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In the research of computaional complexity, Turing machine and Boolean circuits are usually
used as computation model. The combinational Boolean circuit model addresses both the size
and time cost. Circuit depth provides the “ time” measure and the size of circuits is clearly a
reflection of the hardware costs. The correspondence between Boolean circuits and Turing
machines is known as: Turing machine time is polynomially related to circuit size, and likewise
Turing machine space to circuit depth. Since circuit model is very simple and easy to understand,
it is well used in theoretic research of computation recently. Many computation problems can
be reduced to the problem of constructing Boolean circuits and formulae for certain Boolean
functions. In this dissertation, we study two important areas of computational complexity
based on the Boolean circuit model. These two areas are one about the amplification of Boole-
an functions and one about learning Boolean functions. The amplification of Boolean functio-
ns specifies an important property of Boolean functions. There is a new approach of construc-
ting Boolean circuits and formulae for Boolean functions based on the amplification. Learnin

g Boolean functions is a way to construct Boolean circuits and formulae for Boolean functions



in the absence of explicit definition of those functions. Many important computation problems
are expected to be solved in these two areas.

This dissertation is organized as follows. Chapter 1 is the introduction.

Chapter 2 gives a review of the research of the amplification of Boolean functions. The
study of the amplification of Boolean functions originates from the reliable design of relay
contact networks with unreliable contacts. It is then used in constructing Boolean circuits and
formulae for certain Boolean functions. Using the amplification method, L. Valiant shows the
best known upper bound of the size of monotone Boolean formulae that compute Boolean
majority functions. The amplification of Boolean functions itself is also well studied for its
own sake. To describe the results about the amplification of Boolean functions, we need a few

of definitions. Let f be a Boolean function. The amplification function Af of f is defined as
Ap(P)=Pr[f(xq,...xp)=11],

where X 1,.., X are independent random Boolean variables with Pr[ ;=1 ]J=p for 1 <i<a.
f is said to amplify (p, q) to (p’, q'), if Af(p)<p’and Af(q)>q’. In the followings, we will
often identify a Boolean formula with the Boolean function it computes. L. Valiant obtains
monotone Boolean formulae of size 0 ((m,” ¢)**) that amplify (p, p+ 1./m) to(p’, p’+ 1.7¢).
R. Boppana proves that Valiant’s upper bound is an optimal one. In Valiant’s result, there is
no restriction on the depth of formulae. M. Ajtai and M. Ben—Or show that (p,p+ 1./ m)
can be amplified to (p’,p’+ 1 /c) by Boolean circuits of depth d and size EXP(O(d(m,"c)?*)).

In Chapter 3, we estimate the amount of the amplification of monotone read once formulae
of depth d and alternative layers of AND and OR, which we denote X g and II 4 depending the
type of gate of the top layer. Using the results, we derive an upper bound of size of monotone
Boolean formulae that compute Boolean threshold functions. In this chapter, the fan—ins of
the gates in the same layer of the formulae are assumed to be the same. We prove that (p, p+
1./m) can be amplified to (p’, p’+ 1 /'¢) by formulae in £ g UIl{§ of size EXP(O((d— 1 )(m
/eyt -13) We also prove that if the formulae in £ q Ul 4 amplify (p,p+ 1 /m) to (p’, p’
+ 1 ,/¢) then the size of the formulae is EXP(Q ((d— 1 )(m./¢)'7“"")). Our upper bound
and lower bound are tight to a constant factor in the exponent. As a consequence of these‘bo-
unds, we obtain that if a formulae in £ 4 Ul of size polynomial in m ¢ amplifies (p,p+ 1
/m) to(p’,p’+ 1./¢c) then d = ©(og(m.¢c)). Applying the upper bound, we prove that there
are monotone formulae of depth d+3 and size polynomial in n that compute Boolean threshold
functions thy for 1<t g(logn)d. R. Boppana proves that for t = Q(logn) the depth of mo-
notone formulae of size polynomial in n that compute Boolean threshold functions thy is at
least d+1. Our upper bound on the depth of the formulae given above is very closed to the

lower bound on the depth given by Boppana. On the other hand, our lower bound of the size of



formulae given above shows the limitation of the amplification method for constructing
certain Boolean circuits and formulas.

In Chapter 4, we discuss the complexity for concept learning based on the learning model
given by L. Valiant. In this model, the objects to be learned are Boolean functions expressed
by Boolean formulae. The learning model consists of learning protocol and learning algorithm.
The former specifies the manner in which information about the function to be learned is obt-
ained from outside and the latter is the mechanism by which a formula to approximate the fun-
ction to be learned is deduced. There are two types of learning protocols. The first type provi-
des information about the function to be learned through examples of the form (v,f(v)), v in
{0, 117, generated according to some probability distribution D on {0, 1}™. The second type
gives the value f (v) when the learning algorithm asks for any v in {0, 1}®. A class F of Bo-
olean formulacissaidtobep(+, *, *)learning time q(*, *, *,) communication time lea-
rnable by a class of Boolean formulae G, if there exists an learning algorithm A such that for
any f in F, any probability distribution D on {0, 1}1, and any h>> 1 (error parameter), A hal-
ts in p(n, size(f), h) time, calls q(n, size(f), h) times for learning protocols, and outputs a for-
mula g in G with probability at least 1 — 1 /h such that

z D(V)<1/h
fAg

v E

where f Ag denotes the symmetric difference of {v | f(v)=1} and {v, g(v)=1}. It is noted
that the communication time is always less than the learning time.

In Chapter 5, we give upper bounds and lower bounds of the learning time and the communi-
cation time for learning certain classes of Boolean formulae. Blumer and others proved that
the communication time for learning a class of Boolean formulae is bounded below by the
Vapnik —Chervonenkis dimension, a simple combinatorial parameter for classes of Boolean
formulae. Let t—DNF and TH denote the class of disjunctive normal form formulae with at
most t monomials and the class of the formulae of threshold functions, and let t—MDNF
denote the class of monotone formulae in t—DNF. By estimating the Vapnik — Chervonenkis
dimensions for these classes, we prove the lower bounds on communication time for learning
t—DNF, t—MDNF, and TH are Q(tn), (tn), and Q(n), respectively. We also prove that t—
MDNF is O(tn) learning time learnable when both two types of learning protocols are used, t—
MDNF is O(n**!) learning time O(n') communication time learnable when only the second ty
pe of learning protocol is used, and TH is O(n) communication time Poly(n) learning time le
arnable when the second type of learning protocol is used.

In Chapter 6, we discuss the learnibility of certain classes of Boolean formulae when only
the first type of learning protocol can be used. It is proved by L. Valiant and others that some

classes of Boolean formulae are polynomial learning time learnable and on the assumption



that RP#NP the others are not. In the definition of learnibility, it is assumed that examples
(v,f(v)) are drawn according to an unknown arbitrary probability distribution. This assump-
tion may be too strong in some practical situations. For classes of Boolean functions for which
poly time learing algorithms have not been found, it is reasonable to find feasible algorithms
for learning those classes on the assumption that examples are drawn from some known natu-
ral probability distribution. We prove that TH is Polynomial learning time learnable when
examples are drawn according to the uniform distribution. This contrasts with the fact that
TH is not polynomial learning time learnable unless RP=NP. We also proved that for fixed t
t—MDNF is polynomial learning time learnable by the class of monotone disjunctive normal
form formulae when the examples are drawn according to uniform distribution. It is noted
that t—MDNF is not polynomial learning time learnable unless RP=NP.

Chapter 7 gives a summery of this dissertation.
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