = 3/2準位として $1f_{7/2}$ と $1d_{3/2}$ が, T = 1/2準位として $2P_{3/2}$ が得られた。

次に、これ等準位を基に核が歪んだ場合のNilsson軌道を求めた。Nissonモデルで使用する パラメータは上述のポテンシャル散乱の計算結果と矛盾なく定めた。このパラメータは、一般に、

²⁷ Mg, ²⁷ A1の低励起準位構造の説明に使用されているパラメータとも良い一致を示した。

この Nilsson 軌道と核の回転運動とが合成して生づる K バンド準位と観測された比較的巾の大きな 4~5 本の共鳴準位との比較を準位の粒子巾につき行い,これ等共鳴準位の構造につき考察した。この結果.このモデルでは核の 歪み るは 0.1 2程度が実験結果を比較的良く説明することが解った。この 値は²¹ Alの低励起状態の説明に用いられている る= 0.25~0.3 より小さく,むしろ²¹ Mgのそれに近い。

δ=0.12に対するKバンド準位構造をコリオリ相互作用(RPC)も考慮して計算したがある共鳴

準位については実験と理論との対応が認められるが、このモデルで実験結果を明確に説明すること が可能であることは結論されてない。

最後に²⁶ Mg($d \cdot p$)²⁷ Mg反応による²⁷ Mg準位のエネルギー及び中性子巾とこの研究により得られた共鳴準位のエネルギー及び陽子巾との比較を行い.²⁷ Mgのアナログ準位の推定を行った。

²⁶ Mgによる陽子の弾性散乱断面積 第1図

> 黒丸;実験値,実線;多準位公式による計算値,点線;(クーロン+剛体球) 散乱の 計算値

- (a)
 $E_P = 1.2 \sim 1.8 \text{ MeV}$

 (b)
 $E_P = 1.8 \sim 2.4 \text{ MeV}$

 (c)
 $E_P = 2.4 \sim 3.0 \text{ MeV}$ (次頁)

断面積の計算に使用した共鳴パラメータ 第1表

<i>E_R</i> *(NeV)]	Jπ Ι	(keV)	$E_R * (M \epsilon)$	•V).	ĮJπ	Γ (keV)
1.383	1	3/2-	· 4	2424	2	(5/2	+) 1
$1.4 \ 1 \ 2$	1	1/2-	28	2.440	1	1/2	- 8
1.4 50	1	1/2-	8	2.451	(3)		Ь
$1.6\ 28$	1	1/2-	4	2460	0	1/2-	+ b
1.642	0	1/2+	0.1 ₅	2475	2	(3/2-	+) b
1.718	1 (3/2-)	Ь	2.500**			
1.728	1 (1/2-)	Ь	2546	2	(3/2-	+) b
1.896^{**}				2566	1	3/2-	- b
2.030	1	3/2	3 5	2635	0	1/2-	+ b
2.0 5 0	0	1/2+	~ 6 0	2.667	1	3/2-	- 4
2146**				2750	1	1/2-	- b
2.1 4 9	0	1/2+	3	2.770	2	(5/2-	+) b
2.187	2(3/2+)	Ь	2.817	2	(5/2-	+) b
2.300	3	7/2+	0.7 ₀	2920	2	(5/2-	+) b
2.330	(3)		Ь	2944	2	(5/2-	+) b
2.380	1	1/2+	28	2951	1	3/2-	- 4
2.3 91	2(5⁄2+)	Ь	(3.040)	(0)	(1/2-	+) (10)
2.411	2(5/2+)	Ь				

For narrow resonances denoted by " b " in column 4, the fits shown in Fig. 1 were made using the values of Γ of the same order as the system. spreading of the beam energy (2~3keV) and the ** These resonances values of Γ_P/Γ much smaller than unity. For other were not included resonances, fitting was made with $\Gamma_P/\Gamma \cong 1$.

* Resonance energy in the laboratory

in the calculation.

論文審査結果の要旨

この研究は、場子の²⁶Mgによる弾性散乱の励起曲線を高分解能で精密測定し、²⁷Alの高い励起 状態における共鳴準位のスピン、パリティ、準位巾などを求め歪んだ核の回転模型によって解析し たものである。

実験は、バンデグラフ装置と半導体検出器を用いて3つの角度(90,0°,125.3°,165.6°)で エネルギー間隔1.5keVで励起曲線を測定し、約34個の共鳴ビークを観測した。これらの共鳴は かなり接近しているために多準位共鳴公式を用いなければならず、オープン・チャネルを(p, γ) と(p, p) 反応だけと仮定してR-マトリックス理論から共鳴公式を導いた。そして、共鳴エネル ギー E_R ,共鳴準位のスピン J,軌道角運動量 1,共鳴巾 Γ , Γp をパラメーターとして計算コード を作成し、実験結果を解析した結果、34ケの共鳴の中、31ケについて共鳴曲線を再現することが でき、これらのパラメーター値を決定することができた。

これらの励起準位は、T=3/2の²⁷ Mgのアナログ準位と²⁷ A1の基底準位と同じT=1/2の状態からなっているはずであり、Nilsson模型によって説明することを試みた。まず、T=3/2 と 1/2の基底準位の陽子束縛エネルギーを再現するように光学ポテンシャルの深さを決定し、球形核について単一粒子準位を計算し、次に核が歪んだ場合のNilsson軌道を求めた。そして、Nilsson軌道と核の回転軌道とが合成されて生ずるKバンド準位を、実験から求められた比較的巾の大きい共鳴準位と比べて、核の歪パラメーターるが約0.12であることを結論した。この値は、 ²⁷ A1の低励起状態から求められているる=0.25~0.3 よりも小さいが、²⁷ Mgのそれに近い値である。

最後に、この研究で求められた共鳴準位のエネルギーと陽子巾を、 26 Mg(d, p) 27 Mg反応による 27 Mg準位のエネルギーと中性子巾と比べて 27 Mgのアナログ準位の推定を行なった。

以上, この論文は²⁷A1の高い励起エネルギー(9.427-11.160MeV)における準位構造につい て新しい知識をえ、この領域での核の歪を求め、従来研究の少なかった s-d シエル核のアナグロ準 位についても新しい対応を確めたものである。

よって、村田徹提出の論文は、理学博士の学位論文として合格と認める。