	氏名・(本籍)	th lu loth 高橋 豊	
	学位の種類	理 学 博 士	
	学位記番号	理博第 1055 号	
	学位授与年月日	昭和63年3月25日	
	学位授与の要件	学位規則第5条第1項該当	
	研究科専攻	東北大学大学院理学研究科 (博士課程)原子核理学専攻	
	学位論文題目	(p, n), (p, p′)反応による²⁴Mg, ²8Si, ³2S のアイソベクトル(→1+転移強度の研究)+
	論文審査委員	(主査) 教 授 石 松 敏 之 教 授 織 原 彦之喜 教 授 藤 平 フ	亟 力

論 文 目 次

第一章 序 論 第二章 基礎理論 第三章 実 験 第五章 網 析 第六章 議 論 第7章 結 論 謝 辞

論 文 内 容 要 旨

原子核物理学は今世紀の初頭に始まった量子力学の発展と共に精力的に研究が行なわれてき ており、新しい量子力学を武器としてその構造、相互作用が詳しく調べられると同時に、量子 力学を試す対象として重要な役割を担ってきた。その過程においては現在でも核構造のモデル として使われている殻模型の理論 (Mayer-Jensen),集団運動の理論 (Bohr-Mottelson)が生ま れた。現在の原子核物理では核子に加えてパイオンなどのメソン、核子の励起状態である Δisobar まで取り入れた議論が行なわれ、更に核内におけるクオークの役割が問題とされるとこ ろまで来ている。

このような中で今研究課題になっていることの一つがアイソベクトル型0⁺→1⁺転移強度であ る。この転移では角運動量、パリティーの変化が(Δ J、 Δ L、 Δ S)=(1,0,1)でしかもアイソ スピンが一単位変化する。この型の転移はベータ崩壊ではGamow-Teller型に対応し、電子散 乱ではアイソベクトル M1(以下 IVM1と略す)型転移に対応している。これまでさまざまな核 に対して測定が行なわれてきているが問題はいずれの転移でも測定された強度がモデルの予想 値よりも小さいという点にある。現在使われているモデルは核子の自由度のみを用いた殻模型 計算であるが、これに Δ -isobar、メソンの効果を含めた計算、またより複雑な配位を考えた計算 も試みられている。しかしながら現在のところ、どの効果がどれほど寄与しているのかはっき りした結論はなく、より多くのデータを集めることが望まれている。

本研究ではアイソベクトル0⁺→1⁺転移強度を精密,かつ系統的に測定することを目的に, これまでよく調べられていない²⁴Mg, ²⁸Si, ³²S をターゲットに,35MeV の陽子ビームを使い(p, n) 反応ならびに (p, p') 反応 (²⁴Mg と²⁸Si のみ)の測定を行なった。これらの核は s-d 殻と 呼ばれる A=17~39 の領域にあり,現在最良であると言われている Wildenthal と Brown の 殻模型波動関数を用いることができるため,信頼性の高いモデル計算が可能であると考えられ る。一方実験の面から言えばこれらの核では準位密度が低いため一つ一つのレベルが分離され, ピーク面積の計数やバックグランドの設定に不確定要素が少ないという利点がある。それに加 えてこれらの核に対する電子散乱の実験が行なわれ, (p, n)反応で励起される状態のアナログ 状態への転移確率 B (IVM1) がすでに測定されている [参考文献1, 2, 3]。B (IVM1)と (p, n) 反応のアイソベクトル0⁺→1⁺断面積の間には強い相関のあることが期待されるので, データを比較してみることは興味深い。

(p, n)反応の実験は東北大学サイクロトロン・ラジオアイソトープセンターのAVFサイク ロトロンと中性子飛行時間測定装置を用いて行なわれた。中性子のエネルギーは飛行時間測定 (TOF)法によって行ない,高速中性子を高分解能で効率良く検出するためにターゲットから44 m離れた位置に大型検出器を置いた。検出器は総量23リッターの液体有機シンチレータで,発 光を光電子増倍管で電気信号に変換し,飛行時間を計測する。検出効率は7Li (p, n)7Be反応を 使って決定されている。検出器からの信号は CAMAC インターフェイスを通じて計算器に送ら

-167-

れる。データは一イベントづつ磁気テープに記録されると同時に解析され、スペクトルがディ スプレーに表示される。最終的なエネルギー分解能は90KeV~110KeV であった。

(p, p') 反応の測定は東京大学原子核研究所の SF サイクロトロンと荷電粒子分析スペクトロ メータを用いて行なった。

(p, n) 反応の測定によりそれぞれの核で3本づつ計9本1+(T=1)状態を観測し, 微分断 面積の角分布を測定することができた。図1と図2に²⁴Mg(p, n)反応のスペクトルと1.12MeV にある強い1+状態の微分断面積の角分布を示す。(p, p')反応では励起エネルギー10MeVより 上にT=1状態があらわれるが,この領域ではT=0状態の密度が高く一本一本の状態を観測 するのが難しくなる。このため他のピークから分離して測定された1+(T=1)状態は²⁴Mg で 2本,²⁸Si で1本にとどまった。

これらの測定された微分断面積に対し、殻模型計算による核構造を使った歪曲波ボルン近似 (以下 DWBA と略す)計算を行い、比較を行なった。核の波動関数として用いたのは Wildenthal-Brownの殻模型計算値であるが、彼らは sd 殻において良く知られた440本のレベ ルエネルギーを再現するような現象論的有効相互作用を求めた。この相互作用を用い、3本の 一粒子軌道 (d_{5/2}, s_{1/2}, d_{3/2})をモデルスペースとして、可能なすべての配位を考慮した計算を行 なっている[参考文献 4]。これは現在までに行なわれた計算としてはかなり広いモデルスペー スを使った計算である。一方 DWBA 計算においては核子-核子有効相互作用として Bertsch らの発表した M3Y と呼ばれているセット [参考文献 7]を用いた。この相互作用は Reid が求 めた裸の核子間ポテンシアルを元にしており、これから G-行列を計算することによって核内 における有効相互作用としている。この相互作用は低エネルギー(<50MeV)核子散乱に広く 使われている。歪曲波を作る光学ポテンシアルとしては、陽子に Becchetti-Greenleesのパラ メータを、中性子には Carlson によるパラメータを用いた。[文献5, 6]

図2の例に示すように DWBA 計算値は測定された角分布のかなりよく再現しているが,絶対値までを再現することには成功していない。それぞれの核について測定された1+(T=1)状態の強度を計算値と比較してみた。(p,n)反応の場合について図3,4,5に示す。ここでは測定した角度の範囲での積算断面積で比較しており,それぞれの状態に対して比(測定値/計算値)と,核ごとに強度の総和をとった場合の比を示してある。これを見ると測定値と計算値の比は一つ一つの状態について0.24~1.9とかなり変動するが,核ごとに強度の和をとって比較してみると一様に0.5-0.6に集まっている。すなわちこれら3つの核では理論の予想が実験に対して2倍ほど大きすぎることになる。(p,p')反応でもほぼ同じ結果が得られている。この結果はBrownと Wildental が報告している sd 殻の GT 型ベータ崩壊強度の測定値と理論値の比に一致しており,また Indiana のグループが報告している中間エネルギー(p,n)反応で得られた GT 型転移強度も同じ傾向を示している。この結果は核構造あるいは散乱のモデルにまた不備な点のあることを示唆しており,更に詳しい計算が望まれる。

次に電子散乱で測定された B(IVM1)との比較を試みた。但し測定された B(IVM1) には (p,

n) 反応には関与しない軌道角運動量項の寄与があるのでこれを殻模型計算値を使って差し引き,スピン項のみの寄与を求めた。また (p, n) 反応に関しては相互作用の中で中心力が支配的である比較的前方のデータに限った。図6で横軸に重心系15度から54度までの (p, n) 反応の積算断面積,縦軸に B(IVM1) のスピン成分をプロットしてある。2組の測定値の間には強い相関があることがわかり,特に³²Sを除けば比例関係が成立している。それは電子散乱による B (IVM1) と (p, n) 反応強度の間に強い関係があるという予想を裏付けるものである。

参考文献

- 1) A. Johnson et, al, J. Phys. A7, 898 (1974)
- 2) R. Schneider et. al, Nucl. Phys. A323, 13 (1979)
- 3) P.E. Burt et. al, Phys. Rev. C29, 713 (1984)
- 4) B.H. Wildenthal, Prog. Part, Nucl. Phys 11 (1983)
- 5) F.D. Becchetti, Jr and G.W. Greenless, Phys. Rev. <u>182</u>, 1190 (1969)
- 6) J.D. Carlson et, al, Nucl. Phys. A249, 29 (1975)
- 7) G. Bertsch et al, Nucl, Phys. A284, 399 (1977)

図3

図 4

論文審査の結果の要旨

高橋豊提出の論文は、²⁴Mg, ²⁸Si 及び³²S を標的核とした(p, n)反応の測定を行い、残留核 の低励起準位の中、特に1⁺と2⁺のスピン・パリティをもつのに注目して測定結果を分析し、併 せてこれ等準位のアイソバリック・アナログ準位を(p, n)反応によって励起することを試みた ものである。

²⁴Mg (p,n) ²⁴Al 反応においては,0.439,1.12,3.06MeV の励起エネルギーに²⁴Al の1⁺準 位を,又,0.514,1.29,2.88MeV に2⁺準位を観測し,これらに対する反応微分断面積の角分 布を歪曲波ボルン近似(DWBA)の計算によって解析している。計算においては,自由な核子– 核子間相互作用に基づいて導出された核内核子–核子間有効相互作用を使用し,又,始状態と 終状態の波動関数には原子核殻模型により計算されたものを使用している。DWBA 計算から 導出された反応微分断面積は,いずれの場合においても観測された角分布の形を良く再現する が,絶対的な大きさについては理論値が実験値に比べて2倍程度大きくなるという結果が得ら れている。

²⁸Si(p, n)²⁸P 反応においては, 1.313, 2.104, 3.24MeV に²⁸P の1⁺準位を, 又, 0.1056, 2.18 MeV に2⁺を観測し, 更に, ³²S (p, n) ³²Cl 反応においては, 1.09, 2.80, 4.00MeV に³²Cl の 1⁺準位を, 1.26, 2.60, 3.39, 3.62MeV に2⁺準位を観測し, これ等準位について²⁴Mg(p, n)²⁴ Al 反応の場合と同様の DWBA 分析を行い, 同様の分析結果を得ている。

この研究で観測された微分断面積の計算値と実験値の間の喰い違いと同様の喰い違いが、 Gamow-Teller 型 β 崩壊や電子散乱の対応する転移についても広く観測されており、今後の研 究に対して大きな問題を提起している。

更に著者は、本研究で測定された1⁺状態についての断面積を電子散乱実験から得られたアイ ソベクトル型 M1 転移の換算転移確率と比較して、(p, n) 反応断面積とこれに対応する換算転 移確率のスピン成分との間に強い相関が存在することを発見している。

以上の研究成果は本論文の著者が自立して研究活動を行うに必要な高度の研究能力と学識を 有することを示している。よって高橋豊提出の論文は理学博士の学位論文として合格と認める。