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The analyses of large plastic deformations, such as found in polymer processing
and metal forming operations are the principal concern of this dissertation. = Many
studies have been performed to develop methods for analyzing the large plastic defor-
mations. With the advent of large digital computers, the finite element method has
now become the most widely used technique. In order to analyze such deformations by
the finite element method, the actual mechanical behavior of the material must often
be simplified. For steady-state flows, purely viscous models have been generally
used. However, when these materials are subjected to certain mechanical actions,
they can behave quite differently from ordinary viscous fluids: for example, liquid
climbing up a rotating rod and the swelling of extruded fluid from a die. In this
case, it is the elastic property of the fluid which appears to be the significant contri-
buting factor in these behavior.

In order to accurately predict conditions of the final product and also in order

to properly design the processing equipments for polymer processing and metal forming
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operations, the equations governing the flow of a viscous fluid and those governing the
displacement of purely elastic solid are combined to describe the steady—state flow of
a visco—elastic fluid. As the visco—elastic model, a Maxwell fluid which is the simpl-
est spring—dashpot mechanical model is used here, whose total strainrates, €T, can be

expressed as
ET = gv + ge

where ¢v and ¢° are the viscous and elastic strain-rates respectively.

When the materials are described as fluids in stead of solids, we most often use
the Eulerian method of description(spatial or fixed coordinate description) rather than
the Lagrangian (material) description. In this case, ¢é” may be expressed as a function
of stress only, but spatial derivatives of stress must be considered for evaluating e°.
Due to the appearance of the derivative of stress, we are not able to eliminate the
stress from the governing equations. For this reason, the produced governing equations
have been intractable until recently.

The research described here was directed toward developing methods for the analy-
sis of steady—state visco—elastic flows. The dissertation consists of five chapters.
Chapter I is the introduction. In Chapter II, the proper specification of the boundary
conditions and the development of a firﬁte element algorithm for the incorporation of
this specification into an analysis of visco—elastic flow are described. Detailed studies
of the effect of boundary conditions and elastic strain—rates on a purely radial flow
problem are shown, and a- new efficienf mixed algorithm of the finite element method
which decouples the constitutive and continuity equations from the constitutive equation

is also presented in this chapter. Figure 1 illustrates the pure radial flow problem.

Fig.1. Radial flow problem
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An example of the effect of boundary conditions obtained by the finite difference method

is shown in Figure 2.
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Fig.2. Effect of boundary condition{(u,) on radial stress
distribution. Units of stress=G.

Chapter I describes the least—square type of the Petrov—Galerkin’s method, which
is based on the above algorithm. It is indicated that this improved version of the finite
element method can be successfully applied to the higher elastic response problems, and
eliminate spurious oscillations in pressure and stress fields. As the applicability of the
two dimensional program, steady—state rolling of visco—elastic slabs is analyzed and the
results are compared with those of the Newtonian fluid flow. Figure 3 shows the geo-
metry used for the analysis. Elastic strain effects on pressure during steady—state visco-

elastic elabs are illustrated in Figure 4.
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Fig. 3. Rolling of an visco—elastic slab
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Fig.4. Effect of elastic strains on pressure along the
centerline. Units of pressure= x£.

One of the most important tasks in the finite element method is to solve a large
set of linear equations. When a large complex geometry is under consideration, these
equations require so large storage area and a large amount of computer time that we
are not able to handle it within an in—core storage area even if the in—core skyline
method is' employed. An efficient and cost effective out—of—core solution technigue,
frontal—skyline method, is described in chapter IV.  Although the method is incorporated
into the two—dimensional visco—elastic program, a simple nonlinear. Poisson’s equation is
solved with this method for an illustrative purpose. The efficiency of this scheme is
compared with that of conventional band scheme. The finite element mesh shown in
Figure 5 is used in order to demonstrate the method. In this example, it is assumed

that only one variable associated with each node and that the maximum available storage
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Fig. 5. Example problem for Frontal—Skyliné method.
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for the stiffness matrix is 800. Figure 6 shows the profiles of three tape segments

obtained with the frontal—skyline method.

Tape | Tape 2 Tape 3

Fig. 6. Skyline storage for all three segménts

Chapter V describes concluding remarks. It gives the summary of Chapters I,III
and IV,

Throughout this research, the Jaumann derivative of stress was considered.
Although this derivative of stress represents a typical visco—elastic fluid model, there
are many other types of stress derivatives representing the visco—elastic fluid, i.e.,
upper and lower derivatives of stress. The finite element method algorithm developed
here can easily handle such fluid models with minor changes cf the program. It requires
lesle‘PU time and fewer memory requirements for analyzing the visco—elastic fluid than
the. other algorithm. Furthermore, with the frontal-skyline method, almost infinitely
large two—dimensional problems can be analyzed.

It is author’s belief that the study described in this research will be very useful
for bolymer processing and metal forming industries in order to improve their processing

or forming conditions and to improve the properties of the final product.
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