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Failure of solids has been extensively investigated to characterize its mechanism. When solids undergo
failure, they display characteristic geometrical patterns. For instance, steel specimens subjected to tensile
loading present necking; shear bands are formed in the triaxial compression specimens of soils until reaching
final failure; an initially straight column subjected to large axial compressijon displays a characteristic buckling
mode.

Since patterns formed prior to the failure vary with materials, the mechanism of the generation of the
patterns has been studied individually for particular materials and for particular boundaries, in various fields of
mechanics. However, since the failure pattern itself is fairly dependent on the boundaries of the system, the
study of the failure pattern of a particular system often loses the generality. Moreover, characteristic
geometrical deformation often develops prior to the formation of the final failure pattern. Although such
deformation is not discernible at first, it grows and localizes by changing its appearance recursively and finally
induces such final pattern and failure. For metal, the dislocations increase and move to accumulate at the
boundary, and, as a result, cause the localization of the deformation. For soil, fracture and re-formation of the
soil structure form shear bands.

Periodic and symmetric patterns, such as the diamond pattern, are observed when the specimens are
homogeneous. The echelon mode can be found in various materials such as soils, rocks and metals. The cross-
checker pattern is often found in metals. Rocks often display characteristic geometrical patterns, such as joint
or texture. For instance, basalt shows regularly-arranged hexagonal joint and another joint perpendicular to the
hexagonal one. This joint structure was generated by the Benard convection and by the shrinkage during the
cooling. Furthermore, minerals such as calcite that construct rocks have joints due to its composition of crystal.

The triaxial compression specimen of sand sometimes shows the diamond pattern that is known as a typical
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buckling pattern of shell. Patterns are observed not only in solids but also in fluids. The Taylor--Couette flow
in a hollow cylinder, which is a rotating annular of fluids, displays various wave patterns. The convective
motion of fluid, the so-called Benard problem, displays a regularly arrayed hexagonal cellular structure.
Moreover, the scale of the patterns varies broadly from the size of atoms to the size of the earth, or even of the
galaxy. The Zebra patterns on the ocean floors serve as an example of a pattern of thousand-kilometer scale.
Furthermore, patterns govern their final failure, regardless of the size of deformation.

For its importance and universality, pattern formation has been studied intensively in experimental
mechanics, theoretical and applied mechanics, applied mathematics, and so on.

In applied mechanics, the study of the uniqueness of solution of elastic-plastic solids is one of the origins
of the study of instability of materials and pattern formation. As for this approach, numerical simulations of
bifurcation and post bifurcation behavior are reported considerably. On the contrary, parametric experimental
studies have been done for some particular specimens under various boundaries. In computational mechanics,
finite element method is mainly employed for the simulation and interpretation of preceding experiment.

The aforementioned numerical approach and experimental one focus on the simulation and quantitative
prediction of a particular phenomenon occurring in a particular system and on the constitutive characteristics
of a particular material. On the confrary, geometrical patterns have also been investigated in other fields of
research. At the expense of beauty and orderliness, uniform systems often display complex physical behavior
that is called the “symmetry-breaking” bifurcation, or, in other words, the “pattern selection”. In fluid
mechanics and nonlinear mathematics, it is well known that such patterns are selected through recursive
bifurcation which “breaks” symmetry. For instance, wave patterns with various kinds of symmetries in the
Taylor-Couette flow appear as a result of pattern selection. Moreover, in view of recent developments of
group-theoretic bifurcation theory in nonlinear mathematics, rules of symmetry-breaking bifurcation can be
obtained in a systematic manner. The group-theoretic bifurcation theory, thus, aims at qualitative investigation
for pattern formation of general symmetric systems. For another approach for systematic study of patterns, we
merely refer to fractal which address self-similarity and scale invariance.

With resort to the analogy between the patterns in flows and in materials, bifurcation has come to be
acknowledged to be the underlying mechanism to form patterns of materials, such as cracks and shear zones.
These studies are helpful in the qualitative prediction, classification and interpretation of results of
experiments, while FEM analysis, for example, gives us quantitative information. Furthermore, effectively
combined with experiment and numerical simulation, the group-theoretic bifurcation theory can present
perspective on the pattern forming deformation and failure.

Yet, studies of pattern formation based on the group-theoretic bifurcation theory have been restricted to
plane problems up to now. This is partly because that it is not easy indeed to measure the property, such as
displacement, strain, temperature, velocity of elastic wave and so on in a three-dimensional domain. In any
case, conventional studies of pattern formation cannot explain three-dimensional patterns. We aim, in this
thesis, at investigation of .the bifurcation hierarchy and patterns generated by bifurcation of a three-
dimensional domain by means of the group-theoretic bifurcation theory. Since the group theory has been
generally employed for the description of the symmetry of crystal lattice, it is destined to be applicable to the
description of the symmetry appearing in materials. Furthermore, the validity of the mechanism of pattern

formation derived in this manner is assessed by the following two numerical analyses. One is a three-
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dimensional pattern simulation, which is the extension of the image simulation of a two-dimensional uniform
domain, for the process of evolution of joint structure of rocks. The other is the multi-scale modeling of
material instability and pattern formation with non-convex homogenization.

In this context, instability and pattern formation are discussed from three standpoints and this thesis is
organized as follows.

In Chapter 2, first, assumption and limitation of this thesis are clarified. Then notions of the group
equivariance and of the group-theoretic bifurcation analysis of a uniform rectangular domain are summarized.

To better express the local uniformity at the sacrifice of the consistency with the boundary conditions, the
infinite-periodic-domain approximation, which assumes that the domain is periodically extended in each of the
three directions, is employed. Since real material properties manifest itself sufficiently away from the
boundaries and usually form some characteristic patterns, the use of periodic boundaries is essential in the
simulation of true material properties. -

The underlying mechanism of the pattern formation for the rectangular parallelepiped uniform domain
has been clarified by extending the preexisting group-theoretic bifurcation theory for a uniform rectangular
dornain. The proper modeling of the symmetry of the rectangular parallelepiped uniform domain as O(2) x
O(2) x O(2)-invariant system has led to the successful simulation of patterns of interest, including: oblique
layered pattern, column pattern and diamond pattern. It is vital in the study of pattern formation of (three-
dimensional) uniform materials to exploit translational symmetries with the use of the periodic boundaries and
to have the knowledge on the bifurcation of an O(2) x O(2) x O(2)-invariant system presented in this chapter.
This bifurcation analysis literally exhausts all possible deformation patterns formed in real (three-dimensional)
uniform materials.

The characterization of the real three-dimensional phenomena by two-dimensional ones must conserve
the symmetry with respect to another direction. Such characterization ignores bifurcation in the excluded
direction. The above conclusion is also accepted by interpretation that conventional two-dimensional patterns
are regarded as the projection of the three-dimensional patterns investigated in this chapter. Therefore, the
three-dimensional model discussed here has the essential necessity and the primary importance to analyze the
real pattern observed in nature.

In Chapter 3, a systematic procedure for the image simulation of progress of deformation patterns of
uniform materials is proposed by highlighting recursive symmetry-breaking bifurcation as the fundamental
mechanism to generate patterns. We here focus on a rectangular domain with periodic boundaries. It should be
emphasized again that the use of periodic boundaries is essential in the simulation of true material properties.

Rules of the recursive bifurcation, which are expressed in terms of a hierarchy of subgroups labeling the
symmetries of deformation patterns, are constructed by extending the preexisting group-theoretic studies for
this domain. The use of periodic boundaries has led to the emergence of the subgroups labeling stripe and
echelon symmetries that disappear if these boundaries are not used. These rules of bifurcation are interpreted
in terms of the double Fourier series to prepare for image analysis of deformations in a rectangular domain.
The use of the Fourier series has physical necessity in that the direct bifurcation modes of uniform domains are
always harmonic and that periodic properties are better expressed in the frequency domain. Mode interference
with high frequencies after bifurcation is advanced as the mechanism of localization of deformations.

The procedure for image simulation is applied to a few uniform materials, including kaolin and steel
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specimens. The intensity of the digital images of the deformation patterns of these specimens in the frequency
domain is successfully classified with the use of the rules of recursive bifurcation. As a result of these, the
transient process of deformations, which was not discernible by the mere visual observations and was less
understood up to now, is identified based on a firm theoretical basis. The recursive bifurcation has thus been
acknowledged to be the underlying mechanism of pattern formation of uniform materials.

Image simulation is also extended to three-dimensional pattern simulation by exploiting the mechanism
clarified in Chapter 2. The procedure for pattern simulation developed in this manner is applied to the
idealized schematic model of the cleavage of calcite and of the columnar joint of basalt.

In Chapter 4, in contrast with the preceding mathematical discussion, we have originally developed a
characterization of the material instability by the microstructural instability for a concrete mechanical example
of material instability characterized by micro (or local) structural bifurcation. This approach gives an
innovative methodology for logical or deductive characterization of the material instability that is
conventionally modeled by only a sort of phenomenological or experimental way. This two-scale
characterization of material instability employs the theory of non-convex homogenization, which is an
extension of multi-scale homogenization method. The infinite-periodic-domain approximation employed in the
preceding chapters for expressing local uniformity is consistent with the periodicity that is required in the
homogenization method.

The main difficuities, for the multi-scale modeling implementing instability, are due to loss of convexity
of total potential energy and due to the determination of the pertinent representative volume element (RVE)
that contains multiple unit cells. The variational formulation is achieved with the help of I'-convergence theory
within the framework of the non-convex homogenization method, while the number of unit cells in an RVE,
which is mandatory in the construction of an appropriate RVE, is determined by the block-diagonalization
method of the group-theoretic bifurcation theory. The latter method enables us to identify the most critical
bifurcation mode that minimizes the total potential energy among all possible bifurcation patterns for an
assembly of arbitrary numbers of periodic microstructures. Thus, the number of unit cells to be employed in
the RVE for the micro-scale analysis of the derived two-scale boundary value problem can be determined. The
block-diagonalization method of the group-theoretic bifurcation theory plays a crucial role to overcome the
problem of the determination of micro-structural periodicity that hitherto has remained open. In this context,
we also emphasize the importance of the consideration of the pattern formation (selection) from the standpoint
of the symmetry-breaking bifurcation.

By virtue of this two-scale modeling, representative numerical examples for a cellular solid show the
feasibility of the proposed method and illustrate the material instability at a macroscopic point that is induced

by the geometrical instability in a microscale.
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