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The 4f electrons of rare—earth ions have the localized nature even in crystals, and their magnetic
moments give rise to various phenomena. A single magnetic moment in a metal is screened by polarized
conduction electrons to form the singlet ground state. On the other hand, the polarization of the conduction
electrons propagates and leads to an effective exchange interaction between two moments. The former is
referred to as the Kondo effect, and the latter as the RKKY interaction. Although both phenomena are
consequences of hybridization between 4f and conduction electrons, they compete with each other and
may lead to the heavy-fermion states at low temperatures.

If we neglect the charge fluctuation of the 4f electrons, a starting point for theoretical studies is the
Kondo lattice or the Cogblin-Schrieffer (CS) lattice model. These models correspond to localized and strong-
correlation limits of the periodic Anderson model. It is important to clarify properties of these fundamental
models in creating a better understanding of the heavy—fermion systems.

Two contrasting approaches may be used to deal with lattice models theoretically: one is to solve the
model on a finite cluster by a method such as exact diagonalization, the other involves the solution of an
effective impurity system within the framework of dynamical mean—field theory (DMFT). The former approach
is more suitable for low—dimensional systems, while the latter becomes exact in infinite—dimensional systems.
As for the one dimension, the Kondo lattice model has been extensively investigated and its basic properties
have already been revealed. However, there are few numerical studies of higher dimensions. The purpose
of this thesis is to elucidate properties of the infinite-dimensional Kondo lattice model quantitatively. To

this end, (i) we derive a formula of the spatial correlations between local spins within the DMFT, and (ii)
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develop a new impurity solver which give numerically exact solutions.

In the Kondo and CS lattice model, the Green function cannot be defined for the 4f electrons, since
the 4f-charge degree of freedom has been eliminated. A many-body effect of the exchange scattering can
be taken account of in the impurity t-matrix instead. We rewrite the DMFT equations in terms of the t-
matrix to be applicable to the localized limit.

For a description of the instabilities of the paramagnetic ground state, two-particle correlation function
is required. In order to address the spatial correlations of local moments, we extend the t-matrix, defined
from the single-particle Green function, to the two-particle Green function. The “two-particle t-matrix”
is then shown to give the susceptibility of local moments, and make it possible to deal with the spin
correlations by means of the ordinary technique in the periodic Anderson model. We consequently derive

spatial correlations in the Kondo and CS lattice model based on the DMFT.

To solve the self-consistent equations of the DMFT accurately, we develop an impurity solver based on
the continuous—time quantum Monte Carlo method (CT-QMC) for the CS model. The Monte Carlo simulations
does not encounter a sign problem for antiferromagnetic interactions, and accurately reproduces the Kondo
effect. Our algorithm can deal with an arbitrary number N of local degrees of freedom, becomes more
efficient for larger values of N, and is hence suitable for models with orbital degeneracy.

With use of the new impurity solver, we first examine the Fermi liquid relations of the single impurity
model. We point out that the Korringa—Shiba relation, which connects the imaginary part of the dynamical
susceptibility with the static ones, needs correction for a finite value of the exchange interaction. On the
other hand, the Friedel sum rule, which involves the single—particle excitation with the occupation number,

is confirmed to be satisfied with high accuracy.

With the CT-QMC and the DMFT, we employ the Kondo lattice model with a tight-binding band of
the infinite-dimensional hyper—cubic lattice. The half-filled Fermi surface exhibits a perfect nesting property,
so that instabilities are expected to arise. We evaluate the correlation function of the local spins, and the
charge and spin susceptibilities of conduction electrons. Transition temperatures are calculated from
divergences of the susceptibilities, and then we obtain a ground-state phase diagram for arbitrary fillings.

In the weak-coupling regime around the half filling, we find an antiferromagnetic ordering due to the
nesting. The ordering is suppressed by the Kondo effect as the coupling increases. The critical value agrees
with the estimation by the comparison between the Kondo temperature and the RKKY interaction. Namely,
the Doniach’s picture is confirmed to be valid at the half filling. In the low—carrier—density regime, on the
other hand, we find a divergence of the ferromagnetic susceptibility. This ordering is expected from the
polarization function of conduction electrons. However, unlike the antiferromagnetic phase, the ferromagnetic
phase exists beyond the critical coupling estimated by comparison between the Kondo temperature and the
RKKY interaction. This follows from the fact that all the local spins cannot be screened by a fewer number
of conduction electrons in the low—carrier-density regime.

In addition to the magnetic orderings of the local spins, we find a divergence of the conduction—electron

charge susceptibility, i.e., a charge-density wave (CDW) ordering, at the quarter filling. This transition is
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accounted for by the strong—coupling picture, where each conduction electron strongly couples the Kondo
singlet. Therefore, it is a novel mechanism of the CDW transition, in which the Kondo effect plays an

essential role.
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