fedn

el
(ol
o
o

£ 4 B # B E
5 % g T % @ +
v pwEEAH MAM63E 3 A 25HE

i

FNRSOBPUER FUHRNBSLEE 1R
HFFE, SRosh RIUARFRFELFDER
(BLHB) BRIFER
fL 3 X & H A General—Purpose Pipeline System for the

¥

Function—Level Programing Language
(BB EBBMARNA 7514 Y BAKICET 5H%E)
E 8 H E wmitk®#H® BH FA
RXEABEZETBR #HILAZHEE EH Foe HLRFHR AN ET
HibRFHE FO E— FLAFDESE N #E

m X N F# E K

Chapter 1 INTRODUCTION

There has been considerable interest in functional programming, which has great
possibility to enhance lucidity and maintainability of programs, and further, to increase
programmers’ productivity. Functioh—level programming language (FP) proposed by J.
Backus is one of purely functional languages. Even though functional programming has
great potential for relieving ”“software crisis”, there has been a major drawback that
functional programs run slowly on conventional von Neumann machines. '

. So far, aiming at realization of ideal function—level computing, many efforts have
been paid to find out non—von Neumann, parallel reduction machines which can execute
functional programs efficiently. From an architectural poinf of- view, mos% 6f the
functional language—based, parallel machines already proposed aim at developing fine—
grained parallelism in a rich MIMD architecture. On the other hand, today’s successful
supercomputers, in which the well—known pipeline architecture is from the cost—reducing
design technique, have mainly been developed in the area of numerical computations.

In this thesis, as another challenge to more cost—effective function—level computing,

the author tries to join the two quite different fields of computer architectures together:

- 143 —

the language—based, sophisticated parallel reduction machnes, and the traditional pipelined
supercomputers. The goal of this thesis is to establish..the systematic methods for
realizing a brand—new MISD machine based on the overlapping between the graph reduction
and the pipelined supercomputing. This will be achieved by means of answering the three
how’s: (1) how the function applications dealing with list—structured data are executed in
a pipeline (to be developed in Chapter 2),.(2) how the reducible function applications are
detected and issued to the pipeline (to be developed in Chapter 3), and ¢3) how
the efficiency of pipelining function—level programs can be improved (to be developed in
Chapter 4).

Chapter 2 PIPELINING RECURSIVE FUNCTION

Pipelining can be characterized in terms of linearity. Therefore, there exists a
natural applicability of the pipeline processing to linear recursive functions:-'structural
primitive functions dealing with list—structured data (objects) in FP. A linear recursion
generally consists of two temporally successive: ”"unfolding phase” in which an object is
analyzed in forward direction by both selection and decisicn operations, and ” folding
phase ” in which a modified version is synthesized in backward direction by construct
operations.

The most natural way to execute the linear recursive functions through a pipeline
is to assign each instance of recursion to a different segment of the pipeline. " In-‘this
case, however, both unfolding and folding of linear recursion must be achieved concurrently,
from the general limitation of a pipeline: one—way single data stream. This requirement
means that the folding should be done in each segment of the pipeline, while executing

the unfolding at the same level of recursion.

SMm

o o -
e == -

SM1 iSM2: eee

C e
F B
C. R-NET l
N T T3

)PE]{)PEZ{)--o (\)Pl—:nl;-

Cu

Fig.1 List processing—oriented general—purpose pipeline.

— 144 -

Fig 1 shows a general architecture of a list processing-oriented:general-purpose pipeline.
Here, the SM means a structure memory composed of independent banks of heap -memory.
List-structured data are carefully allocated into the memory banks. Then the PE is an
autonomous processing element. The PEs are connected linearly, and construct an
asynchronous linear pipeline. The functions of each PE are assigned dynamiclly, which results
in a general—purpose pipeline. Moreover, each of PEs is also connected to an arbitrary
memdry bank through the interconnection networks. According to the data processing
scheme, this pipeline can be Ijegarded as being in an MISD architecture.

At the implementation level, the folding in parallel with unfolding is realized by
using the notion of “pipeline cons” which stems from the “lenient cons” to achieve the
stream parallelism in dataflow computers. The notion of the. pipeline.eons is very
essential to the pipeline execution of recursive function dealing with list—structured data.
To make parallelism in creating one list—cell and in writing one pointer-into-the-car
field of the cell and the other pointer the cdr field, a well-known “cons” operation can
be basically decomposed into three more primitive operations: "get—cell”, " write—car”,
and "write—cdr”. In the pipeline cons, while both get—cell and write—car to the newly
generated cell are executed at the same time, the write—cdr to the cell is executed later
by another pipeline cons. Therefore, in a list construction using the pipeline cons, a list

structure is always built from the head toward the tail of the list.

Chapter 3 CONTROL SCHEME OF REDUCTION

To deal with more complex structures in the pipeline architecture, a graph reduction
technique is introduced into the function-level computing. Thatis, based on a view point that
any kind of recursion is the combinaﬁon of linear one,the pipeline is regarded as a graph
reducer dedicated to linear recursions. The formal meanings of FP, on the other hand,
are given by the pure reduction system, called FFP. In FFP, all the functional forms,
which play crucial roles in the function—level programming, are represented as sequences
of objects through the rule of "metacomposition”. Therefore, to relate the functional
forms to their pipeline processing through the notion of the metacomposition rule, the
whole FP programs are represented as list—structures, like a style of objects. —

Here, two kinds of list—cells .are employed to construct graph structures
representing FP programs with objects. One is an ”object cell” constructing a sequence
of objects or functional forms, while the other is an "application cell” indicating the
“function application”. Program evaluation is carried out by reconstructing the graph
structure according to the evaluation rules, towards a constant expession without appli-

cation cells.

—145—

Based on the data:dependencies among the newly generated application cells, functional
forms can be classified into two types: a serial type and a parallel type. In the case
of reduction of the serial type functional form, the firstly generated application cel is
the root which needs all evaluated results of the other application cells generated
afterword, because of the pipeline execution of linear recursive functions. Hence, the
addresses of newly generated application cells must be pushed into the LIFO stack
(reduction stack) one after another-until-the first step of reduction is completed.

. In the case of the parallel type, on the other hand, newly generated application
cells have no data dependencies among them. Therefore, the function applications
represented by them can be executed immediately in the reduction engine. It is still
necessary, however, to allocate new reduction stacks each time, in preparation for the
next step of reductions. Consequently, the application cell management by the multiple
reduction stacks linked in a tree structure can be very suitable for pipeline execution of
reduction of all functional forms. Moreover, by using this control schem, the semantics
of function—level computing has been naturally extended to include not only eager but

also lazy evaluations.

Chapter 4 IMPLEMENTATION AND EVALUATION

The degree of the concurrency within a task (redex) depends on the granularity of
each instance assigned to a different segment, as well as the depth of recursion. Ther-
fore, it is required to obtain as much speedup in the pipeline as possible that each
segment is assigned sufficient processes enough to fill up the pipeline, in addition to that
the pipdine consists of many segments.

On the other hand, the latency for accessing structure memory will bring heavy
degradation of throughput of pipelined reduction engine. The best method for solving
the latency problem is time multiplexing of segments of the pipeline. That is, seme
tasks are issued to the pipeline concurrently, and whenever a memory access is required ,
the segment switches to the process of another ready task.

Hiding latency in this way requires high—level parallelism in a program. In FP
programs, parallelism among tasks is dominated by the parallel functional forms:”eager
composition”, "construction” , and “"apply—to—all”. The “eager composition” is- for AND
(stream) paralldism, and the rest for OR parallelism. The degrees of the AND/OR
parallelism are characterized by the number of parallel tasks and the granularity of
those.

In addition to the implementation of a prototype baséd on a .tightly coupled

mul ti—-microprocessor system, the total performance of the reduction machine is evaluated

— 146 —

via simulations on the register transfer level.

In general, OR parallelism is relatively easy to exploit in MIMD: machines. As-for
the pipelined reduction machine to be an MIMD machines. As for the-pipelined reduction
machine to be an MISD architecture, however, the granularity of each OR parallel
component strongly dominates the improvement of processing time. Therefore, to what
extent each task in a given application program fills up the pipeline is a major and
critical issue in the performance improvement of this machine.

In the case of AND parallelism, on the other hand, the overhead from the sequential
task generation is hidden by the stream parallelism among.the tasks. But, a larger
object to be a stream will bring about the speedup saturation more easily. Because tasks
with larger objects generate more requests for accessing the structure memory, which
results in a longer waiting queue for the memory service. That is, too much parallelism
causes the structure memory to be saturated, and prolongs the total processing time.
Therefore, to achieve the maximum improvement on speedup in the system, we must keep
the structure memory not to be saturated with so many memory access requests. It can
be said that the power source of the pipelined reduction engine is the parallelism inherent
in a task, and the parallelism among tasks, on the other hand, works as “lubrication oil”

for the system.

Chapter 5 CONCLUSIONS

In conclusion, the MISD reduction machine based on the general—purpose pipeline
is one of the most promising candidates for cost—effective function—level computing
featured by crude granularity of parallelism.

Although the linear expansion of recursions is the principle of pipelining recursive
functions, the general algorithm to generate a set of processes being carried out within
the segments has not been brought to view yet. Like a conventional vector processors,
an “intelligent compiler” will be needed to detect concurrency from the source FP
programs given and to produce as large—grained primitive functions as possible.

Furthermore, a load balancing mechanism will make it possible that many inevitable
fine—grained primitive functions unable to expand are processed throughout the pipeline
segments efficiently. The intelligent compiler and dynamic load balancing will be the

keys to further viability of the reduction machine based on a general —purpose pipeline.

~ 147 -

® A B B o E g

V7 by o TOEEWR FEWFIMBOTERED S S, BEMEEEFP 5] Backus T & D 1R
RBINTVEH, 2070/ 53 Y/EEAMRLSNET BHDOHERT -+ 77 F + BLE
ThHd, 2D1DON—FITEIELLT, REM7 514 yBRESH, BESKIKTHS,
LHL, FPUHERLLEFTESNBZDICH, MO >HBEA A KERATAHEET VT —+
FIF Ly DEANPBETHD, COMBIROVTRROFETHLTLOTARBD L - TV
Vo B, HEEFVOBRET—F77F + ORBLEBLHRRETH 5, EEIR, TOAK
HHLT, FPRLBT 0S5 sDNBETILSIBE, WH/ Y177 1 VI5F P DR %5 BN
TEA7 7 7B E LTEMETE 2 T L ABHRN, RUVA FLBROMEL LBV, KK
Xk, ZNoDHERREZLEDIHDT, EX5EBEL DS,

BIEIFHRTH %0 ‘ .

B2ETH, FPOBRHAZRITOIICYY, ZoSEOR >ERIMELEBICHE L, th%tH
WTHBHBIMOBRICAA 1 77 4 YIBAREERATER L LER LTV 3, fic, BEE
IR — RO BRI O ER I EDOMEL 6, HEERVEKOMEL 1TS54
THRLITAB T EAERL TS,

EI3ETE, FPOEMLTD V5 A% B4 2 BAOETHEMBERL TS, F—5 &L
TOZX TV +ERIKFP 705 6DBEET 7 7TREL, ThEHEETVELTT 57
BNIC L BNBEIT-> T %, 77 7K, 77 7BNEKA 2 L8 2ETHRIHRNE
BOBH%E/ X4 754 Y ETIT->T03, ZOFRE, FP7u s 5 a0RTENB/ 1 T514 v
TIABLERRTHOT, BRUEHNRATD %,

BAER S 7 7 EOBBROMEETFMTH 5, T CTHNEOHE cxtitd 3 BHBEEOEROE
XENATIAVDRTF—VHEBELLRBEEE, BEEBRRENLZTEEBOTVS, s,
BRHEOMNEOWIIEIL LD, HENISKHETZCLEERLTVWS, chit, EAE FRAQ
BRRTH 5,

BES5ERERTH S,

DEET BeRRXid, BERSEFP L3 705 0% 75 7BHOFELANT, WA
4754 v ETCRBTAHDOHFERCOVTHEL, BEEEET 2S5 LORTOHEETH
KEDLHEXZE5ALbOT, ERILFELEST2LH8D0E L0,

£oT, KRXIFTEELORMBXE LTAKREED B,

~148 —

