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Chapter 1 Introduction

Recent research efforts in algorithm theory have concentrated on designing
efficient algorithms for solving combinatorial problems, particularly graph
problems. Graph problems often arises in various areas of engineering and
computer science. Thus it would be important to give practical algorithms
for typical problems. However, it has been shown that many of practically
tmportant problems belong to the class of “NP—complete” problems.
A “polynomial —time” algorithm for any one of these NP—complete problems
can be effectively translated into polynomial—time algorithms for all other
problems in this class, and all known algorithms for solving NP-— complete
problems run in exponential time. Given these facts, there appears to be
little hope of being able to design polynomial—time algorithms for exactly
solving any NP—complete problem.

Almost all graphs appearing in a particular area are often contained in
a special “subclass” of graphs, for example, planar graphs in the case of
traffic networks and series—pararel graphs in the case of electrical networks.

Hence, it would be useful to design efficient algorithms for a special class
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of graphs. All known exact algorithms for solving NP—complete problems run
in exponentiai time. However, an approximate solution is often sufficient
for some practical purpose. Thus, an “approximation approach” is useful for
NP—complete problems. Furthermore, an approximation approach 1is expected
to be useful even for polynomial time solvable problems by the same reason.

Algorithms are usually evaluated by their running time and storage space,
since these are dominant factors of efficiency. The notion of practicality
of algorithms must involve all the various resources needed for implementing
and executing algorithms. Thus the simplicity and comprehensibility of algo-
rithms are also significant for the practicality.

Restricting the input graphs into the class of planar graphs, we present
very simple and efficient algorithms for the following eight graph problems
containing five NP—complete problems: the plane embedding problem, the
graph drawing problem, the coloring problem, the maximum independent set
problem, the maximum clique problem, the maximun induced subgraph problem,
the minimun vertex cover problem and the maximun matching problem. The
time complexity of these algorithms is 0(n), 0(n log n) or 0(n?) at worst,
where n is the number of vertices of a graph. These are superior to or at
least as good as the best known algorithms, and are often improved in
simplicity. We also introduce new simple algorithmic techniques wuseful

especially for combinatorial problems on planar graphs.

Chapter 2 Embedding planar Graphs
Planarity testing, that is, determining whether a given graph is planar

or not, has many applications, such as the design of VLSI —circuits and

determining isomorphism of chemical structures. Two planarity testing
algorithms of different types are known, both running in linear time. One
is called a “path addition algorithm” , and the other a " vertex addition
algorithm” . The path addition algorithm was first presented by Auslander,

Parter and Goldstein, and improved later into a linear algorithm by Hopcroft
and Tarjan. The vertex addition algorithm was first presented by Lempel,
Even and Cederboum, and improved later into a linear algorithm by Booth
and Lueker employing an s¢—numbering algorithm and a data structure called
a “"PQ—tree”.

Many applications require not only testing the planarity but also embedding
(or drawing) a planar graph in the plane. Hopcroft and Tarjan mentioned
that an embedding algorithm can be constructed by modifying their testing

algorithm. However the modification looks to be fairly complicated,
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paticularly it is quite difficult to implement a part of the algorithm for
embedding an intractable path called a “special path”.

In this chapter we present a very simple linear algorithm for embedding
planar graphs, which is based on the vertex addition algorithm of Booth and
Lueker. If a planar graph is not 3—connected then an embedding of the graph
is not unique. We also show that our algorithm can be easily modified so as

to construct an expression for all the embeddings of a planar graph.

Chapter 3 Drawing Planar Graphs

The problem of drawing a planar graph often arises in many applications,

including Design Automation of VLSI circuits. In this chapter we are not
interested in a specific practical application, but interested in producing
a pleasing drawing of a given planar graph. Restricting given graphs to

trees, some recent papers have studied the problem of producing well—shaped
drawings of trees. Obviously there are no absolute criteria that accurately
capture our intuitive notion of nice drawings of planar graphs. However, it
seems that the following are desirable properties of pleasing drawings:

(a) all the edges are drawn by straight line segments without crossing

lines ;

(b) face boundaries are drawn by convex polygons as far as possible:

(¢) boundaries of 3—connected components are drawn by convex polygons.

We present two linear algorithms for the convex drawing problem of
planar graphs : convex drawing and testing algorithms. The first draws a
given planar graph convex if possible. The second tests the possibility, that
is, determines whether a givn planar graph has a convex drawing or not. We also
present a drawing algorithm which uses the convex drawing algorithm, and

produces a pleasing drawing satifying properties (a)—(c).

Chapter 4 Five—Coloring

A coloring of a graph is an assignment of colors to the vertices in such
a way that adjacent vertices have distinct colors. Although the problem of
coloring a graph with the minimal number of colors has practical applications
in some schedulings, it is known to be NP—complete even for the class of
planar graphs.

We present here a linear algorithm for finding a coloring of a planar
graph with at most five colors, that is, b—coloring. Based on the well—
known Kempe—chain argument, one can easily design an 0(n®) time algorithm

for the purpose by employing a simple recursive reduction of a graph involving
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the deletion of a vertex of degree 5 or less possibly together with the
interchange of colors in a two—colored subgraph. Lipton and Miller have
given an O(n log n) algorithm for the problem by removing a “batch” of
vertices rather than just a single vertex. Their algorithm and 1its proof
are a little complicated. In this chapter we give a simple linear algorithm
for the purpose. The algorithm does not use the Kempe—chain argument, but
uses a recursive reduction of a graph involving the deletion of a vertex of
degree 6 or less possibly together with the identification of several neighbors

of the vertex.

Chapter 5 Independent Sets

A subset of the vertices of a graph is independent if no two vertices in
the set are adjacent. The maximum independent set problem, in which one
would like to find a maximum independent set in a given graph, is NP~complete,
and still remains so even if restricted to the class of planar graphs. In
this chapter we give two simple and efficient algorithms for the purpose.

The four—color theorem implies that every planar graph has an independent
set containing at least n/4 vertices. Albertson showed, independently of the
four—color theorem, that a planar graph has an independent set containing
more than 229 vertices, and furthermore proposed an “algorithm” for
actually finding such a set. Unfortunately the straightforword analysis
cannot guarantee the polynomial—boundedness of the algorithm, due to only
one troublesome step. We give an 0(n?) time algorithm for the same purpose,
by modifying his algorithm, mainly avoiding the troublesome step.

An approximation algorithm is often evaluated by the worst case ratio:
the smallest ratio of the size of an approximation—solution to the size of
a maximum solution, where the ratio is taken over all problem instances.
Lipton and Tarjan have given an 0(n log n) time approximation algorithm
with worst case ratio 1—-0(1/(loglog 2 )Y, asymptotically tending to 1 as
n —>co, for the problem on a planar graph with » vertices. Such a ratio is
called an “asymptotic worst case ratio”. On the other hand, some approximation
algorithms have an “absolute worst case ratio”, which does not depend on the
size n of a graph. For example, the 5—coloring algorithm in Chapter 4
provides a linear time approximation algorithm with absolute worst case ratio
1,/5. We present an O(n log n) time approximation algorithm with absolute
worst case ratio 1,2 for the maximum independent set problem on planar

graphs.
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Chapter 6 Cliques

The problems to list certain kind of subgraphs of a graph arise in many
practical applications. In this chapter we introduce a new simple strategy
into edge— searching of a graph, which is useful to the various subgraph
listing problems. We choose a vertex » in a graph and scan the edges of
the subgraph induced by the neighbors of » to find the pattern subgraphs
containing v. The feature of the strategy is to repeat the searching above
for each vertex v in nonincreasing order of degree and to delete » after o
is processed so that no duplication occurs. We will show that the procedure
above requires 0(e(G)m) time. Throughout this chapter «(G) 1is the
arboricity of G, that is, the minimum number of edge—disjoint spanning forests
into which G can be decomposed. We use the rather unfamiliar graph invariant
2(G) as a parameter in bounding the running time of algorithms.

The strategy yields simple algorithms for the problems to list certain
kinds of subgraphs of a graph. The kinds of these subgraphs include “triangle”,
“quadrangle”, “clique of a fixed order”, and “maximal clique”. Our algorithms
are as fast as the known ones if any, and a factor n is often reduced to
e(G) in the time complexity. All our algorithms require linear space and
exceed the known algorithms for the same purposes in running time, storage

space, or simplicity.

Chapter 7 Applications of planar Separator Theorem

Lipton and Tarjan have given a planar separator theorem which provides a
basis for exploiting the divide—and—conquer paradigm. A number of
combinatorial problems, including the maximum independent set problem, are
formulated as a “maximum induced subgraph problem” with respect to some
graph property Q. Furthermore it has been shown in a unified way that the
maximum induced subgraph problem together with the approximation problem is
NP-complete for general graphs if Q satisfies some conditions. As an
application of the planar separator theorem, We first present efficient
O(n logn) time approximation algorithms for a broad class of the maximum induced
subgraph problems. We next give an approximation algorithm with time comp-
lexity O(n log n) for the maximum matching problem on planar graphs, which
is polynomial—time solvable (the best known exact algorithm has time comp-
lexity 0(a'® ) for planar graphs). We finally present an O(n log n) time
approximation algorithm for the minimum vertex cover problem, which is NP-
complete even for planar graphs. The worst case ratio of these algorithms

is 1-0(1/(Clog log n)%) asymptotically tending to 1 as n — oo.
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Chapter 8 Conclusions

This thesis gave simple and efficient algorithms for various combinatorial

problems on planar graphs by employing several techniques,

such as efficient
algorithmic tools,

new concise and constructive theorems or proofs on graphs,

approximation approaches, and sophisticated time analyses.
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