氏名・(本籍)	^{cii vù và x} 小 林 寿 夫
学位の種類	理 学 博 士
学 位 記 番 号	理博第 1047 号
学位授与年月日	昭和63年3月25日
学位授与の要件	学位規則第5条第1項該当
研究科専攻	東北大学大学院理学研究科 (博士課程)物理学専攻
学位論文題目	RMn ₂ Ge ₂ (R=Gd, Dy)の磁気構造と磁気異方性
論文審査委員	(主查) 教 授 山 本 尚 夫 教 授 中 川 康 昭 助 教 授 篠 原 猛

論 文 目 次

- 第1章 序 論
 - §1.1 はじめに
 - §1.2 RM₂X₂の磁気的性質の実験的背景
 - §1.3 ThCr₂Si₂型化合物における¹⁶¹Dy, ¹⁵⁵Gd メスバウアー効果
 - §1.4 本研究の目的

第2章 実験方法

- §2.1 試料作製方法
- §2.2 磁化測定
- §2.3 メスバウアー効果の測定
- §2.4 中性子回折測定
- 第3章 実験結果とその解析
 - §3.1 GdMn₂Ge₂の実験結果
 - §3.2 DyMn₂Ge₂の実験結果

第4章 実験結果の解釈及び考察

- §4.1 実験結果のまとめ
- §4.2 GdMn₂Ge₂における磁化曲線
- §4.3 ¹⁵⁵Gd メスバウアー効果の四極子分裂について
- §4.4 GdMn₂Ge₂の磁気相図について
- §4.5 ¹⁶¹Dy メスバウアー効果について
- §4.6 DyMn₂Ge₂の磁気相図について
- 第5章 総 括
 - §5.1 まとめ
 - §5.2 今後の課題
- 謝 辞

参照文献

論 文 内 容 要 旨

物質の磁性を担う元素の主なものは、鉄族(3d) 遷移金属および希土類(4f)元素に含まれている。3d 元素または4f 元素のみを含む物質と同じく、それらが共存する物質も重要な磁性研究の対象である。しかし、その磁気的相互作用の多様性により複雑な磁性を示す場合が多く、前者に比べて必ずしも充分な理解が得られているわけではない。特に、金属的な希土類-3d 遷移金属間(R-3d)化合物において、3d 遷移金属と希土類イオンが共に磁気モーメントを持つ場合の磁性を理解する上での困難は、磁気モーメントを担う3d および4f 電子の性質、更に各々の磁気モーメント間の相互作用の本質的差異に基づく。一般に、R-3d 化合物の磁性は、充分強い3d-3d 交換相互作用、弱い3d-R 交換相互作用、無視しうるほど弱い R-R 交換相互作用ならびに結晶場により生じる希土類イオンの異方性により理解されている。従って、3d-3d と3d-R 交換相互作用が競合するような系での磁気的挙動を明らかにすることは、R-3d 化合物の磁性を理解するうえで極めて興味ある研究課題である。

本研究では以上のような観点から,結晶構造が比較的単純な RMn₂Ge₂ (R=Gd, Dy) を取り 上げる。この化合物の単結晶試料を作製し,磁気的性質を,巨視的(磁化測定)および微視的 (中性子回折,希土類元素のメスバウアー効果)な測定手段を用いることにより,実験的に調べ る。国内では測定経験のない¹⁵⁵Gd (86.5 keV),¹⁶¹Dy (25.7 keV) メスバウアー効果の測定,解 析方法を確立することも目的とした。

RMn₂Ge₂ (R=Gd, Dy) については、現在までの研究結果から、その結晶構造は体心正方晶 ThCr₂Si₂型 (I4/mmm) を取ること、高温 (Gd 化合物: T_N=365 K, Dy 化合物: T_N=383 K) で Mn の磁気モーメントが反強磁性構造にオーダーし、低温 (Gd 化合物: Tc=97 K, Dy 化合 物: Tc=47 K) で希土類イオンの磁気モーメントのオーダーに伴ないフェリ磁性構造に転移す ると考えられている。従って、希土類イオンの磁気モーメントのオーダーにより、Mn-Mn の反 強磁性的な交換相互作用と R-Mn の反強磁性的な交換相互作用の競合が起っていると考えら れる。

単結晶 GdMn₂Ge₂の磁場10 kOe 下での <100>, <001> 方向での磁化の温度変化から,ネール 温度 T_N=365 K で Mn の磁気モーメントがオーダーし, Tc=96.5 K で Gd イオンの磁気モー メントのオーダーに伴ない <001> 方向の磁化の増加が観測された。4.2 K での <001> 方向の自 発磁化の値 (3.0 μ_{B} /F.U.) は, Gd が自由イオンの磁気モーメントの値7 μ_{B} , Mn の磁気モーメ ントの値が2 μ_{B} のコリニアー・フェリ磁性構造として説明できる。この磁気構造および Mn の磁 気モーメントの値は, DyMn₂Ge₂における8 K での中性子回折の解析結果と一致している。従っ て, T_N=365 k で Mn の磁気モーメントが,反強磁性構造にオーダーし, Tc=96 K で Gd イオ ンの磁気モーメントがオーダーするのに伴ない,フェリ磁性構造に転移する。フェリ磁性相で の自発磁化は温度上昇に伴ない減少する。

更に、磁場による転移も観測された。フェリ磁性相では、磁場を <001>の垂直方向に加える

-110-

ことにより磁化のとびが生じる。その磁化のとびは、4.2 K 磁場 <100> 方向220 kOe $c_{2\mu_{B}}/F$. U.程度である。転移磁場は、温度上昇と伴に低磁場方向に移動する。転移後の磁気構造は、Gd イオンの磁気モーメントが c 面に倒れ、Mn の磁気モーメントは c 面から立ち上がったキャン ティド・フェリ磁性構造に転移したと推測される。一方、反強磁性相では、磁場を <001> 方向 に加えた場合に、1次転移的磁化のとびが生じる。その転移磁場は、温度上昇に伴ない低磁場 方向に移動する。すなわち、この転移は、Mn の磁気モーメントの反強磁性構造から強磁性構造 への転移である。更に、磁化の値から、Mn の磁気モーメントからの分子場により、Gd イオン の磁気モーメントもオーダーしたフェリ磁性構造であると考えられる。

4.2 K ¹⁵⁵Gd メスバウアー・スペクトルの解析は、希土類サイトの対称性、磁化測定の結果から、内部磁場および電場勾配テンソルの主軸方向が共に c 軸と一致しているので、その条件下で行なった。解析により求められた内部磁場の値 (-290 kOe)は、内殻 s 電子偏極から予想される値 (-320 kOe)とほぼ一致している。一方、四極子分裂の値は、-0.20 mm/s であり、その値から結晶電場の変数 A $_{2}^{9}$ を求めると、155 K/a $_{6}^{2}$ (a₀:ボーア半径)となる。

単結晶 DyMn₂Ge₂の <001>、<100>、<110>方向での磁化の温度・磁場依存性より T_N=431 K で Mn の磁気モーメントがオーダーし、Tc₁=33.0 K, Tc₂=37.5 K で磁気構造の変化が観測さ れた。更に、4.2 K での強磁場中での磁化測定の結果、磁場を <001> 方向に加えた場合に、65 kOe 付近で磁化のとび (2.0 μ_{B} /F.U.) が生じた。従って、磁気的にオーダーした4 種類の相が 存在する。4.2 K での <001> 方向の自発磁化の値は、5.6 μ_{B} /F.U.である。Tc₁以下での <001> 方向の自発磁化の温度依存性は、ほとんど観測されない。

無磁場での各相の磁気構造を決定するために,単結晶を用いた中性子回折実験を行なった。 測定は、逆格子空間(h0l)面の46の逆格子点について行なった。50 K(>Tc2)での測定結果 の解析により、磁気構造は、 $Mn の磁気モーメント (2.2 \pm 0.1 \mu_B)$ が c 面内で c 軸方向を向い て強磁性結合し、 c 面間で反強磁性結合した構造である。8 K(<Tc₁)での測定結果の解析に より, 磁気構造は, Dy, Mnの磁気モーメント (10.2± µ_B/Dy, 2.31±0.1µ_B/Mn) が共に c 軸 方向を向き反強磁性結合したフェリ磁性構造である。この結果からのc軸方向の自発磁化の値 は5.6±0.4 µ_B/F.U.となり,磁化測定の結果と一致している。磁化測定の結果フェリ磁性相と反 強磁性相との間に、他の磁気相が存在すると考えられる。そこで中性子回折においてもその相 を確認するために,(101)反射の積分強度の温度変化を測定した。(101)反射の積分強度は, 結晶•磁気構造因子から反強磁性相では核散乱のみで, フェリ磁性相では大部分が Dy イオンの 磁気モーメントによる磁気散乱(核散乱は5%程度)である。測定結果は、フェリ磁性相での 積分強度の温度変化はほとんどなく, Tc1=33.0 K で積分強度が57%減少し, 更に Tc2=37.5 K 以上で反強磁性相(50 K の測定結果)と等しい積分強度まで減少する。すなわち,中性子回折 からもフェリ磁性相と反強磁性相の間に新たな磁気相が存在することが確認された。フェリ磁 性相で(101)反射の積分強度が温度変化していないことも、<001>方向の自発磁化の温度依存 性が小さい結果と一致している。35 K でも8 K, 50 K と同様な測定を行なった。実測積分強度の

特徴は、Mnの反強磁性構造からの反射は観測されず、フェリ磁性相での磁気散乱の寄与が小さ くなった反射が観測された。磁気構造の詳細については決定できなかった。しかし、フェリ磁 性構造に近い磁気構造であり、その積分強度から Dy イオンの磁気モーメントは6 μB程度であ ると考えられる。

¹⁶¹Dy メスバウアー効果の測定結果を図に示す。4.7 K で測定したスペクトルの解析は Dy サ イトを1種類として行なった。解析結果が実測スペクトルを充分再現しているので, Dy イオン は結晶学的・磁気的には同一サイトに属している。解析により求められた内部磁場(g_Nµ_NH_{eff}), 四極子分裂(<u>1</u>-e²qQ)の値は,865.7 MHz,636.5 MHz である。¹⁶¹Dy メスバウアー効果にお ける内部磁場,四極子分裂の値は、 〈Jz〉、 〈3Jz² – J²〉(〈 〉: Boltzmann 平均を表す。)に比 例する。 解析により求められた内部磁場,四極子分裂の値は,Mn の磁気モーメントからの分子 場や遮蔽効果を考慮すれば、 $J_z = -\frac{15}{2}$ から予想される値により説明できる。更に Tc_1 以下の 28.5 Kまでは、4.7 Kの結果と実測スペクトル、解析により求められた変数がほとんど一致し ている。この結果は、<001>方向の自発磁化、(101)反射の積分強度が、Tc,以下ではほとんど 温度依存性を持たない結果と一致している。Tc,以上では緩和型スペクトルが得られたので, 縮 退した2レベル間の緩和モデル (Dy イオンは1種類のサイト) により解析を行なった。解析に より求められたスペクトルが、実測スペクトルを充分よく再現している。このことは Tc,以上で は Dy イオンの磁気モーメントはオーダーしていないことを示し, 磁化測定, 中性子回折の結果 と一致する。求められた内部磁場の値(769.7 MHz: 40.7 K)は、 $J_z = \pm \frac{15}{2}$ では説明できない。 従って、Dy イオンの基底状態は、 $J_z = \pm \frac{15}{2}$ に結晶場ハミルトニアンにより他のレベルが混 じっていると考えられる。Tc1と Tc2の間では、他の磁気相とは異なり Dy イオンに2種類の分 光学的サイトが存在すると考えなければ実測スペクトルを再現できない。解析により求められ た内部磁場の値 (855.6, 771.8 MHz:35.6 K) は, 一方がフェリ磁性相で他方が反強磁性で求 められた値とほぼ一致する。 従って,Dy イオンの電子状態に,フェリ磁性状態に近いサイトと 常磁性状態に近いサイトが存在する。各々のサイトの存在比は,スペクトルの強度比よりほぼ 1:1である。

以上のような実験結果から、Gd、Dy 化合物は共に低温相では、希土類イオン、Mn の磁気モー メントが、c 軸方向を向いて反強磁性結合したフェリ磁性構造である。Mn の磁気モーメントの みがオーダーした高温相では、c 面内で Mn の磁気モーメントが c 軸方向を向いて強磁性結合 し、c 面間で反強磁性結合した反強磁性構造である。DyMn₂Ge₂においては、フェリ磁性、反強 磁性相の間に新たな磁気相が存在することが判った。この相の磁気構造は複雑で、一義的に決 定できないが、Dy イオンの電子状態に、フェリ磁性、常磁性状態に2種類のサイトが存在する という極めて興味深い事実が、¹⁶¹Dy メスパウアー効果の測定により見出された。その他 Gd、Dy 化合物における磁気相図、磁化の磁場・温度依存性の違いは、Dy イオンの結晶場による磁気異 方性と、c 面間 Mn-Mn の反強磁性交換相互作用と R-Mn の反強磁性交換相互作用の強さの比 によると考えられる。 R-3d 化合物中で, R-3d, 3d-3d 交換相互作用の競合と磁気異方性により新たな磁気相が存在 することが判った。今後このような磁気相が出現する機構を実験的に解明していくことにより, R-3d 化合物の磁性の総合的な理解に新たな知見が得られることが期待される。

論文審査の結果の要旨

RMn₂Ge₂ (R:希土類)は、体心正方晶 ThCr₂Si₂型の結晶構造であり、R, Mn, Ge の各格子 点は、それぞれの c 面上にあって層状構造をなす。従って面間の Mn-Mn 間の距離は、面内の それに較べて長く、その交換相互作用は R-Mn 間のものと同程度と考えられ、R イオンのもつ 大きな結晶磁気異方性エネルギーとも関連して、興味ある磁気的挙動が報告されている。

本研究はRイオンとして軌道角運動量L=0のGdとL=5のDyを含む2種類の金属間化 合物について、磁化測定、中性子回折、¹⁵⁵Gd、¹⁶¹Dy核のメスバウアー効果を測定し、それらの 磁気相図と各イオンの磁気モーメントを決定し、イオン間に働く相互作用と電子状態を評価し たもので、内容は5章からなる。

第1章は序論である。第2章は試料作製と測定の方法を述べ、次に¹⁶¹Dy メスバウアー効果用 線源のための¹⁶⁰GdF₃の作製手順と、これを中性子照射した¹⁶⁰Gd (¹⁶¹Tb)F₃が線源として良い 特性をもつことを Dy 金属の吸収スペクトルで検証した。又、¹⁵⁵Gd 用線源は、¹⁵⁵Eu を Pd 中に 拡散したものを準備した。

第3章は,実験結果とその解析について述べている。GdMn₂Ge₂の磁化測定,中性子回折の結果から365 K 以下で Mn スピンは c-軸に平行で,面内は強磁性,面間は反強磁性の磁気構造となり,96.5 K 以下で Gd スピンの秩序配列に伴って,全ての Mn スピンがこれと反平行に再配列するフェリ磁性体となる。このときの磁気モーメントは、7.0 μ_B /Gd, 2.3 μ_B /Mnであり,¹⁵⁵Gd×スバウアー効果から内部磁場-290 kOe,四極子分裂-0.20 mm/s,結晶電場変数A²₂=155 K/a 3 が求められた。DyMn₂Ge₂でも前者の高温相低温相と同じスピン構造がそれぞれ431K~37.5K 及び33.3K 以下で観測された。この両相の磁気モーメントは何れも10.2 μ_B /Dy, 2.2 μ_B /Mn である。33.3K~37.5K の温度では¹⁶¹Dy ×スバウアー効果によって,上述の高温相,低温相に対応する分光学的に異なる 2 種類の Dy サイトが約1 :1の存在比で観測された。この中間相は、Mn スピンが c 軸方向に強磁性配列で伝播するとき一定の周期で反強磁性配列の変調が生じていることが推論された。

第4章は結果の解釈と考察である。DyMn₂Ge₂の磁気相図の低温相では Dy³⁺は Mn 副格子の 作る分子場によって、イオンの基底準位にあり、高温相では結晶場によって準位の混合が生じ、 メスバウアースペクトルは緩和型であることが示された。

以上のように本論文は,希土類-鉄属合金の基本的な性質であるイオン間の相互作用と電子 状態の関係について解明したものである。

これは、小林寿夫が自立して研究活動を行うに必要な高度の研究能力と学識を有することを示すものである。よって、小林寿夫提出の論文は、理学博士の学位論文として合格と認める。