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1. Introduction

Higher Functions performed by neural networks are important subject not only for
application to engineering but also for understanding a brain of animals in the higher
orders. The higher functions of the neural networks treated in the present thesis are
associative memory, generalization ability, learning and visual selective attention and so
on. The associative memory is an ability of recalling its related pattern from patterns
embedded into a neural network when a pattern is presented to the neural network. The
generalization ability is to extract concepts from example patterns which are related to
those concepts. The learning corresponds to modification of connections between neurons in
order to make a map implemented by a neural network approach to a desired map. The visual
selective attention is regarded as a function by which an amount of the visual information
can be reduced in order to perform effective processing of information in the brain.
Statistical physics is a systematic prescription by which we can derive macroscopic
properties of the system from microscopic relations among components in a system. For
example, the storage capacity of the memory or the generalization ability is a macroscopic
property of a neural network, while an energy function or a cost function represents a sum
of microscopic relations in the system. In the present thesis, each pattern embedded into
the neural networks is assumed to be a random variable. When the energy function of a
system exists, we can obtain the free energy, which is one of macroscopic quantities,

by using the replica method. From the free energy, we can derive equations of order
parameters such as a retrieval overlap and a generalization overlap in the equilibrium
state. On the other hand, for a system in which the energy function is not defined,
a generating function of path-integral representation is sometimes useful in order

to derive the macroscopic property such as dynamical order parameters from microscopic
relations.

In the present thesis, we investigate the storage capacity and the generalization ability
in Chapters 2 and 3, the learning speed in Chapter 4 and the visual selective attention in
Chapter 5. Concluding remarks are given in Chapter 6.




2. Recurrent Neural Networks

2.1 Hopfield Neural Networks

We investigate the generalization ability of a fully connected Hopfield neural network
(HNN), in which a state of neurons is expressed by a spin-S (S > 1/2) Ising spin and
connections are modified by the Hebbian learning rule. We obtain macroscopic properties
from the energy function of the system by using the replica method; we derive equations
for order parameters under the assumption of the replica symmetry. We show behavior of
the generalization error as a function of the number of examples for S=1, 3/2 and ©° in
Fig.1. We find that the generalization ability is enhanced for a larger value of S

when the number of embedded concept patterns is of a lower order than the number of
neurons in the thermodynamic limit.

2.2 Sequence Processing Neural Networks

We investigate the storage capacity and the retrieval property of a fully connected
sequence processing neural network (SPNN) with a non-monotonic transfer function (NMTF) by
an analytic method and by numerical simulations. Because there is no energy function in the
system due to asymmetry of connections, we use the generating function of path—integral
representation for the analytic method, and obtain equations for dynamical order parameters
in stationary states. We find that the system with the NMIF can retrieve more sequences of
patterns than that with a monotonic transfer function (MTF) when we choose optimally a
value of parameter for non—monotonicity of the transfer function. We also find that some
chaotic behavior appears in the retrieval error when non-monotonicity of the transfer
function increases, as shown in Fig.2. The analytic results are in excellent agreement with
the results by numerical simulations.

3. Layered Neural Networks

3.1 Layered Neural Networks Using Q-States Clock Neurons

We investigate the storage capacity of a fully connected layered neural network with intra
~layer connections (LNNILC), in which a state of neurons is expressed by a Q-states clock
spin. We assume that the inter—layered neurons and the intra-layered neurons are updated
simultaneously. In our formulation, the system becomes the HNN, the layered neural network
(LNN) or the LNNILC by adjusting a parameter Q which represents a degree of competition
between the inter—layer connections and the intra—layer connections. We obtain macroscopic
properties of the system by using the replica method with the assumption of the replica
symmetry. We show the storage capacity as a function of the parameter Q for Q=2, 3, 4, 5,
6, 7 and o©. We find that the storage capacity is maximum for Q=3 and Q=-0.1. We also find
that the storage capacity of the LNNILC is enhanced in comparison with that of the HNN and
that of the LNN for Q=2, 3, 4 and 5. However, for Q > 5, it turns out that the storage
capacity becomes maximum for the LNN.

3.2 Sparse Coding for Layered Neural Networks

We investigate the storage capacity for a fully connected LNN and a fully connected LNNILC
in the case of sparse coding. We assume that the LNN has different MIFs for even layers and
for odd layers, and that the LNNILC has different MTFs for inter—layer and for intra-layer,
and the inter—layered neurons and the intra-layered neurons are updated alternately. We
derive recursion relations for order parameters by using }he signal-to—noise ratio method,
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and then apply the self-control threshold method. In Fig.4, we show the critical value of
the storage capacity as a function of the firing rate a for the LNN and the LNNILC. We
find that the critical value of the storage capacity behaves as 0.11 /|a 1n a| for small
values of firing rate g for both the LNN and the LNNILC. We also find that the basin of
attraction becomes larger for both the LNN and the LNNILC when the self-control threshold
method is applied.

4. On-Line Learning of Two-Layered Neural Networks

We investigate dilution effect on an on—line learning of two—layered neural networks by
using a gradient descent algorithm within the framework of the statistical physics. In the
thermodynamic limit by assuming the self-averaging, we derive coupled first—order
differential equations for order parameters which describe a learning process. We show the
generalization error as a function of the number of examples for the non—diluted teacher
network, for the symmetrically diluted teacher network and for the asymmetrically diluted
teacher network in Fig.5. We find that the asymmetric dilution of the connections in the
teacher network makes the learning speed faster than the symmetric dilution of the
connections in the teacher network. Namely we find that the initial plateau appeared in the
learning curve for the asymmetric dilution is shorter than that for the symmetric dilution.
It turns out that the learning does not converge when the teacher network is diluted too
much. As for the dilution of connections in the student network, the learning converges
imperfectly when the dilution is strong.

5. Mathematical Modeling of Visual Selective Attention

We propose a mathematical model of the visual selective attention using a two—layered
neural network which consists of the layer of the hippocampus and that of the visual
cortex. We use neurons described by a Hodgkin-Huxley equation, which generates spikes of an
electrical signal periodically. We investigate the mathematical model by numerical
calculations. We show the firing times of the neurons in both the hippocampal layer and the
visual cortical layer in Fig.6. We find that synchronous phenomena occur not only for the
frequency but also for the firing time. This point is a new finding different from those
by the system with phase oscillator neurons investigated previously.

6. Concluding Remarks

We have investigated the higher functions of the neural networks such as the storage
capacity of the memory, the generalization ability, the learning and the visual selective
attention and so on, within the framework of the statistical physics. We have found the
increase of the storage capacity for the SPNN with the NMTF and also for the LNNILC with
Q-states clock neurons, the improvement of the generalization ability for the HNN with
spin—S Ising neurons and the speed-up of the learning for the two—layered neural network
with randomly diluted connections. It has been pointed out that the visual selective
attention is considered as the synchronous phenomena between the firing times of the
neurons in the hippocampus and those in the visual cortex by using the Hodgkin-Huxley
equation. :
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