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1. Introduction
In spite of a large amount of studies on buckling of curved beams and finite displacement
analyses of spacial frames, the lateral torsional buckling under finite displacements has not
been so extensively studied yet. Finite displacement problems have difficulty in the formula-
tion of stiffness equations, because the finite rotations are to be defined explicitly but are not
linear vectors in the three-dimensional space. Under these circumstances, one of the main objec-
tives of this study is to derive a physically clear and simply usable formulation for finite dis-

placement problems of spacial frames including the spacial instability.

2. Governing Equation
In this chapter a governing equation of an elastic beam is derived with no restriction on the

range of displacements and rotations.

3. Numerical Formulation of Spacial Frames
It is almost impossible to analyze the governing equation derived in the previous chapter as

a boundary value problem to investigate large displacement behaviour and instability
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phenomena of spacial frames, and therefore some discretized scheme such as finite element
method is generally used to convert it to the stiffness equation. Considering that the formula-
tion of the stiffness equation by finite element method is based on the virtual work principle,
we can utilize the formulation in the previous chapter. However, the governing equation is
highly nonlinear equation of displacements and the substitution of displacement functions into
the eduation yields a complicated stiffness equation. Moreover it is difficult to define the stiff-
ness matrix in the explicit form. In order to circumvent these difficulties, here we use a tech-
nique of the separation of rigid body displacements and employ the total-Lagrangian
formulation.

In the total-Lagrangian approach, if strains are very small, by decomposition of the total fi-
nite deformation into finite rigid body rotation and small real deformation, it can be shown
that the coordinate transformation and familiar elastic stiffness matrix result in a simplified
stiffness equation for finite displacement problems. In the formulation, finite rotational an-
gles are expressed by the Eulerian angles. The Eulerian angles easily constructs coordinate
transformation, but the increments of them which are not defined about three axes of a rectan-
gular Cartesian coordinate system can not be transformed into the global coordinate system to
superimpose every tangent stiffness equation.

In order to make it possible to superimpose the tangent stiffness equations whose nodal rota-
tional angles are the Eulerian angles, introducing the transformation between the infinitesimal
rotational angles about three axes of the spacially fixed rectangular Cartesian coordinate sys-
tem and the infinitesimal components of the Eulerian angles, we obtain the global stiffness
equation in which external moments and the corresponding rotational angles can be defined as

those about three axes of the spacially fixed rec-

tangular Cartesian coordinate system.
In order to demonstrate the accuracy of the

stiffness equation, the large displacement 04k

——— Present
------ Bathe & Bolourchii

behaviour of a cantilever 45-degree bend sub-
jected to a concentrated tip load as shown in
Fig.l is calculated. The non-dimensional tip

displacement is plotted against the load pa-

M¢n~dimensional tip displacement

rameter along with the solution by Bathe and
Bolourchi. The present results agree fairly with

those by Bathe and Bolourchi.

Fig.1 Large displacement behaviour of a
cantilever 45-degree bend
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4, Lateral Torsional Buckling of Arches
Lateral torsional buckling of arches under uniform bending are studied by a nonlinear

eigenvalue analysis and critical moments are plotted against the subtended angle in Figs.2 and
3 along with some closed form solutions. The numerical results agree well with the results by
the modified Vlasov solution in which the effect of the pre-buckling in-plane displacements is

taken into account.
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5. Experimental Study

Lateral torsional buckling experiments on
acrylic arches are described. The buckling mo-
ments estimated by the Meck's method are
shown in Fig.4 along with numerical and ana-
lytical solutions. The experimental results
agree qualitatively well with theoretical solu-

tions at a subtended angle smaller than 120°,
' © Experimental

but not at a subtended angle near 180°. o Numerical
| ! 1 1 { e Moldiﬁcd’Vlasolv
) 0 60 120 180 240
6. Conclusions 0 (Degrec) _
s Tified finita di : Fig. 4 Experimental results obtained by
A simplified finite displacement formulution Meck’s method

was proposed for spacial frames to investigate
the large displacement behaviour and spacial instability phenomena within a framework of the
total-Lagrangian approach based on the separation of rigid body displacements. This formula-

tion needs no complicated step to get the stiffness equation, and it becomes more feasible than



the other formulations. As one of the most typical spacial instability problems, we studied the
lateral torsional buckling of arches numerically and obtained satisfactory results. Since such
spacial instability problems have not been studied enough especially in the case of considering
the effect of the pre-buckling in-plane displacements, the present study has valuable contribu-

tions to the field of finite displacement problems of special frames.
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