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In this work, diffusion rates on polycrystalline wadsleyite and ringwoodite have been determined at pres-

sures between 16 to 22 GPa and temperatures between 1400 to 1600 “C. These conditions are relevant to the

Earth's mantle transition zone. High pressure experiments were conducted using a Kawai-type multi-anvil high

pressure apparatus. Pre-synthesized polycrystalline wadsleyite or ringwoodite were used as starting materials.

Diffusing sources were deposited on the surface of polished synthesized wadsleyite and ringwoodite. After

that, diffusion annealing experiments were conducted. The diffusion profiles were obtained by a depth
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profiling mode using a secondary ion mass spectrometer (SIMS).

In nominally dry Mg.SiO: wadsleyite, Si diffusion rates were examined at the conditions of 18 GPa and
1450—1600 °C using the *Si enriched SiO. thin film as a diffusing source. In the *SiO. deposition, a high
vacuum evaporation system was utilized using a rhenium as a heating generator. An oxide activity was con-
trolled by adding SiO. powder. ~

In nominally dry (Mg,Fe).SiO; wadsleyite and ringwoodite, temperature dependencies on Si and O diffusion
rates were determined using the *Si and "“O enriched (Mg,Fe).SiO; thin film as a diffusing source at the con-
ditions of 1400 — 1600 °C and at 16 GPa and 22 GPa. In depositing the *Si and "O enriched (Mg,Fe).SiO.,
Pulsed Laser Deposition (PLD) were employed in order to ensure the deposition of stoichiometric thin films.
An oxygen fugacity and an oxide activity were controlled by putting Ni—NiO and SiO. powder, respectively.

" All of the diffusion profiles obtained were composed of volume diffusion-and grain-boundary diffusion re-
gimes. ;l"'herefore, temperature dependencies in volume diffusion and grain-boundary diffusion rates have been
determined simultaneously.

Their diffusion rates are characterized as follows:
In Mg,SiO, wadsleyite with ~69 wt. ppm H:O,
D'yusi=6.71X10"" [m’s '] exp (—323 [kJ mol 'J/RT)
6 D%y s=6.91X10" [m’s '] exp (— 186 [kJ mol 'J/RT)
In (Mg,Fe).Si0O; wadsleyite with ~79 wt. ppm H:O,
D'rwass=1.51X10 ° [m’s '] exp (—442 [kJ mol '}/RT)
O D%pusi=5.56X10 " [m’s '] exp (—346 [kJ mol 'J/RT)
D'rews0=4.97%X10 " [m’s '] exp (—301 [kJ mol 'J/RT)
O D% i 0= 6.89X 10" [m’s '] exp (—264 [kJ mol 'J/RT)
In (Mg,Fe).SiO. ringwoodite with ~220 wt. ppm H:O,
D'ern i =6.55X10"" [m’s '] exp (—439 [kJ mol 'J/RT)
0 D%y 5=7.63X10 " [m’s '] exp (—311 [kJ mol '}/RT)
D'rerw 0=3.45X10"" [m’s '] exp (—416 (£96) [kJ mol 'J/RT)
6 D% ep 0=2.03X10"" [m’s '] exp (—306 (=108) [kJ mol '}/RT)
Si diffusion rates in Mg.SiO: wadsleyite with ~69 wt. ppm H:O is about three times slower than those
with ~507 wt. ppm H.O [Shimojuku et al., 2004].

In both (Mg,Fe).SiO; wadsleyite and ringwoodite, it was found that Si diffusion rate is slower than O dif-
fusion. Si is the slowest diffusing element in both (Mg,Fe).SiO. wadsleyite and ringwoodite compared with
previously reported Mg—Fe interdiffusion rates. Therefore, Si may be rate-controlling species in high—tem-
perature creep processes involving diffusion creep and climb-controlled dislocation creep. Compared with pre-
viously reported Si diffusion rates in olivine and perovskite, differences of Si diffusion rates in mantle min-
erals are characterized as follows: olivine < ringwoodite < wadsleyite < perovskite.

In both diffusion creep and dislocation creep regimes, the viscosities calculated from Si diffusion data of
high-pressure phases obtained in this study are much lower than those from previously reported creep law pa-
rameters constructed based on deformation data of analogous spinel (Ni:GeO.) at lower pressures. Compared
with mantle viscosity inferred from geophysical observations and the viscosities in diffusion and dislocation

creep estimated from diffusion data, the mantle viscosity is explained by a grain size of 1—10 mm in
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diffusion creep regime and a stress of 1—10 MPa in dislocation creep regime. Consequently, plausible grain
size and stress in the mantle transition zone may be 1—10 mm and 1—10 MPa. The deformation mechanism
dominant in the mantle transition zone is likely to be either diffusion creep or dislocation creep.

If a grain size of ringwoodite decreases to be less than 100 £m as a consequence of grain size reduction
after olivine-ringwoodite transformation in cold subducting slabs, the ringwoodite is likely to be deformed by
the diffusion creep. Some portions in cold subducting slabs may become softer than the surrounding mantle

when the grain size of ringwoodite decreases to be below 1 £ m after the olivine-ringwoodite transformation.
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B0 IZE & (Mg,Fe).Si0: Z LB E L, Si & O DILEEE % T £ h 16 GPa, 1400-1600 C, 22 GPa,
1400-1600 °C THIE L 720
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5 & Si DILHUEE X O DILHEEE L » 8L, SiVHERPOEEREL TVWE I EPHLNITE > 7,

HIERYIER S ERIc &L 2=~ FVORHERE, Si OIEGEE D SHE SR ETEKT 2 L, <
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