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Abstract

Organic ligands supplied by microorganisms (siderophore) are known to promote dissolution of insoluble Fe(III)
(hydr)oxides in order to use iron for their biological activities in aquatic environments where dissolved iron is not
available at near neutral pH conditions. The dissolution rate of Fe(IlI) (hydr)oxides by some of the organic ligands is
reported to be much faster at neutral pH condition than lower pHs, however the mechanisms for explaining this pH
dependence of Fe(III) dissolution are remain unclear.

In this study, two possible factors, the adsorption density and the structure of surface complex, on pH dependence
of goethite («-FeOOH) dissolution rate were examined using siderophore specific organic ligands; catechol and
acetohydroxamic acid (aHA). While it was easy to obtain adsorption density of organic ligands on goethite by
classical methods, the direct identification of structures of surface complexes in the aqueous solution has been
difficult. Attenuated Total Reflection (ATR) fourier transform infrared spectroscopy (FTIR) was applied in this
study for measurements of adsorbed organic ligands on goethite in aqueous solutions.

Dissolution of goethite by catechol was faster at neutral and weakly alkaline pH conditions than that of weakly
acidic pH conditions. ATR-IR spectra of adsorbed catechol on goethite were similar to spectrum of trisFe(III)
catecholate complex, and remained same in the pH range from 5 to 9, indicating the same type of bidendate surface
Fe (1Il) -catecholate complex in this pH range. On the other hand, the adsorption density of catechol on goethite was
greater at neutral and weekly alkaline pH conditions. Therefore the dissolution rate of geothite by catechol is
considered to be controlled primarily by the adsorption density and not by the difference of surface complex
structure. Dissolution of goethite by acetohydroxamic acid (aHA) showed the similar results as catechol, indicating
the same mechanism for dissolution. Rate law of goethite dissolution by catechol and aHA can therefore be written
as:

Dissolution rate = k[ =FeL},

where k, . indicate the rate constant at a given pH for a type of surface adsorbed Ligand (L). [=FeL], is the
adsorption density of the surface complex FelL at a given pH. The rate constant k. ,» depends greatly on pH for
catechol, while the dependence is less pronounced for aHA, even though the surface complex structure of adsorbed
ligands remain similar for the both ligands.

ATR spectroscopy has also been used to trace quantitatively the kinetics of catechol adsorption on goethite. The
adsorption rates are proportional to the square root of time and the diffusion in pores of geothite aggregates is
considered to be the rate determining step. This diffusion-limited adsorption step can explain the first stage non-
linear dissolution of geothite, and the second linear stage (zeroth order reaction) after about 3 hours can correspond
to the steady state dissolution for the constant [ =FeL]u.

The dissolution rate of goet'hite by representative organic ligands of siderophore is thus found to be mainly

controlled by the adsorption density and not by the structure of the surface complex.
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