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CHAPTER 1. INTRODUCTION

This chapter is the introduction in which the research background, motives and objectives
are described in brief.

Logic of non-monotonic reasoning is an area of growing significance to artificial intelligence.
Many researches have been made towards developing the logic with non-monotonic reasoning.
Especially, McCarthy s circumscription and Reiter’s default logic turn out to be influential
formalisms which attempts to characterize non-monotonic reasoning.

Default reasoning corresponds to the process of dériving conclusions based upon patferns of
inference of the form “in the absence of any information to the contrary, assume...”. Circums-
cription suggests that the objects that can be shown to have a certain property by reasoning

from certain facts are all objects satisfying this property.

CHAPTER 2. NON-MONOTONIC REASONING AND KNOWLEDGE BASE
Several formalisms of non-monotonic reasoning are formally reviewed. Some useful prelimi
nary notations, important definitions and relative results are given in this chapter.

A default & is an expression of the form a(x):M B(x).” r(x), read as:if a(x) is true and it




is consistent to assume £ (x), then infer 7 (x), where a(x), B(x) and 7 (x) are first order
formulas whose free variables areinx = {x1,-*~,xa}. A default theory A is a pair ( D, W), where
Dis a set of defaults and Wa set of formulas.

Definition 2.3 Let A=(D, W) be a closed default theory and Fa set of formulas. Define

0 E“=Ww,

(2) E9*P=Th(EYU{rlaMB/ vEL0 where aEE“’ and1 & E}.
Eis an extension for A iff E=U .z E“°.GD (E) is the set of generation defaults wrt E,
defined as: ,

GD(E)={dl6=aMB/rED whereaSFand18&E}. ]

Let P={p:, -, ps} and Z= {z: ,---,2n} be disjoint sets of predicate symbols.
Suppose T(P,2) is a first order sentence containing predicate symbols in Pand Z.
The process of circumscription of Pin T(P,Z) with parameter Z transforms T(P,Z) into a
sentence Circum( T:P;Z) defined below.

Definition 2.5 The circumscription of Pin T(P,Z) with parameter Zis the following sente-
nce, denoted by Circum( T;P;2):

(T:;P;Z) and for every P', Z'[if T(P’, Z) and P=P, then P=P7],
where P'={p/,*-,p«} and Z'={z( ",z } are disjoint sets of predicate variables similar to P
and Z, respectively. T(P’,Z") is the result of T( P,Z) substituting p.'and z, for each occurrence
of p;and zi, 1SiSn and 1<j=m. P = Pstands for p:"D p;, for every tuple of object variable
x and for every i, I<i<n, O

CHAPTER 3. SEMANTICS OF DEFAULTLOGIC

The concept of default reasoning is defined proof theoretically by Reiter. Its model-theoreti-
cal issue remains to be discussed. In this chapter, a new concept of models for default theories
will be introduced. Default logic will be observed from the viewpoint of model-theoretical
semantics. We get an interesting result that, for a default theory in which the justification of
every default contains only negative literals, it has a consistent extension if and only if it has
a model.

Definition 3.1 Let A=(D, W) be a clausal default theory, Mo, any model of Wand £ the set
of all clauses in first-order logic.

(1) T MI=W;

@C.D Tim[Mo]=Th(T {[MoDU{7la:MB/ v ED, a€T [ Mo], Mol 8, and Mot=7};

(2.2) T Mol=£,if forsomea:M B/ v ED, a&T [ Mo], MobsT18, and Mols 7.
Then I [ Mo] is defined as: '« [Mo]=U i2o " s [ M. O

Definition 3.2 Let A=(D, W) be a clausal default theory in which the justification of every

default contains no positive literals.



A model M, of W is a model of A iff T [ M,]# £, and M, is a model of I'= [ M»] minimal
in JUST(D), the set of all predicate symbols occurring in the justification B of every default
a:M B,/ 7in D. O

Theorem 3.1 Let A=(D,W) be a clausal default theory, in which the justification of every
default in D contains no positive literal.

Then A has a consistent extension iff it has a model. O

CHAPTER 4. CIRCUMSCRIPTION
This chapter comprises two parts of : (1) computation of circumscription : and (2) generalized

predicate completion and its relation to circumscription.

COMPUTATION OF CIRCUMSCRIPTION

Circumscription of a first-order sentence is generally a second-order sentence. How to mecha-

nically carry out circumscriptive inference turns out to be a problem. However, for the first-
order sentences under certain conditions, they have indeed first-order circumscriptions. Separa-
bility proposed by Lifchitz is one of those conditions. Independent of the separability, we have
another sufficient condition shown as below.

Theorem 4.1 Let p be an n-ary predicate symbol. If T is a finite function-free Horn clausal
theory, then T has always first-order circumscriprion which is a theory of T augmented by
71 and equality axioms (El1), -+, (E8),

T =VX.[p(X)=3y. (X=t ) Ap(t))V -V Iy, (X=2)Ap(2))]
where X=<x1,",x: >, 81 =<ti1,,tin>and yi =<yir1,,yim>. X=t: means x;=ti: for
each 1<j<n. All p-atoms derivable from T are p(t1), ,p(tv). yi1’s in y: are variables appear-
ing in ti. - g

GENERALIZED PREDICATE COMPLETION
Prior to McCarthy’s circumscription, Reiter has proposed the closed world assumption(CW

A), which says that the implicit representation of negative facts presumes total knowledge.
CWA can efficiently be implemented via Clark’s negation as failure, which declares that the
negation of a proposition can be inferred if each of its possible proofs fails. Furthermore, that
can be proved with negation as failure inference rule from a clausal sentence is a logical conse-
quence of the predicate completion of this sentence. Predicate completion simply states that
the given sufficient conditions on a predicate are also necessary.

As pointed out by Reiter that for clausal sentences which are Horn in a predicate p, Clark"s
predicate completion is implied by McCarthy's circumsription. Clearly, the completion is a

non-trivial logical consequence of circumscription. That predicate completion is subsumed by



circumscription for a wide class of clausal sentences is of some theoretical and computational
interests. As mentioned by Retter, before invoking the full power of circumscription, one should
first try reasoning with predicate completion. In our opinion, this seems to be wise compromise.

From these points of view, we enlarge the class of first-order clausal sentences for which
predicate completion can be subsumed by circumscription. We present a generalized completion
of a predicate p, which refines on the definition of Clark’s predicate completion. The generali-
zed predicate cpmpletion is appropriate for clausal sentences which are not Horn in p. Reiter’s
result mentioned above is covered by our results.

The generalized predicate conpletion of p in T is the sentence T along with the necessary con-
dition of the definition of p in T and the equality axioms, denoted as:

Compe(Tip) = {T,Vx. [p(x) DE](ED, -, (E8)}.

Let C be a clause, p a predicate symbol and 7T a clausal sentence.

Definition4.1 C is non-overiapping wrt p iff for any distinct positive literals P and P’ on
p 1n C, P is not unifiable with P’ If every clause in T is non-overlapping wrt p, T'is said to be
non-~overlapping wrt p. il

Theorem 4.3 [f T is non—overlapping wrt P then Circum(T,'p) = Compe (T:p), i.e., the ge
neralized completion of p in T is implied by the circumscription of p in T. [

Definition4.2 T is collapsible wrt p if it consists of:

(1) clauses containing no positive occurrences of p;,

(2) clauses containing no negative occurrences of p. [

Theorem 4.4 If T is non-overlapping and collapsible wrt p, then. Th(Compe (T;p))=Th(Cir
cum(T;p)), i.e., the generalized completion of p in T is logically equivalent to the circurnscrip
tionofpinT. D

CHAPTER 5. A PARTIAL TRANSLATION OF DEFAULT THEORIES TO
CIRCUMSCRIPTIVE DESCRIPTIONS '

Default logic and circumseription have been proposed to formalize non-monotonic reasoning
in the absence of complete knowledge. Both systems attempt to capture a similar phenomena,
very little has been done to explore the relationship between them. A natural question is “how
the two approaches are related each other”.

In our opinion, maximizing the possibility of a proposition expected to hold (this is the app-
roach in default logic) is similar to minimizing the possibility of propositions against this
proposition (this is the approach in circumscription).

We limit ourselves to an open default of the form, a(x):M B(x)/ r (x), whose justification
B (x) contains no positive occurrences of a predicate. A partial translation of default logic to

circumscription is proposed. And we show that, under certain conditions, for a given default



theory, any consistent extension is a logical consequence of the resulting circumscription.

By Flp*1(#p~1), we mean F'is a quantifier-free formula containing some positive (negative)
occurrences of atomic formulas on a predicate symbol p. By Flp*;q ], we mean Fis a formula
containing some positive occurrences of atomic formulas on p and some negative occurrences
of atomic formulas on q.

Definition 5.1 Let T be a quantifier-free theory, i.e., a set of quantifier-free formulas, and
P a set of predicate symbols. Define a set R(T;P) of oriented predicate symbols as the least
set satisfying the following rules:

(0) p'ER(T;P), for every pEP;

(I) r*€R(T;P),if there is either a formula F{g*;r ]in T for some ¢' €R(T;P); or F[q ;

rlin T for some ¢' €R(T; P);
(2) r'€R(T,P), if there is either a formula F[g*,7*]in T for some ¢' ER(T:P), or Flg~;
r*lin T for some ¢ €R(T;P).
Define the set Z(T; P) of predicate symbols:

AT,P) = {g! gZpand ¢'€R(T;P) (or ¢'ER(T; P} O

Definition5.3 Let A=(D, W) be an open quantifier-free default theory. The translation of
A is defined as a quantifier-free theory Trans (A),

Trans (A) =WU{a(DA B(x)D v(x) | a(x):M B(x)/ r(x)ED}. O

Theorem 5.1 Let A=(D, W) be a (an open) quantifier-free default theory and E a consistent
extension for A. Let A =(GD(E), INST(W)) and Z= Z(Trans( A ") ;JUST(GD(E))). If

(1) every default in GD(E) contains only negative occurrences of predicate symbols in its

Justification;and
(2) Trans(A ") is directional wrt JUST(GD(E))
then Circum (Trans (A ');JUST(GD(E)),2) I=E. I

CHAPTER 6. KNOWLEDGE BASE WITH NON-MONOTONIC REASONING

We make a draft of system which supports the knowledge bases with non-monotonic reason-

ing.

CHAPTER 7. CONCLUSIONS

This chapter contains the general conclusions.
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