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1. Introduction

Biological neurons in the brain communicate with each other via electrical signals, called “spikes,” in order to
perform various tasks, e.g., cognition, learning, memory, etc. A neuron emitting the spikes is said to be “firing.”
A recent biological study reports the following interesting fact about the energy consumption of the neural firing
in the brain: the energy cost of a single spike is very high, and so the energy consumed for the spikes is a large
fraction of the total energy supplied to the brain. Thus information processing in the brain resulis from a low
firing rate of neurons. Such low activity of neural circuits is sometimes referred to as sparse activity. Some
biological researches insist that the sparse activity may offer several advantages for the brain (besides conserving
energy), and constitute a general principle of information processing in the brain. Now the following natural

questions arise:

ql. How do neural circuits save the number of firing neurons when performing certain computational tasks?
q2. To what extent is the computational power of neural circuits restricted if the number of firing neurons is

bounded?

In the thesis, we consider the two questions above from the viewpoint of circuit complexity, and try to answer
them. Circuit complexity is a discipline of computational complexity theory which studies the inherent difficulty
of computational problems. In computational complexity theory, we consider a particular computational model,
in which we measure the difficulty of computational problems in terms of the amount of computational resources
needed to solve them. In circuit complexity, the models are feedforward circuits of gates, and the resources are
typically the size and the depth of circuits, where the size of a circuit is the number of gates contained in the
circuit and its depth is the length of a longest path from an input gate to the output gate. The amount of resources

needed to solve problems depends on what class of functions each gate can perform. Therefore, in order tc



discuss theoretically our two questions, we first determine the class of gate functions suitable for describing
neural computations.

We employ, in the thesis, the class of linear threshold functions as the gate functions, since a linear threshold
function approximately represents the input-output characteristics of a biological neuron. A gate computing a
linear threshold function is called a threshold gate, and a circuit consisting of threshold gates is called a threshold
circuit. A threshold gate has two output states, 1 and 0, and we consider an output “1” to be neural firing. Among
many types of computational models of neural circuits, a threshold gate is, historically and even currently, one of
the common abstract computational models of a biological neuron, and a threshold circuit is that of a neural
circuit. There are a number of researches on the computational power of threshold circuits, and those research
present many results.

However, the number of firing gates during information processing gets less attention in previous research of
threshold circuits. In fact, threshold circuits constructed in the previous research are highly likely to have the
property that a large portion of gates in the circuits fire during computation. This is because the main concern of
circuit complexity has been to minimize the particular computational resources, ie., size and depth, in
constructing circuits that compute Boolean functions. This discrepancy stems from a fundamental difference in
the energy cost of computations in the brain and computations in electronic circuits. Common abstract measures
for the energy consumption of electronic circuits treat the two output states 1 and 0 of a gate symmetrically, and
focus instead on the required number of switching’s between these two states. Usually, a measure for energy
consumption of optical computing was proposed, but it also treats the two output states symmetrically. Thus,
people have never cared about the number of the gates that output “1,” since we tend to think of circuits as being
implemented electronically or optically.

Therefore, we initiate our study by introducing a new complexity measure, energy complexity, whose
minimization yields computations with sparse activity. Roughly, energy complexity of a threshold circuit is
defined as the number of firing gates in the circuif during computation. Now we rephrase our two questions 1

and 2 in terms of threshold circuits and energy complexity:

Q1. How do we design threshold circuits of small energy complexity for computing certain Boolean functions?
Q2. To what extent is the compuiational power of threshold circuits is restricted if the energy complexity of the

circuits is bounded?
In the thesis, we partially answer these questions.

2. Energy-Conscious Model of Threshold Circuits
We consider a threshold gate having an arbitrary number » of fan-in’s as a mode! of a neuron. For every input z
=(21, 2, ..., 2, € {0, l}m, a threshold gate g (with weights wi,w, . . . ,wy, and a threshold t ) computes a linear
threshold function g(z) such that g(z)=1 if the sum of w;z; for all i is greater than 0, otherwise g(z)=0. We assume
that the weights and threshold of every threshold gate are integers. We consider the output 1 as the firing,

A threshold circuit C with » input variables is represented by a directed acyclic graph; the graph has exactly n
nodes of in-degree 0, each associated with an input variable and called an inpuf node; each of the other nodes

represents a threshold gate. For an assignment x € {0, 1}” to the n input variables, the output of all gates in C are



computed in topological order of the nodes in the directed acyclic graph. For a gate g in C, we denote by gfx] the
output of g for an input x to circuit C. Since we consider only a threshold circuit that computes a Boolean
function, one may assume without loss of generality that the circuit has exactly one gate of out-degree 0, called
the fop gate. We denote by C (x) the output of the top gate of C for x. We say that a threshold circuit C computes
a Boolean functionf: {0, 1}"— {0, 1} if C(x) =7 (x) for every input x € {0, 11",

The size of a threshold circuit C is the number of gates in C. The deprth of C is the length of a longest path to
the top gate of C.

Now we introduce two measures for the energy consumption of threshold circuits. One is the maximum energy
complexity, and the other is the expected energy complexity. We give precise definitions of the two measures
below,

We first define the maximum energy complexity.

Definition 1. Letr C be a threshold circuit of n input variables and s threshold gates g\, o,... g for some
numbers n and s. The maximum energy complexity of C, denoted by ECpyp(C), is defined to be the maximum

rumber of gates fired by inputs x where the maximum is taken over all input assignments.
We then define the expected energy complexity as follows.

Definition 2. Let C be a threshold circuit of n input variables and s threshold gates g, g, ..., gs for some
numbers n and s. Let Q be a distribution over the input assignments for the circuit C. The expected energy
complexity of C with respect to O, denoted by EC((C), is defined to be the expected number of gates fired by

inputs x where x is chosen from {0, l}n according fo the probability distribution Q.

3 Constructions of Circuits with Small Energy Complexity
In the chapter, we present results that partially answer Question Q1. More specifically, we give constructions of
threshold circuits from linear decision trees so that the energy complexity of the resulting circuit is significantly
small if the given trees are reasonably small, where linear decision trees are binary decision trees such that the
classification rule at each internal node is performed by a threshold function.

We first consider the case of the maximum energy complexity. The following theorem shows how small the

energy complexity of the resulting circuit is.

Theorem 1. Let f be a Boolean function computable by a linear decision tree of L leaves. Then f is also
computable by a threshold circuit C of size L such that ECpp(C) <log L + 1.

Note that the resulting threshold circuit is of a polynomial-size and energy complexity O(log ) if the target
Boolean function is computable by a linear decision tree of polynomial leaves. Thus, Theorem 1 implies that
threshold circuits have considerably large computational power even if we restrict the energy complexity to the
logarithm of its size.

Furthermore, we develop a more refined analysis with respect to the expected energy complexity, and give a

similar theorem on the construction of threshold circuits of small expected energy complexity. In this case, the



expected energy complexity of the resulting circuit with respect to (0 is bounded above by a cost of a linear
decision tree, where the cost is defined to be the expected number of 1s that linear threshold functions outputs at
nodes in the tree, where the expectation is taken over the probability distribution . More specifically, we prove

the following theorem:

Theorem 2. Let fbe a Boolean function computable by a linear decision tree of L leaves, and Q be a probability
distribution for input assignments. Then f is also computable by a threshold circuit C of size L such that EC{(C)
is bounded above by the cost of T over Q.

The constructions of threshold circuits are based on the same technique: We somehow embed the structure of a
linear decision tree in threshold circuits so that only the gates on a path are allowed to be fired for any input
assignment. This technique provides a general methodology of designing systems of energy-efficient

computation.

4 Trade-off among the Three Complexities

Our second result is a partial answer for Question Q2, and is expressed as a trade-off among the three
complexities, size, depth, and maximum energy complexity, in the sense that the three resources camnot be
simultaneously small. To derive the trade-off, we employ a commumication complexity argument.

Communication complexity is a complexity measure for Boolean functions, and has been used as a tool for
investigating various notions of complexity appearing in a variety of areas. In particular, a number of arguments
through the analysis of communication complexity have been developed to derive lower bounds on the size of
threshold circuits. We find out a similarity in these arguments and establish a general scheme with
communication complexity arguments which gives a unified view of the previously developed ones, although the
scheme may be folklore in research area of the circuit complexity.

In line with the general scheme, we derive a trade-off in the form of an upper bound on the communication
complexity of a Boolean function computed by a threshold circuit. Our bound is expressed in terms of the three
complexities of the circuit and is monotonically increasing with respect to each of them. On the other hand, the
communication complexity is determined solely by the Boolean function and is independent of the circuits that
compute the function. Therefore, the bound on the communication complexity implies that any of these
complexity measures cannot take a smaller value, unless another measure takes a larger value. More specifically,

we have the following theorem.

Theorem 3. Let f be Boolean function of n variables such that the communication complexity of fis O(n). Then,
any threshold circuit computing f satisfies (e + d}d log s = Qm), where s, d, and e are size, depth, and energy

complexity of the circuit, respectively.

In fact, since almost all Boolean functions have a linear communication complexity, we can conclude that a large

class of Boolean functions has the trade-off given in Theorem 3.

5 Discussions



Recall the theorems in Chapter 3. Although we do not describe constructions giving the theorems in the paper,
every of the resulting circuits constructed from the theorems actually has two properties: a tree-like structure and
a large depth.

By the tree-like structure, the circuit explicitly has a property that, after each evaluation of outputs of threshold
sates for an inpwt, the gates “inhibit” gates that do not influence on the future processing to have less energy
complexity. Thus, we observe that the tree-like structure is one of effective strategies to decrease the firing rate.
In other words, neural circuits in the real brain may propagate information what neurons should have inhabitation
in order to achieve sparse activity, and consequently, it could be a factor for increasing the depth.

While our constructions yield threshold circuits of small energy complexity, the circuits tend to have a large
depth which seems a week point of our construction. However, it may be inevitable for threshold circuits of
small energy complexity to have a large depth, because the trade-off given in Theorem 3 implies that the depth
seems to be more negatively correlated to the energy complexity than its size.

In order to avoid increasing depth, but o obtain small energy complexity, one can construct threshold circuits
of small energy complexity by taking another strategy such that a significantly large number of gates perform a
target task. However, if we consider a case of real neural circuits, it may be reasonable to assume that a bounded
number of neurons in the brain are available for a neural circuit to perform a specific task. In that case, the
trade-off directly implies a strong relation between the depth and the firing rate, and that neural circuits may need

large depth to achieve low firing rate.
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