Lee Jae-kwan

K % £ B E

B o5 % f Bt (IF)

254 A H FX 104 348 25H

2S5 ORAER FURAFE45E 1R

oekl, Bmonst HEKRZEAZERTIZMER (BLHE) EX - BEIL¥ER

> i 8 3¢ & B Study on Robust Adaptive Control of Nonlinear Systems

(ERBEROT N R BIEHHCEST 2F5)
E HEiXFHIE FEH 22—

Z B & HIXEHE HBfR— RILKFZFHE EH I
Rl KZ2HE 80 8t R RFEHZ X BIE
RikEP#HER TEFE B

WX AR RE

%

%ll ‘D-J\E

H O#
X E

1 Introduction

The control objective of servomechanism is to achieve the plant output to asymptotically track prescribed
trajectories under any influence of unwanted disturbances or uncertainties. Because most of plants do not only
have linear but also nonlinear properties in many practical situations, the output tracking is usually difficult to
be derived from the modern linear control theories which rely on the assumption of small range operation for
the linear models to be valid. At the eighties, generalizations of pole placement and observer design techniques
for nonlinear systems were obtained by using differential geometric nonlinear theory. More recently, we were
confronted with more realistic problems that were caused by various uncertainties about either plants or
disturbances. Adaptive versions of nonlinear systems were announced starting from 1986 and have been
recently expanded in works of Lee, Krstié, Kanellakbpoulos, Kokotovié, Morse, Annaswamy and Baillieul. On
the other hand, several authors like Isidori, Nam, Khalil, Marino and Tomei have studied theories for robust
versions of nonlinear systems with structurally stable regulation, treating with regulation properties preserved
under general time-varying parameters case, and robust regulation, having robustness in terms of a priori fixed
bounds. The above-illustrated nonlinear control approaches studied in the above paragraph were based on
some restrictive conditions for exact cancellation of the nonlinear properties, i.e., exact feedback linearization.
In contrast with these schemes, approximate feedback linearization was to approximately linearize nonlinear
systems by relaxing one or more of these restrictions. Moreover, this technique has been researched into
adaptive versions for nonlinear systems affected by only unknown constant parameters, by Ghanadan and
Blankenship, and expanded to robust adaptive versions for nonlinear systems affected by not only unknown
constant parameters but also unmodeled dynamics, by Lee and Abe.

The most attention of this thesis is paid to the problem of achieving output tracking for nonlinear systems
including system uncertainties, such as unknown constant parameters and unmodeled dynamics, via feedback
linearization. Therefore, the control schemes to be developed in this thesis can be simply explained as deriving
robust adaptive control schemes for uncertain nonlinear systems. The organization of this thesis is divided
into two major parts, i.e., exact input-output feedback linearization and approzimate input-output feedback
linearization. As the nonlinear control schemes derived from the exact feedback linearization, Chapter 2 is

used to introduce adaptive nonlinear control as a method for controlling nonlinear systems with unknown
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constant parameters and Chapter 3 deals with the robustness issues in adaptive nonlinear control when
unmodeled dynamics is present in the nonlinear systems. On the contrary, Chapter 4 is devoted to the design
and analysis of (robust) adaptive output tracking for a class of approzimate linearizable plants. To confirm
the utility of the control schemes to be developed, we use the single-link rigid robot in Chapters 2 and 3, and
the familiar ball and beam plant in Chapter 4, as computer experiments. Lastly, in Chapter 5, we conclude
the performance results of our control schemes and prospect some future works to be solved.

2 Adaptive Output Tracking via Exact Feedback Linearization

It may contain that the nonlinear systems are exactly modeled but depend on physical parameters whose
exact values are not known. In such cases, the ideal nonlinear control techniques developed in Section 2.2 do
not apply since they require no uncertainties and exact knowledge of parameters and nonlinearities. Hence, we
shall discuss the design of adaptive output tracking for a class of single-input, single-output nonlinear systems
with unknown constant parameters, together with the full-state measurable assumption and the clean outside
condition. The plant that is to be controlled will be completely represented by a single-input, single-output
nonlinear system as described by the differential equations

& f(z,0)+g(z,0)u, z€R*,u€eRO€RP

y = h{z), y€R 1)

in which z is the state vector, u is the control input, @ is an unknown constant parameter vector, y is the
output, h : R* = R is a C* output function and f, g # 0 are C™® vector fields dependent on ¢. In this

section, we assume that the unknown constant parameter vector 8 is parameterized linearly in the vector
fields f and g¢:

)4
f(z,0) = Z 6; fi(z)

> 6: gi(2) @)

9(z,0) =
i=1
with unknown constant parameters ; and C° nonlinear functions f;, g; : R* =+ R, ¢t =1,---,p.

Here, under an assumption on the input vector field g(z, 8), we will introduce two kinds of indirect adaptive
control schemes based on the exact input-output feedback linearization which has a well-defined relative
degree r as shown in Subsection 2.1.2. The first method, adaptive nonlinear control with indirect feedback
linearization, will be formed by combining an on-line parameter estimator (or adaptive law, parameter update
law), which provides estimates of unknown constant parameters at each instant, with a feedback linearizable
controller, which is motivated from the known parameter case. In the other method, adaptive nonlinear control
with direct feedback linearization, the on-line parameter update law will be designed in a state observer system
derived from feedback linearization procedure, so as to assure the stability of the closed-loop system.

Our control goal is the design of adaptive nonlinear feedback control to force the output y to track the same
trajectory ym(t) satisfying

Iy < €y =0, 1,0--,r 3)

where ¢, > 0 and r is the relative degree introduced in Section 2.1. In order to design this adaptive controller,
the feedback linearizable control law must be designed on a local domain of both the state variables z and
parameter estimate § for 6, together with the stability of all the closed-loop signals with 6.
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3 Robust Adaptive Output Tracking via Exact Feedback Lineariza-
tion

The adaptive laws and control algorithms designed and analyzed in the previous chapter are based on a
class of nonlinear systems which are free of unmodeled dynamics. These schemes are to be implemented on
actual plants that most likely deviate from the plant models on which their design is based. The effect of
the discrepancies between the plant model and the actual plant on the performance of the adaptive control
schemes dealt in Chapter 2 may raise system instability and parameter drift phenomenon. In this chapter, we
present the design and analysis of control schemes which can be applied to more complex plant models that
include a class of uncertainties such as unknown constant parameter and unmodeled dynamics, i.e., robust
adaptive control schemes for exact feedback linearizable systems with both unknown constant parameter and
unmodeled dynamics, as one important effect of this thesis. Here, we shall consider the same single input,
single output uncertain nonlinear systems (1). However, in contrast with Chapter 2, we assume that the vector
field f is affected by the unmodeled dynamics Af, that is, (1) is remodeled into an approximate nonlinear

model
P
f(=,0) = Y 6:ifi(z)+Af(z)
i=1
P
9(=,0) = Y_8igi(z) (4)
i=1
with the unknown constant parameters 8; and C* nonlinear functions. f;, g; : R" - Ryi=1,.---,p.

Our objective, under any influence of uncertainties A f and 6, is the design of nonlinear feedback control to
force the output y to approximately track the same reference signal y,, considered in Chapter 2. For this, the
control law and the parameter update law must be also designed on the local domain of state variables z and
parameter estimate § as shown in Chapter 2, together with robustness of all the closed-loop signals including
parameter estimate 6 which may be drifted to infinity due to the unmodeled dynamics Af. Let f(z, 67) be

?_0; fi(z) in (4) and z. be the equilibrium point. Moreover, we assume that Af(z.) = 0 and h(z.) = 0
at .. Through this chapter, two control approaches are presented with the assumption on the input vector
field g as illustrated in Chapter 2.

4 Output Tracking via Approximate Feedback Linearization

In contrast to the exact feedback linearizable control schemes in Chapters 2 and 3 requiring some restrictive
condition on relative degree, i.e., exact cancellation of nonlinear terms, let us consider the design and analysis
of output tracking for a class of nonlinear systems violating the existence of well-defined relative degree in
this chapter, that is, the output y(t) approximately tracks y,,(t) with this condition

WO < ey i=0, 1, vy 7 (5)
with the robust relative degree < introduced in Section 4.1.

In this chapter, let us consider the plant model (1) and (4) dealt in Chapter 3. However, since it is assumed
that the system (1) does not have a definite relative degree, it is clear that the complex problem can not be
solved by only control concepts of Chapter 3. To solve such a complex problem, this chapter introduces a class
of nonlinear feedback control schemes which lead to robust adaptive output tracking for nonlinear systems
affected by both the unknown constant parameters 6 and the unmodeled dynamics Af, via approzimate
input-output feedback linearization. The control schemes presented in Chapter 4 can be explained with the
following two block diagrams.
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Figure 1: Robust adaptive control with indirect linearization
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Figure 2: Robust adaptive control with direct linearization
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5 Conclusions and Prospects

In this thesis, we introduce a class of (robust) adaptive nonlinear control schemes for single-input, single
output nonlinear systems in the presence of unknown constant parameters (and unmodeled dynamics), via two
input-output feedback linearizations, i.e., exact and approximate feedback linearization. For this, we assume
that the nonlinear systems satisfy smooth (or equivalently, C*°) vector field properties, the state variables
are available for measurement, the unknown constant parameters are parameterized linearly in the nonlinear
functions, the unmodeled dynamics is bounded in a known compact set, the zero dynamics derived from
feedback linearization is locally exponentially stable and the relative degree for the given systems is not well
defined in Chapter 4. Then, the main contributions of this thesis can be summarized as shown below. First,
it is noted that all the (robust) adaptive laws developed in this thesis do not lead to any overparameterization
for parameter identification. Second, it is shown that the systematic designs for the (robust) adaptive laws are
similar to those for uncertain linear systems. Third, it is also important to note that these control methods
lead to the stability of all the closed-loop system with the (robust) adaptive laws. Lastly, the design and
analysis of control schemes presented can be explained from exact linearization concept of Chapters 2 and 3,
and approximate linearization concept of Chapter 4.

However, because the control schemes developed are designed on some restrictive assumptions, such as
the full-state measurable condition, the local domain of the state variables and parameter estimate, and the
single-input, single-output nonlinear systems, we need to study the prospective works like output feedback
control, global control and multi-input, multi-output control, based on the control schemes presented in this
thesis. Moreover, the research efforts resulted have to be motivated by the more demanding performance
required in robotics, motor drives, automobile engine, aircraft and spacecraft control which typically involve
nonlinear dynamics. '
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