I

SONG KUK

K &% (K @) = 24 (& @)

¥ B oo B oM B o+ (fFHBE)

¥ o B B OB BB U

¥ Hig5® AR THSE3 AWM

YRS 0 B PRI 4458 LY

BoE R, B W HHLAEAYBEERETIRR (R ERERRY YL

¥ AL X & H A Flexible Software Development Method and Its Support System

(VTP 270OPhOMBRELEZOFIES AT L)

WX & &HE £ B & 2
RiEKR¥FHEZ B8 AR HiLAFHIR Wox HE

Rl XF#HE WE E=

m X N ®x B OB

Chapter 1. Introduction

As information processing systems become large and complex, formal description methods are needed for
specification of systems, their efficient and reliable designs. In the field of communicating systems, the
approach describing specifications formally has been researched before, so that Formal Description Techniques
(FDTs), e.g. SDL, Estelle and LOTOS, have been proposed as specification languages. FDTs in general fare
well in describing a target system unambiguously, precisely and completely. However, the drawbacks of these
FDTs are that they are generally not user-friendly (easy to read) and difficult to write. They are also not suitable
for rapid prototyping, because we must enumerate and,/or determine all system behaviors from an early stage
of system design. These drawback could be overcome by a new technique of automatic synthesis of formal spe-
cifications from user requirements. A state transition system (STS) is an underling structure of such formal
description techniques, and often used as a formal specification itself. However, it is often necessary to modify
or change system requirements which may influence the whole system design in the early stage. In the community
of communication network, the new concept of a flexible system has taken much attentions as a key concept of
advanced information network systems. In this thesis, we propose a solution to cope with the changes of

system requirements, using the concept of a flexible software development method based on the flexible system.

Chapter 2. Flexible Software Development

“Flexbility "of the system is defined based on the concept of structured stability which represents homeostasis
of functionality against variance of system structure and user’s requirements. Thus, a flexible system is a
system whose services and utilities are not restricted or confined to a fixed standard set. A flexible system has
the capability to reconfiguration itself autonomously and extend its services spontaneously based on change of
user’s requirements, operational situation, and so on. The flexible system needs to have the characteristics —
intelligence, homeostasis, and evolution. Here, we apply the concept of a flexible system to software develop-

ment method in the field of software development. Therefore, we propose some required properties of a flexible

method must satisfy, and we define a flexible software development method (FSDM) along those properties.

Based on the concept of FSDM described in Chapter 2, we present our methods in detail from Chapter 3
through 5.

Chapter 3. Synthesis of Formal Specification

We propose a new requirement description method (RDP) for describing system requirements based on pro-
positional logic, which copes with the modifications or changes easily in the system requirements. Further more,
we show the correctness logically that a sound and complete state transition system (standard model) which
is a kind of formal specifications can be obtained from RDP. We also show that function requirements can be
modeled by a Logical Petri Net (LPN), which is a kind of extended Petri Nets, in order to derive a formal

specification automatically.

Chapter 4. Verification of Requirement Description

There may exist some logical errors in a system requrement, In this chapter, we state to find out the logical
errors from the requirement description using a LPN, and we discuss a reflection method to detect logical
errors in the requirement phase. In properties and definition of an FSDM, we can say that a flexible develop-
ment method is more flexible if a reflection of the detected logical errors can be performed in requirement
phase. In this thesis, we consider the derivation of system specifications based on system requirements, and
the causes of logical errors are occurred by the conflict in the relations among primitive function requirements.
Therefore, we deal with logical errors in the view point of requirement level, even though some errors are repre-

sented in the level of system specifications.

Chapter 5. Refinement of System Specification

System requirements may often be changed, and specified step by step. Therefore, flexibility, refirement
and abstraction are the central notions for rapid and reliable system , software development. In this
chapter, we propose a method to refine and decompose requirement descriptions hierarchically. Further we
discuss an integrated system satisfying the intended system requirements in the refined STSs. We also show

that a system can be changed flexibly against changes of system requirements,

Chapter 6 . Design Support System
In this chapter, we discuss a design support system which was implemented for supporting our methodology.

Here, we show the configuration of our support system in Figure 1, and the procedure for synthesizing state

transition systems (STSs) from acquisition of system requirement in the support system. After that, as a real

application example, a CATV system is applied in the support system. The modules for the support system
are constructed with 5 parts such as user interface, translator, synthesizer, verifier and reflector.

(1} User interface : This module plays a role to acquire system requirements easily, and also supplies an environ-
ment in which users can specify refined RDPs under the supported environment by only giving the infor-
mation of constraints.

(2} Translator : In this module, RDPs are translated into a canonical form of requirement descriptions by
applying 2 transformation rules. After that, the canonical form is also translated into an LPN form by
this module.

() Synthesizer : In this module, an STS as a formal specification is synthesized from an LPN form od system
requirements by firing LPN along the execution algorithm of LPN. The synthesized state transition systems

are represented as graphics.

(4) Verifier : In this module, logical errors are examined by checking LPN, reachability tree derived from LPN,
and reverse reachability tree generated from reachability tree. This module finds out 4 kind of errors.

(5) Reflector : This module shows users the STS pointed out the detected logical errors, and also gives a
guideline which is useful when users rewrite requirement descriptions (RDPs) to remove the detected logical

E€rrors.

Chapter 7. Conclusions

In a state transition system, it is generally difficult to decide states in a complex system in the view point of
considering the meaning of states, and it is often necessary to modify or change system requirements which may
influence the whole system design in the early stage of system design. The specifications until now are almost
specified using states and state transitions directly like SDL when describing system requirements, However, the
methods are not suitable for large and complex systems having a large number of states, and for rapid pro-
totyping system design.

The purpose of this thesis is to present a new paradigm of a flexible software development method (FSDM)
to overcome the difficulties mentioned above. In this dissertation, we proposed a new method to describe
system requirements based on propositional logic, and to synthesize state transition systems automatically. we
also proposed a verification method and a refinement method for system requirements, based on the concept of
an FSDM. We also showed that a CATV system as a real application example of communication software could

be applied well in our support system.

Logical
Petri Net

Formal Spec.
Requirement

Logical Error

<

: module

(D : datafile

Figure 1 : Configuration of support system

A HE R 0 B B

HHEE Y A 7 2 DOBRICB VT, BBy X7 AEPEHBIEIESH, ZORRN Y 27 A0 TE
EREREELZRIELTCWVWE, 20, 2 —VFEROEHTRICHIETE S v A7 LB OHL BHEL L - T
Wb, LAL, BIRTH, COXBRBARRT 2 b0 HERPXEREITACEELENTOE L, Z
CT, HFEE, BEERELTY 7Y 2700 LERTHEEREL, TSRS CERETESUE v 2 7 A ORI
BFEAEIT »Teo KRN RZTOREEZZTEDLODTHY, ERTELDN S,

B1EBIFRTH Do

HoETH, 2 —YEROEFFRLREHETELZ Y 7 by 2 T7ORbOMVHRELZIREL TWE, DR
HoOWT, RELIFICBVWTEKRRNE Y 257 ADBIRICOVTHERL TV B,

FIETHE, MERMICESVIFRLE Y X 7 A OERGEEREEIBRE L, OB EREN S, TOEKE
H5ZBIREBER Y 27 A~DEBIEERME L, TOZYUMRL TV S, 2, HERETEA SNIEREMRINICH
WLBHET 27D) %o bAIRLUAREERFY 2 v P 2EBELTWVWS, KIS, TOHREXMY Xy PEFOVT
GERIETEZ oMl 1 —wERIOHET 2IREEB v 27 A DAKEERLTWVWE, Thid, v 7 b= TEHROR
BB EERBRRETH 5,

BAER, 2—YERCEEINTLERIBNEDICSVWT, INOEBRBTABRALBHEEEI TS, &5,
BishBo e LT, 2 —EROTERICKIRT 2 HHEE LT, 2—FRBDETET 720D HA F 54 v AR
RTBEICKD, 2—FEREPRNICEBIELERTEXE I E2MRAL TV S,

FHETIR, WIHICHT 2MERIIC L D RES N A BEREFMLT 20REAIRE L T 5, RFFMLECREIC
&0, KEBETHEM S 2 —FOBEREZBIIICEET 2 EHTE S, £/, WBHAEIOMEOEAIZLD, REE
BYRTLADDNEIMBOUAG LB >T VWD, Thid, EAFBEEECERTH 2,

BT, H2BLODHEIETHERLLY 7 Y2 T7ORbohVEHREDOTE Y X 7 ADHKIC> VW THRRTY
Bo COXEYAT LET =7 AF—Ya v LICHEL, BAENICHE LT CATV REDBIE Y 2 7 4 DEFEANE
HL, T0oFUMEHERL TV 3,

BTIRERERTH B,

PEET 2 KA, BREEY AT 0BT 2EANETH 2AMIERLE T OB v 257 2 OMBUCHETY
BHIFRAEITY, EELHERBE Y A F L0LHOH L VHRECET IEHBMAEES 2L 60T, HHERMFOR
BICHES5T 5 & AP0,

& T, AFEEEL (B OFAERE L TAKK LD 5,

