A VAR
5’ 4 F B &
7 & % i gL (I%¥
FUNRESEFABE ¥k1643H 25 H
ARG OBIES FAHAIE 4585 11E
R, HEROAH FIARFEXRFRLFEHER (ELHR) EX - BEILFEEX
2 L % X B B Automatic Code Generation Method for Parallel Processing
GEFIE T 1 75 b B EAERIEICBET 2 5F50) :
B EH #H T FEERFEER W& LR
F X K E T B OEE FIEKRFEHEE WE LR FIEREEE ME f#—
R RZHERE M FE FAERFEEE KET E—R
(I REFFERD

WX R E B

Parallel computers that built out of the latest microprocessors are becoming widely used as

S

—

high-powered computer systems. To utilize parallel computers effectively, the program must be
expressed as a parallel code for the target machine. In general, however, most algorithms that used
in scientific applications are written as sequential codes, for the portability and simplicity of
programs. Thus programs must be translated with respect to the target machine, for the efficient
use of parallel computers. The translation of a sequential code to an equivalent and efficient
parallel program is a difficult and error-prone work. The translator must identify which portions of
a program can be run in parallel, and he must specify how the computation should be distributed
and communicated between the processors. Depending on the memory system and the connection
of components of the given parallel computer, the translator must do other translations that
lighten problems related to the data distribution, the communication cost, the synchronization cost
and the locality of data reference. To relieve users from this translator's non-trivial work, a
parallelizing compiler can be used to automatically translate sequential codes to parallel programs.

There are different levels of parallelism that can be exploited, such as task-level parallelism,
loop-level parallelism and instruction-level parallelism. In this paper, we deal with loop-level
parallelization and loop-level optimization. For large scientific applications, exploiting loop-level
parallelism can be especially effective, because they make heavy use of loops to operate on large
array data structures.

In general, the memory systems of modern computers are organized as a hierarchy in which the

— 488 —

latency of memory accesses extremely increases from one level of the hierarchy to the next level.
Thus, to realize high performance computing on the modern computers, it is necessai'y that data
being reused are kept in the fast memory closer to the processors. Tiling, as one of the most
important compiler optimization loop transformation, is useful for improving data locality. Tiling is
a program transformation that a compiler can use to automatically generate a blocked program.

Tiling is very important loop transformation for parallel processing, but still has some
restrictions. To achieve high performance in a parallel computer system, the restriction must be
solved. Also, the relationship between tiling, scheduling and mapping is not well understood. This
paper deals with these problems to optimize synchronization cost of tiled codes. The main goal of
the thesis is to give automatic generation methods to generate blocked parallel codes.

Chapter 1 is introduction, and showed the backgrounds of loop transformations.

In Chapter 2, backgrounds for this thesis are introduced. The condition for parallel processing of
tiles is introduced. From the condition, a new tiled code generation method for parallel processing
is proposed, called order-preserving code generation method. Since proposed method preserves
execution order, if original loop nests have parallelism, the result codes have parallelism as well. It
is a sequential program code that is generated by conventional methods and then the code is
further transformed for parallel processing. Proposed tiled code generation method is equivalent in
a sense to the one that combines the two phases of conventional methods, tiled code generation and
parallelization, but the synchronization cost may be reduced. The proposed code generation
method is convenient and efficient to the optimization of DOALL parallel processing for
minimizing synchronization.

A new algorithm which determines shape of tileé is proposed in Chapter 3. The tiles that are
determined by proposed algorithm fulfill the condition introduced in Chapter 2. It means that, the
tiled codes which are obtained by proposed methods (the tile shape determining algorithm and
order-preserving code generation method) preserve parallelism. When the preserved parallelism is
the optimal parallelism for a property, the result code of parallelism preserving tiling may have the
optimal parallelism for the property. The example loop program in the paper shows that the

synchronization cost by the proposed method is less than the one by the conventional

— 489 —

communication-minimal tiling.

In Chapter 4, a new loop fusion algorithm called perfect loop fusion is proposed. Loop fusion is g
loop transformation which is used to merge series of loops into a single loop, for improving data
locality and reducing synchronization. Tiling is a locality enhancing program transformation for
individual loop nest, and loop fusion is a locality enhancing program transformation between loop
nests. Many useful loop transformations are restricted to perfectly nested loops. Tiling is restricted
to apply to perfectly nested loops as well. Since loop fusion merges series of loops into a single loop,
it can be used as preprocessing of tiling. Fusion is not always legal in the presence of dependences
between the loops to be fused. Fusing two parallel loops is legal if the resulting loop produces the
same result as the one by the original sequence of loops. Moreover, if the original loop is a parallel
loop, the fused loop is restricted as a parallel loop. The result of conventional loop fusion is not
always a single loop nest. When, however, the result codes are not a single loop nest, tiling can not
be performed to it directly. Perfect loop fusion fulfills following three qualities.

1) The result codes maintain parallelism.

2) Locality of data reference is improved by the transformation.

3) The result code is a single perfectly nested loop nest.

For an example, perfect loop fusion is performed to Jacobi loop program. Jacobi loop programis a
typical program that solves a partial differential equation by an explicit method. According to
proposed method, the synchronization cost of tiled Jacobi program is not dependent on array sizes.
The proposed method is useful and effective for parallel architectures of which each computational
element has its own parallel processing ability, and they require some different parallel processing
schemes, since for such cases, it is important that the result of transformation preserves
parallelism and is a perfectly nested loop nest.

In Chapter 5, a new loop-synthesizing algorithm that is represented as unimodular
transformation is proposed. Loop-synthesizing combines two loops into one loop, but it does not
preserve parallelism. Presented loop-synthesizing algorithm is simple and the result of our
synthesizing algorithm is compact than previously known method.

Chapter 6 is the conclusion and states the main contribution.

— 490 —

s S 28 AL e D B

WL Ot v I FIHEOEDO TS 53 D 7T IBRNUBOBEICANKREREHER S, 0
J=b, ERNBSREBEXLET TS S AE2NHAET TS S5 NCEBMERT D2 /81 SNERES
NTW3, BFEOBEEREML, BN AT U OHRNFIE, RO X b 2ERT 215 0E/Lt,
BEON—7700 5 L% —DIZTHRANELRE OB L DERERZHAEHEEZHOT, B
MBEIOBREE L DD OMMMNZAEEKELL TVWD, ZNS5OEKOHTT, BBHAEUD
PEOFAICOVTIIAETVBRBZRILT ST Oy 7{b—F 1 U T ER-DEYHTH B, *
DEBTIIMIMEOREIZSBINTI ANz, BFE, F1UTERICERL, M7
HARELTHHE—OFH AR T2 RETIERFRIIOVWTHET S L &b, F1U
PERCED W MR R — T 07 S AORMEFERERL, WHNETS TS S ADR)
RWHBIERERZBRL 2. FRNIZOREZ LV EEDEBOT, 2HF6ELVARSB,

E1ERIFRT, MROER - B2, VT8 - 14U DV TRICET 2 A 551
LT3, i

E2ETI, MHNBEERY AN OLE2EE, BRUVBOETEFE2RETZYIUITFE
BEFTNIEDSI-REREERRELTWVWS, BREFEI, UBT 0w 7252235 1) OEFT
MEFFE LU TRREZY ANV EBEDIEFTH oD%, Y1INVEBBEDIEFTEET S OS5 A
WEBTEZHDT, WRBBETH 251U T DEOAITULERZREBEICTHHODTH S, Fiz,
RBEFHRICEDERINEZTOY 5 AQEFNEFTICBNT, BHIXNNRERFECLZBOLD
ERINDZER2RLTVWS, INSRIBERLBOLFHEZHRNCERTHHOT, BEELRE
TH5,

B/IETIE, BN —THIHEEEREE S L CHANETEEER DOALL V-2l T, 0
WFERFEET BV FERZREL TWS, ZOFETIX, WFIMBERRER S 1) ORERE
BEZ, BRSNS AIIVIIHL TEFIEFRES AU T FEEBHL TWS, £k, BEFHE
N, 7oty HEEEER/MEERENEL RO 1) 7 FRICHENT, KBEEREICHL T
FHIOZANOETERTH DI EZHSMILTNVNS, INSIIEBLELERBERRETHS,

BWAETIE, Z2o0N—7 70l I ADRNE—DIZT BN —THEHFRIONT, L2 HRE
L, ARUBEZREFLL, BONBN—TRXAMNELRXAMNCAZZ2IN—TREERZEERL
TW5, ROV TS TREEBCHIUCERNBRETH -2 LITHL T, —EOMATHR
TUINET O SABERTHIODERS>THY, FALKKRETH 5,

BHETIE, W—TRAEEZN—TERTEE T2 HEESL TN, ZOFEIIEROMEE
THESNZT 0V I ACHUNTEENBEMAREERX AN T O SABERTIHDT, FO
EROFMEBSNZBDOICHL THBNC SIS B BUFULER, (U VERE2ERTSZ &M
TE, HEKBEVRETH 5,

FOEIIHAMTH D,

UEETRICAHL, ETIEFREI AV FEE2RETDEEDIC, TOLE THFLE
ARER Y IV DEREEHEMNIL, ThE2#HETY 1NV EBREEZ 52, DOALL 542 RET S
AU LT FE, BRV-—TREEEEELT, ATUBSRORIMLEZEEL, R A2 ER
THWHNES O SANEMERTES I E2ZRLAEDOT, HRERSTHEEOIC M FILEE IR
DHEBIZFETB L ANDELIBN,

£oT, BHRXIEL (T%) OEMBLEL TEREBD 5,

— 491 —

