T N e @O0

K HoH EH E K

# 5 ¥ fr gt (T

MR EGEHAA FK2143A825H

ARG ORMER  FBRIE 4 &5 1718

PSR, HROAH FICRFERER AR (M) T TP ER

% L & X A B Study of High-Order Unstructured Grid Method for Aerodynamic
Simulation Using Spectral Volume Discretization (AX7%7 k<)l
H ) 2 — ABEBURITE D < S RbS B EHE T2 I RRAMEDORZ)

78 B B HibKFER B AT

w X EAEETBR A EILRKFER B BN fEERFEEER B o

RALRFEEIR KHk X

am XN X B EF

The modern computational fluid dynamics (CFD) methods can easily consider various complicated geometries
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such as complete aircraft configuration even with high-lift-devices (HLD) fully deployed by using unstructured
grids. Unstructured grid methods have offered flexible grid generation for 3D complicated geometries, and extend
the applicability of CFD in real aircraft design cycles. Despite the progress made in CFD, there are still many
practical problems for which reliable prediction with a high level of sustained accuracy is difficult. Vortical flow
fields are especially challenging even for latest CFD solvers. One numerical issue has been considered as critical
for the conventional unstructured grid solvers in practical use that the spatial accuracy of the commonly used
finite volume method remains at best second order even in smooth regions. It 1s well recognized that low-order
numerical methods require extremely fine grid resolution to preserve the vortical flow structures due to excessive
numerical diffusion inherent to the numerical methods. In order to resolve and preserve important flow features
without intensive computational efforts, low dissipative high-order methods are required. The severe resolution

requirements in the use of advanced turbulence model such as detached eddy simulation (DES) and large eddy
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simulation (LES) could be also alleviated by the
possible application of high-order numerical methods.

In conventional finite volume method for
unstructured grids, high-order reconstruction of

dependent variable is attempted by extending the

stencil to nearby cells. Because unstructured grid

Liner SV Quadratic SV
generally lacks smoothness, the reconstructed Figure 1 Partitions in a tetrahedral SV (Linear: pl,
Quadratic: p2).
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dependent variables are sensitive to local grid quality, and are usually less accurate than what is eXpected. Ry,
this reason, achieving the formal order of accuracy is never an easy matter for unstructured grid methedg
Recently, new high-order unstructured grid methods such as discontinuous Galerkin (DG) method, Spectry]
volume (SV) method and spectral difference (SD) method have attracted attention. As an important commey
feature, these methods introduce degrees of freedom within each element for high-order approximation to the
solution and are expected to achieve the formal order of accuracy even on unstructured grids. Due to itg locz]
character, these methods are very suitable for local Ajp adaptation techniques and are highly parallelizable.

Despite the advantages and capabilities of the new trend of high-order unstructured grid methods mentioneq
above, these methods are not yet mature and current implementations are subject to strong limitations for its
applications to large scale industrial problems. In this study, we aim at overcoming the existing limitations ang
shortcomings of higher-order unstructured methods and explore the potential for robust and efficient applications
in the aeronautical industry. In order to develop a high-order unstructured grid method for aerodynamic
simulation, the SV method is employed as the discretization framework. The SV method belongs in a class of
Godunov-type finite volume method. Each spectral volume (SV), which is usually the same as the traditional
triangular or tetrahedral finite volume, is further subdivided into structured subcells called control volumes (CVg)
(Fig. 1. Cell-averaged data from these CVs provides the stencil for high-order polynomial reconstruction within
each SV.

One of the major shortcomings of high-order unstructured grid methods is the increasing of computational
costs. It is imperative to develop efficient implicit solution schemes for high-order methods, especially to obtain
steady state solutions. In this study, an efficient implicit lower-upper symmetric Gauss-Seidel (LU-SGS) solution

approach has been applied to the high order SV
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method for unstructured tetrahedral grids. The
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LU-SGS solver is preconditioned by the block element }%
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order of magnitude of speed-up relative to the CPU time [second]

Runge-Kutta explicit scheme for typical inviscid (Fig. ~ Figure 2 Comparisons of convergence histories
between the explicit and implicit schemes for the
2) and viscous problems. inviscid flow over a bump.
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Another key problem in high-order methods is the preservation of monotonicity across discontinuities such as
shock waves. In order to maintain the numerical stability near discontinuities, some data limiting process is
necessary. To preserve monotonicity across discontinuities without reducing the high-order accuracy in smooth
regions and deteriorating the convergence to steady states, an efficient and robust limiting approach has been
developed for the SV method. Distributions of state variables near discontinuity are limited as the weighted sum
of the element averaged value and unlimited reconstruction while invoking the monotonicity principle. For the
steady linear advection problem, the present limiter has shown substantial improvement in both the magnitude of
error and the order of accuracy compared with the conventional slope limiter. Then the developed method is tested
for typical transonic (Fig. 3) and supersonic problems by solving the Euler equations and improved accuracy and
convergence has been demonstrated.

For accurate prediction of aerodynamic performance in high-Reynolds number flows, we certainly need to
account for turbulent effects. In this study, an aerodynamics simulation code for the Reynolds averaged
Navier-Stokes (RANS) equations is developed using the SV method for unstructured tetrahedral meshes. The
turbulent viscosity is modeled by the Spallart-Allmaras (SA) one-equation model. The developed scheme is
validated for turbulent flow over a flat plate and assessed for transonic flowfield over a wing compared with
available CFD results. Then, the developed flow solver is applied to obtain complicated flows over high-lift devices.
By comparing obtained results with the corresponding experimental data and the available numerical results, the
capability to predict complicated flowfields has been favorably shown. And the applicability to large scale

industrial problems has been also indicated (Fig. 4).

Figure 3 Pressure coefficient ‘eont_ours on the Figure4 Total pressure ratio contours around a
ONERA-M6 wing using p2 approximation. civil transport model in high-lift configuration using
pl approximation.
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