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CHAPTER I INTRODUCTION

Over the recent years, much research work has been carried out in the -area of
mul ti—dimensional (M~-D) digital filters. Although the main research effort has focused
on 2-D digital filters, the study on 3—D and higher dimensional digital filters is being
expected in many areas such as moving image processing, geophysical data processing and
so on.

One of the main obstacle in the application of M—-D digital filters is the 'large
amount of computation required in the design and implmentation of these filters. To
over come this obstacle some special class of M—D digital filters have been developed.

In this paper, we will study the design problem of separable denominator (SD). M—-D
digital filters. Reasons for our choice of SD M-D digital filters are as follows. First
of all, as will be shown in this paper, the analysis and design of SD M-D digital filters
can be performed using results obtained for 1-D digital filters. At the same time, since

the numerator of the transfer function of an SD M-D digital filter is a general M -D
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polynomial, we can consider it as the cascade of a general FIR digital filter, and a
separable all pole IIR digital filters. Thus, any specification can be approximated as
closely as desired.

The prolem of designing digital filters can be divided into two ‘stages as
approximation and synthesis. Since these two interrelated stages have been studied
separately until now, many redundant computation steps are involved in the traditional
design procedure. To design digital filters more efficiently, this paper will propose a
unified design method of 1-D digital filters in Chapter Il. The basic idea of( )the
1

unified design is based on a "balanced approximation method” proposed by Kung = and

an equivalent relation between balanced realizations and optimal realizations ( with

(2)'

respect to quantization errors) of digital filters This method can perform the
approximation and synthesis simultaneously with much less computational complexity.
Resulting state—space digital filters of the unified design method are always guaranteed
to be stable, nearly optimal and free of overflow oscillations.

In Chapter IV, we will introduce the concept of characteristic filters of SD M-D
digital filters. By introducing characteristic filters, the relation between SD M-D digital
filters and 1-D digital filters becomes very clear, and the analysis and degign of SD M-D
digital filters can be performed exactly as same as those of 1-D digital filters. On the basis-
of the relation between SD M—D digital filters and their characteristic filters,the unified design

method will be extended to SD M—D case in Chapter V.

CHAPTER 1 FUNDERMENTAL THEORY OF MULTI-DIMENSIONAL
DIGITAL FILTERS
In order for this paper to be self—contained, in this chapter, we will give a brief
review of some concepts about M-D digital filters such as the transfer functions, the

state—space representations and so on.

CHAPTER I UNIFIED DESGN OF 1—DIMENSIONAL DIGITAL FILTERS
BASED ON SYSTEM BALANCING

Philosophy of the Unified Design

Until now, the approximation and synthesis of digital filters have been studied
independently. Because relations between these two design stages have not been considered,
synthesis of optimal realizations usually requires many redundant computations. These
computations along with those required in the approximations stage make the design of
digital filters very complex. However, the design problem can be greatly simplified if we

employ an approximation method that can result in a realization from which the optimal



realization can be found easily.

Thus, to design digital filters efficiently,; it is necessary to .consider the
approximations and the synthesis simultaneously, so that the relation between optimal
realizations and realizations obtained in the approximation stage can be fully utilized.
Once the relation between optimal realizations and other realizations are known, we can
choose a realization from which optimal realizations can be easily synthesized, and
develop an approximation method that can result in such a realization. Using this
approximation method, redundant computations can be reduced.

Equivatent Relation between Balanced Realizations and Optimal Realizations

Assume that the initial realization is DF(A,b,c,d) which associated controllability

gramian K and observability gramian W. The equivalent transformation used to

synthesize the optimal realization DF(A, ,b,, ¢,, d) is given by(3)

T=T,R, AR} (3.13)
and the gramians change as follows:
K=T'KTT", W=T‘'WT. (3.7)

Substituting Eq. (3.13) into (3.7), we can get the gramians of the optimal realization

as follows:

Ko= (02RY" 0 (o '/2RY)* (3.16)
and

W,= (/2R 0 (o7/2RY) (3.17)

where p is a scalar given by
. .
o= 23 0;/n (3.18)
i=1
Since O is the controllability or the observability gramian of the balanced realization,
optimal realizations can be synthesized from balanced realizations using the following

equivalent transformation:
T = o/?R¢ (3.19)

Unified Design of 1—Dimensional Digital Filters
According to Kung(l), a nearly balanced realization can be synthesize from a given

impulse response h(0),h(1),........,h{N) by the following algorithm:



Step 1: form the Hankel matrix as follows:

h{l) h{2) ... h(N)

o= h(Z) h(3) ... 0 (325)
hiN) 0 0
Step 2: Suppose that the singular valuses of @ are ¢;, i=1, 2, ...., N, and satisfy
0; = 6i+; - Then the singular value decomposition (SVD) of @ can be expressed as
o= U, 2, V, + U, 2%, V, (3.26)
where
3, =diag (g,,0,, ..., 0,) (3.27a)
2, =diag (ogp s -oon ., ON) (3.27b)

and where n is an integer such that ¢, >) 04,
Step 3: Suppose that the realization which can approximately generate the given impulse

response is DF (A, b,c,d), then its coefficient matrices can be obtained as follows:

A= MuhH W, sVHT (3.28 a)
b = First column of 372V, (3.28b)
¢ = First row of U, 3/? (3.28 ¢c)
d =h, (3.28d)

where (*)T expresses the operation of one row shift upward with the last row filled by
Zeros.

Thus, using the relation between balanced realizations and optimal realizations,
nearly optimal realizations can be synthesized directly from given impulse responses as
follows:

Step 1 and Step 2: Same as that of Kung’s algorithm.
Step 3: Using Eqgs. (3.20) and (3.28), the coefficient matrices of a nearly optimal

realization can be calculated by

A=R, (57’0t w, 37" R (3.34a)
b= Y*R, (First column of X7?V,) (3.34b)



¢ =(First row of UIZ'i/Z),ol/ZRt (3.34¢)

d =h, (3.344)
The above algorithm has the following advantages:

1) The approximation and the synthesis of digital filter design-can. be performed
simultaneously after the desired impulse response is given.

2) Compared with conventional design method, the amount of<computation is very
small. Throughout the whole design, the main computation is the SVD of a

symmetric matrix.

CHAPTER I STRUCTURAL PROPERTIES AND CHARACTERISTIC
FILTERS OF SEPARABLE DENOMINATOR MULTI-
DIMENSIONAL DIGITAL FILTERS

Theorem 4.1: Suppose ip ,ip, + .. .» g, (1=p,<{p,<....{pr=M) are positive elements

of 1, then the state transition matrix A of an SD M-D digital filter can be calculated

by

U N R R L (4.1)

provided that i) 0. /1
Theorem 4.2 A realization MDDF (A, B,C, d) is locally controllable iff G(q) is full rank,
where G(q) is called the controllability matrix of SDMD (A, B,C, d), and is given by

Gl@)=[glk,g (2e,),.....g(q1e, g (ex), gle;+ey), g (2es+ey),....,

g (qye;Tey), g (2ey), g ey t2eq),....,g(q1e1rqQzep)
g (@] (4.5)

where g(i) is the state impulse response of MDDF (A,B,C,d).
Theorem 4.3 A realization MDDF (A, B,C, d) is locally observable iff O(q) is full rank,
where O(q) is called the observability matrix of SDMD (A, B, C, d), and is given by

Ot (q)= [ft(O), ft (eM) s ft (ZEM),...., ft (quM)’ ft (eM_l), ft (eM_1+eM),
vy £ (eyortamen) s £ (2epy), £5 (2em_qten) ...

f' (Qyey em—q F QM €M) 5eee s £ 5 (Q) ] (4.7)

where f(i)=CA'® .



For SD M-D digital filters, we have shown that G and O take the following

forms:
{
Gl(ql) 0 01 )nl
0 Gz(qZ) 02 )nz
Glg) = (4.9)
0 0 GM(QM) )DM
where

—~1
G;(a;) =[B;,A;B;,...., Ay B;1,i=1,2,...., M  (410a)
By= by (4.10b)
Bj=[bj s Aj’IGl (ql),....,Aj,j_l Gj_l (q]‘_l)]

i=2,3,...., M. (4.10¢)

and
OM(QM+ 1)
O(q)= OM—I(QM—1+1) 0 (411)
Ol(q1+1) 0 0
N— N~— ~
y Ny-y Dy
where
Cj
Oi(qj)= CjAjj s j=1, 2,....,M (4123)
q-1
CiAii
/
CM=CM (412b)



Ow () Angy
C, = | M Amio , for j=1,2,...., M—1. (4.12¢)

Oj41 (qi+1 JAjyy g

In the above equations, A b; and c; are the coefficient matrices of SDMD(A, B, C, d).

ii o

Now, let us define M 1-D digital filters DF (A;; ,B;, C; )‘with B; and C; given
by Eqs. (4.10) and (4.12), respectively. Them, from the theory of 1-D systems,
we have the following theorems:

Theorem 4.4 A realization SDMD (A, B, C, d) is locally controliable iff DF (A;; . B; .Cj),

j=1, 2,...., M are separately controllable in the 1—-D sence.
Theorem 4.5 A realization SDMD (A,B,C,d) is locally observable iff DF(A;;, B;,C;),
j=1, 2,...., M are separately observable in the 1—D sence.

Thus, we call the 1-D digital filters DF (A B;,C; ) the characteristic

i -
filters in this paper.
Theorem 4.7: The coefficient matrices of a realization SDMD(A, B, C, d) can be found

from those of its characteristic filters by the following equations:

Ajj: The same for j=1,2,...., M (4.18a)
b; = First column of Bj, i=1,2,...., M (4.18b)
¢; = First row of C;, i=1,2,...., M (4.18¢)
A;;= [First u#; q; columns of B:—ﬂj 16 (q;) (4.18d)
=OT[ First vy_;qm—; rows of C?VM—M]
fori,j=1,2,...., Mand i) j (4.18e)
where

#;= g1+ 1) Qs +1) ... (qu +1). i=2,...., M (4.19a)
p=1 (4.19b)
v-i= (au+ Dlamer F 1), (Qyogert 1) . j=1,....,M—1 (4.19¢)
vy= 1 (4.19d)



and (-) 7 expresses the pseudo—inverse of a matrix, and (-)<_i ((-)“) expresses the
operation of shifting a matrix for i columns (rows) leftward (upward), and filling
the right columns (bottom rows) with zeros.
Theorem 4.8 The impulse response h; (k) (k=0,1,....) of the characteristic filter
DF (A;.B;Ci) is an [ (qu+1) (qu-; +1) .... (q-1+ DI xL Q@p1+1).... (q1+ D]
— th order matrix, and can be formed from h(i) as follows:

1) The collumns of h; (k) are formed by arranging h(i) (i; =k) so that i is increased

in the order iy, iM-y +....» 41
2) The rows of hj;(k) are formed by arranging h(i) (i;=k) so that i is increased in

in the order i, iy ....,15-9. ///

CHAPTER V UNIFIED DESIGN OF SEPARABLE DENOMINATOR
MULTI-DIMENSIONAL DIGITAL FILTERS BASED
ON SYSTEM BALANCING
Balanced Approximation of Separable Denominator Multi—Dimensional Digital Filters
Definition 5.1 A realization SDMD (A,B,C,d) is said  to be ‘balanced iff its characteristic
filters DF (A;;,B;,C;), i=1, 2...., M, are balanced realizations, i.e.

Kj=Wj=diag(631,9j2,....,Gjnj) (58)

where (K;,W;) are the controllability gramians and the observability gramians of the

characteristic filters, and can be obtained by using the following Lyapunov equation:
§
K;j=Ay;K; Aj; + By Bj =,2’; Ay Ky Afi +byb;
i-
i=1, 2...., M (5.5)

M

i=M, M—1, ....,1.(56)
Take SD 3—D digital filters as an example, we can:state the balanced approximation
(4} .
as follows'™' :
Step 1: Suppose that the specification is given as a 3—D impulse response h(i),
0=i=N.

Step 2: Form the ideal impulse responses of the characteristic filters as follows:
x—1

=[h (k, 0, 0),h &, 0, ,....,h&k, O, Ny),h(k,-1,:0), h (k, 1, 1),
....,h(k,l, Ng),...-,h(k,stNg)] (59 a)



h (k) =Cgz Asz By

h(0,k,0) h(1,%k 0) ...h (Ny,k, 0)

h(0,k, 1) h(Il,k 1) ...h(N,,k 1)
- (5.9 b)

h(0,k,N3) h (1, k, Ng)... h (N;, k, Ng)

and
h (W =C; A§'B,

=[h (0,0, k),h (1,0, k),....,h N, k), (0, L,k),h (1, 1,k),....,
h (Ny, Lk),....,h(N;, N, B L (5.9 ¢)

Step 3: From the Hankel matrices from h , h, and h, as follows:

hy (D h; @ ... b (N,
h.(2) h, ® ... 0

; ! ! ,j=1, 2, 3. (5,10)
h, (N 0 .0

Step 4: From the above Hankel matrices, the characteristic filters of the desired SD 3—-D
digital filter can be obtained using Kung’'s method, as described in Chapter II.
Step 5: Find the coefficient matrices of the desired SD M—D digital filter SDMD(A, B,

C,d) using Theorem 4.7 and the following relations:

d=h (0,0,0) (5.15)
05 = 277Uy, and Of = 55, U}, (5.16 )
Gl =V, 5, and Gf =V, 52" 4 (5.16b)

where U,i,,V,; and Y, and Ug and 33 are obtained from the SVD of @, and
® 3 , respectively. '
Analysis and Minimization of Quantization Effects in Separable Denominator Multi—
Dimensional Digital Filters

Due to roundoff after multiplication, the actual SD -M~—D -digital filter

implemented by a finite wordlength mechine can be described by

X G@) =A% () +Bu @+ a @ (5.19a)
Y@=Cx W +du @+ (5.19b)

where x(i) and y(i) are the actual state vector and the actual output, respectively, a(i)



and /(i) are, respectively, n—th and 1-st order error vectors generated due to roundoff
after mul tiplication in Ax+Bu and Cx+du.

On the basis of this model, we can get the variance of the output roundoff noise

as follows(S):
E[Ay2]=02tr[QW]+oz~q=02Gr+02q (5.25)
M Mo,
=02,21tr[Qjo]+ azq=02_Z'1Gj+azq (5.28)
i= i=

where W is the observability gramian of SDMD(A,B,C,d). In the context of digital
filter design, W is usually called the noise matrix. In Eq. (5.25), since ¢2GT is the
dominant term of the error variance, G is called the noise power gain of SDMD (A, B,
C,d).
On the other hand, due to coefficient quantization, the actual filter implemented
by a finite~wordlength machine is described by
@)= A X))+ Bu(i) (5.30a)
T @)=C x@{)+ du(i) (5.30b)
where ;(i) and ;(i) are the actual state vector and the actual output, respectively,
A=A+ 4A, B=B+ 4B, C=C+4C and d=d+ 4d are coefficient quantizatioh
errors.
Since the coefficient quantization errors can be assumed to be statistically. independent
random variables and uniformly distributed in the range [— 27t 2, 27%/27, where ¢

is the coefficient wordlength. Using this assumption, we can obtain the output error

variance due to coefficient quantizations as follows ®':
Eldy 1= d?tr[QW]+062q =02G" +02 g (5.42)
M M
=02j§tr[Qjo]+azq=o2_é;G§+02q (5.43)
< i
where
Q =diag(j.§1 rG@,pEx,. ... ,jé; r(a, PEx{1)
+ o%diag (r ®,),...., r (b, NE[u?]. (5.39)
and
q=2r (cE[X) + 1 (d) . (5.41)

In the above equation, since ¢?G° is the dominant term, G° can be take as the
coefficient sensitivity of SDMD (A, B, C, d).
Comparing Eq. (5.28) with (5.43), we can verify that the power gain G’ of the



roundoff noise and the coefficient sensitivity G are exactly the same. Thus, the
minimization of overall quantization effects in SD M—-D digital filters can be performed
by minimizing either the roundoff noise or the coefficient sensitivity.

Since the minimization problem is completely separated into minimizations of noise
power gains or the coefficient sensitivity in M directions, the quantization errors can be
minimized independently by using results obtained for 1-D digital filters.

In addition to minimum roundoff noise and minimum coefficient sensitivity, we
can also prove that optimal realizations of SD M-D digital filters are also free
of overflow oscillations under zero input conditions.

Unified Design of Separable Denominator Multi—Dimensional Digital Filters Based on
System Balancing. -

Take the 3—D case as an example, the unfied design algorithm can be deseribed
as follows:

Step 1 to Step 3 are the same as the balanced approximation given in the beginning
of this chapter.

Step 4: the coefficient matrices of the desired characteristic filters are given by

i, + + D
A11= U] (2]11/2 Ufil ) (Ull by 111/2)1‘ (Nz D (NS D U'i (5.60a)
B, = ¢ /217, (First column of SY7V%) (5.60b)
C, = (First (N,+1) (Ng+ 1) rows of U, 31D #/70% . (5.60¢)

Coefficient matrices of the rest two characteristic filters can be found in a:similar
manner.

Step 5: In stead of Eq. (5.16), the relations used to found the coefficient matrices of
the desired SD M-D digital filter SDMD (A,B,C,d) are given by

05 = ;%0 (50 , (5.61a)
oh = 03U, (2,0t (5.61b)
Gr= w37/ 0% U (5.61c)
Gr= v, 5.5 0) U} (5.61d)



In the above equations, o, 0, and o, are scalars given by

n:
o= 5 04 /0y, for j=1,2 3 (5.62)
k=1
and where 0;., j=1,2,3:k=1,2,....,n;, are the second order modes of the j— th

characteristic filters. The matrices U, , U, and U, are orthogonal, and satisfy
r
051 o5 W

03‘2 05
U . U = ) ,j=1,2,3.(5.63)

(91',1'1]' 05

CHAPTER W CONCLUSION AND REMARKS

In this paper, we have studied the class of M—-D digital filters whose transfer
functions are separable in denominator. As stated in Chapter I, the goal of this paper
is to develop an efficient method for designing SD M —D digital filters. In Chapter I,
we have studied the structural properties of optimal realizations (with respect to
quantization errors), and shown that optimal realizations are in fact scaled and rotated
balanced realizations. Based on this "balancing” property of optimal realizations, we
have proposed a unified design method that can result in optimal realizations directly from
time domain specifications. The main advantage of the unified design method is that
the computational complexity is much simpler than conventional designsmethods. In
Chapter IV, we have studied the structurai properties of SD M—-D digital filters, and
introduced the concept of characteristic filters. As a result, the relation between SD M
~D digital filters and 1-D digital filters become very clear, and the analysis and design
of SD M-D digital filters can be performed in exactly the same manner as those of 1
—D digital filters. In Chapter V, we have first studied the approximation of SD M-D
digital filters, and proposed a balanced approximation method for SD M-D digital filters.
Then, we have analyzed the quantization errors, (roundoff noise and coefficient quantization
errors) in SD M-D digital filters, and proposed a method for minimizing these errors.
Based on these results and those obtained in Chapter Il and IV, we have finally proposed
a unified design method of SD M-D digital filters.
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