Reverse Mathematics and
 Countable Algebraic Systems

A thesis presented by

Takashi SATO
to
The Mathematical Institute for the degree of Doctor of Science

Tohoku University
Sendai, Japan

November 2016

Abstract

This thesis is a contribution to the foundation of mathematics, especially to the Reverse Mathematics program, whose core question is "What are the appropriate axioms to prove each mathematical theorem?" The main targets of this thesis are countable algebraic systems and its theories in second order arithmetic. This thesis establishes that several theorems and the existence of objects of countable algebraic systems are equivalent to specific set existence axiomsarithmetical comprehension or weak König's lemma. These equivalences are proven within RCA_{0}, a subsystem of arithmetic mainly consisting of recursive comprehension and Σ_{1}^{0} induction. Weak König's lemma is a non-constructive (however, strictly weaker than arithmetical comprehension) set existence axiom which asserts that every infinite $0-1$ tree has a path.

In Chapter 3, we develop countable order theory in second order arithmetic. We prove within RCA_{0} that a countable version of the Abian-Brown least fixed point theorem, Davis' converse, Markowsky's converse, and arithmetical comprehension are pairwise equivalent. We also show that a countable version of the Knaster-Tarski fixed point theorem, the Tarski-Kantorovitch fixed point theorem, and the Bourbaki-Witt fixed point theorem are provable within RCA ${ }_{0}$.

In Chapter 4, we develop countable semigroup theory in second order arithmetic. We prove within RCA_{0} that Isbell's zig-zag theorem for countable monoids is equivalent to weak König's lemma, and that the existence of dominions is equivalent to arithmetical comprehension. We also show that the Rees theorem for countable semigroups is implied via arithmetical comprehension.

In Chapter 5, we develop countable group theory in second order arithmetic. We prove within RCA_{0} that the existence of essential closures (as known as neat hulls), normalizers, and abelianizers (as known as derived subgroups or commutator groups) are equivalent to arithmetical comprehension. We also show that characterizations of normalizers and ablianizer are equivalent to weak König's lemma.

In Chapter 6, we develop countable commutative ring theory or ideal theory in second order arithmetic. We show within RCA_{0} that the existence of the sum, the product, the quotient, and the radical of two ideals is equivalent to arithmetical comprehension. We also show that the Lasker-Noether primary ideal decomposition theorem for countable commutative rings is implied via arithmetical comprehension.

Acknowledgments

Yamazaki Takeshi sensei is who taught me "What is doing mathematics?"
I am in debt to all the member of Sendai Logic Group.
I appreciate comments from Prof. S. G. Simpson, Prof. K. Tanaka, and Asst. Prof. K. Yokoyama.
I thank all my family, friends, lovers, and possible gods whom I have met in my life.
Finally, this thesis is dedicated to two H's.

Contents

0 Introduction 1
1 Subsystems of Second Order Arithmetic 6
1.1 The System RCA A_{0} 6
1.2 The System ACA ${ }_{0}$ 8
1.3 The System $W_{K L}$ 9
1.4 Stronger Systems 10
2 Countable Sets, Relations, and Functions 11
2.1 Basic Notions 11
2.2 The Scheme of Axiom of Choice of Numbers 15
2.3 Extensions of Consistent Partial Functions 17
2.4 Ramsey Theorem 19
3 Countable Partially Ordered Sets (Posets) 21
3.1 Basic Notions 21
3.2 Fixed Point Theorems 24
3.3 Combinatorial Principles 30
4 Countable Semigroups and Monoids 32
4.1 Basic Notions 32
4.2 Dominions and Isbell's Zig-Zag Theorem 33
4.3 Rees Theorem 37
5 Countable Groups 39
5.1 Basic Notions 39
5.2 Neat Subgroups 42
5.3 Normalizers 47
5.4 Abelianizers (a. k. a. Derived Subgroups or Commutator Groups) 51
6 Countable Commutative Rings 56
6.1 Basic Notions 56
6.2 Reverse Ideal Theory 60
6.3 Polynomial Rings 66
6.4 Euclidean Domains and Principal Ideal Domains (PIDs) 70
6.5 Noetherian Rings 72
6.6 Other Topics 75

0 Introduction

Foundation of Mathematics

The naive and personal motivation for this research is to answer "What is mathematics?" How are mathematical activities justified? For example, we collectand sometimes even infinitely repeat collecting-infinite things to construct a set. But how?

Such questions are not ridiculous but philosophical. For practical reasons, some mathematicians at the beginning of the 20th century were forced to encounter such problems. The discovery of paradoxes such as Russell's paradox caused the foundational crisis of mathematics (cf. the explanation of [22]). A method taken at the time was, interestingly enough, very mathematical; they reconsidered mathematics itself as mathematical objects.

Mathematical language, mathematical statements, mathematical axioms, and logical rules were formalized and investigated mathematically; this idea led to proof theory. Simultaneously, recursion theory, model theory, and set theory arose by the need-metamathematics emerged.

A formal system is a formalization of (a part of) the playground of mathematics in which formalized mathematics is developed. ZFC (Zelmelo-Fraenkel set theory with axiom of choice), for example, is designed to develop the entire mathematics avoiding paradoxes. On the other hand, PA (first order Peano arithmetic) is a small formal system which is designed to develop arithmetic. Within PA, finite group theory etc. can be developed due to the expressive ability equipped by natural numbers (via a coding method, cf. [25]). However, if we hope to capture the systematic treatment of actual infinity in modern mathematics, the formal system must at the very least equip the language which can express sets of natural numbers as mathematical objects. Z_{2} (second order arithmetic) is a minimal formal system in the sense above. Axioms of Z_{2} consist of (i) basic axioms for order, addition, and multiplication, (ii) induction axiom, and (iii) comprehension axiom. The comprehension axiom asserts the existence of all sets definable in the language of second order arithmetic. The expressive ability of this minimal formal system is much richer than first order arithmetic. In fact, the bulk of modern mathematics can be developed within Z_{2} (cf. [3]). Moreover, a smaller subsystem of Z_{2} suffices to formalize and prove each individual theorem such as the mean value theorem, Isbell's zig-zag theorem, and so on. A subsystem of Z_{2} is obtained by restricting the scheme of induction or comprehension axiom to a smaller class of formulae.

Reverse Mathematics

It was Harvey Friedman who gave insight to Reverse Mathematics;
When the theorem is proved from the right axioms, the axioms can be proved from the theorem ([15]).
He provided a classification of mathematical theorems according to their logical strength. Five subsytems RCA, WKL, ACA, ATR, and $\Pi_{1}^{1}-C A$ (put in weak order, so-called "big five") with each characteristic axiom were presented. It is noteworthy that (i) it is only five that remarkably many theorems are classified into, (ii) theorems are collected from a wide range of mathematics, and (iii) each subsystem can be viewed as a formalization of a standpoint of mathematics. RCA is a system of recursive comprehension and corresponds to "computable mathematics". WKL is characterized by a non-constructive axiom weak König's lemma which asserts that "We may take a path of any infinite 0-1 tree." It may be seen as a formalization of Hilbert's formalism; in fact weak König's lemma is known to be equivalent to Gödel's completeness theorem, which asserts that every consistent theory has a model, see [22, page 124]. ACA is an acronym of arithmetical comprehension axiom and corresponds to Weyl's predicativism (cf. [73]). We could say that WKL and ATR have become to draw attention after discovering of Reverse Mathematics phenomenon.

Under the leadership of S. G. Simpson, Kazuyuki Tanaka, et al., Reverse Mathematics program have been proceeding since the 1980s (cf. [61] and [69]). This thesis is along this line of research. The main results of this thesis is that theorems of countable algebra or the existence of countable algebraic objects are equivalent to weak König's lemma or arithmetical comprehension over RCA ${ }_{0}$. (The subscript 0 means the restriction of induction.)

The main targets of this thesis are countable algebraic systems and their theories within second order arithmetic. Uncountable algebraic systems are not expressive within second order arithmetic in a straightforward way. It does not necessarily deny the possibility of development of uncountable mathematics within second order arithmetic. In fact, theories of real numbers or complete separable metric spaces are developed in a nice way since we can reduce their essential properties to those of countable objects. However, exploring distinction between countable and uncountable algebraic systems is by itself a big theme of study, so this thesis simply focuses on countable ones. It is nice to study closely how proofs can be simplified when we focus on countable ones. Reverse Mathematics has a proof theoretical side where we examine how an axiom eventually works in a proof, or seek a new or hidden proof. Like Ockham's razor, we omit unnecessary axioms to save costs. Reverse Mathematics of countable algebraic systems enjoys the spirit of Reverse Mathematics.

Reverse Mathematics today

The number of examples of Reverse Mathematics have been increasing today. However, the research of Reverse Mathematics should be not only quantitative but qualitative. What makes "big five" so important? Are "big five" really robust? Recently, variants on Ramsey theorem for pairs and some combinatorial principles turn out not to be classified into "big five" (cf. [29]). Discoveries of other similar examples in various area of mathematics may bring a big change in Reverse Mathematics program. Chapter 3 was originally motivated to seek an atypical example of Reverse Mathematics. Contrary to expectations, the research revealed that many fixed point theorems for countable posets are proven or equivalent to arithmetical comprehension within RCA_{0}. This result supports the predominance of "big five".
"Orthodox" Reverse Mathematics adopts a weak subsystem RCA A_{0}, in which induction axiom is restricted to Σ_{1}^{0} formulae, as a base theory. Recently, Reverse Mathematics program counts many branches beside "orthodox" one; (i) Simpson and Smith [63] proposed to weaken a base theory to $\mathrm{RCA}_{0}{ }^{*}$, in which induction axiom is restricted to Σ_{0}^{0} induction, and redo Reverse Mathematics even for Σ_{1}^{0} induction, (ii) Kohlenbach's group [42] runs Higer Order Reverse Mathematics, (iii) Ishihara's group [37] runs Constructive Reverse Mathematics, (iv) Cook and Nguyen's group [10] runs Bounded Reverse Mathematics.

Reverse Mathematics has been providing new viewpoints on recursion theory and set theory. Especially, it is closely related to recursive mathematics. A typical proof that the existence of some algebraic system implies arithmetical comprehension over $R C A_{0}$ is to recursively construct an appropriate algebraic system which encodes the image of an arbitrarily given function. According to this method, one can construct a computable algebraic system with a Σ_{1}^{0} complete accompanying system. Thus, one can obtain the corresponding result of recursive algebra from a result of this thesis.

Calibrating the level of abstraction

All theories and theorems investigated in this thesis were presented in the first half of the 20th century and now we refer them to standards. The following describes the current of algebra in the time.
"The recent expansion of algebra far beyond its former bounds is mainly due to the "abstract", "formal", or "axiomatic" school. This school has created a number of novel concepts, revealed hitherto unknown interrelations, and led to far-reaching results especially in the theory of fields and ideals, of groups, and hypercomplex numbers. The chief purpose of this book is to introduce the reader this whole world of concepts. Within the scope of these modern ideas classical results and methods will find their due place." (van der Warden "Modern Algebra" [72] 1930).

We think that rings of integers of algebraic number fields are more "abstract" objects than the ring of rational integers, that Noetherian rings are more "abstract" objects than rings of integers of algebraic number fields, and so on. The fundamental theorem of arithmetic (which asserts that every integer grater than 1 is a product of prime numbers) for the ring of rational integers is extended to the prime ideal decomposition theorem for rings of integers of algebraic number fields. The prime ideal decomposition theorem is furthermore extended to primary ideal decomposition theorem for Noetherian rings. Does a theorem become more "abstract" when generalized to more abstract objects? Reverse Mathematics presents a mathematical measure to calibrate how "abstract" a theorem is. It is expected that ideal decomposition theorems are equivalent to a more strong axiom than the fundamental theorem of arithmetic. (This research is ongoing, see Section 6.5.) Reverse Mathematics can capture the small history of mathematics.

Background of this thesis

The earliest literature on Reverse Mathematics of algebra is Friedman, Simpson, and Smith [16] (1983), in which they gave several equivalences between "big five" and theorems of field theory, ring theory, and group theory. (This paper has an addendum [17].) Simpson and Smith [63] (1986) and Hatzikiriakou [26] (1989) presented some Reverse Mathematics of algebra for RCA_{0} over $\mathrm{RCA} A_{0}{ }^{*}$. Simpson [60] showed that Hilbert basis theorem is equivalent over $R C A_{0}$ to the assertion that the ordinal number ω^{ω} is well ordered. This is a remarkable example of Reverse Mathematics which is not classified into any of "big five". Solomon $[65,66](1998,1999)$ presented Reverse Mathematics of ordered group theory. Hatzikiriakou [27] (2005) showed that the existence of integral closure of a countable ring is equivalent to arithmetical comprehension over $R C A_{0}$. In the same paper he developed some theory of prime ideals within WKL_{0}. Downey et al. [14] (2007) showed that the existence of nontrivial proper ideal of countable commutative ring which is not a field is equivalent to weak König's lemma over $R C A_{0}$. This is a generalization of the theorem in [16] that the existence of nontrivial proper prime ideal of a countable commutative ring is equivalent to weak König's lemma over RCA_{0}. They showed a similar result on countable vector spaces in [13]. Conidis [8, 9] $(2010,2012)$ developed theory of Artinian rings within $W K L_{0}$ and gave equivalences between some statements and $W_{K L}$. Frittaion and Marcone [18] (2013) presented some Reverse Mathematics of ordered theory.

Plan of this thesis

This thesis presents Reverse Mathematics of countable order theory, semigroup theory, group theory, and commutative ring theory.

In Chapter 1, after providing several axiom schemes, we give rigorous definitions of the system $R C A_{0}, W_{K} L_{0}, A C A_{0}$, and stronger systems. The reader who is already familiar with these popular subsystems of second order arithmetic may skip directly to any other chapters.

Chapter 2 discusses general properties of countable sets, relations, and functions from the standpoint of Reverse Mathematics. Results in this chapter will find application throughout the rest of the thesis. A part of the work in this chapter appears in [21].

In Chapter 3 we do Reverse Mathematics of order theoretic fixed point theorems. We show that RCA_{0} proves a countable version of the Knaster-Tarski fixed point theorem, the Tarski-Kantorovitch fixed point theorem, and the BourbakiWitt fixed point theorem. We also show within RCA_{0} that a countable version of the Abian-Brown least fixed point theorem, Davis' converse, Markowsky's converse, and arithmetical comprehension are pairwise equivalent. These converses state that some fixed point properties characterize the completeness of underlying spaces. Our results show that it is arithmetical comprehension that makes the notion of completeness work as an intended way to develop the countable fixed point theory.

In Chapter 4 we do Reverse Mathematics of countable semigroup theory. We show that Isbell's zig-zag theorem for countable monoids is equivalent to $W_{K L}$ over RCA_{0}. We note that Isbell's zig-zag theorem for countable monoids is of the form

$$
\begin{equation*}
(\forall x \in M)(\varphi(M, x) \leftrightarrow \psi(M, x)) \tag{দ}
\end{equation*}
$$

where M is any countable monoid, φ is Π_{1}^{0} and ψ is Σ_{1}^{1}. We present several analogous results in Chapter 5 and 6 . We also show that the existence of dominions is equivalent to $A C A_{0}$ over $R C A_{0}$ and that the Rees theorem is provable within ACA_{0}. A part of the work in this chapter appears in [54].

In Chapter 5 we do Reverse Mathematics of countable group theory. The work of Section 5.1 is strongly influenced by $[13,14]$. We show the analog of their results; over $R C A_{0}, W K L_{0}$ is equivalent to the assertion that every countable group which is not a cyclic group of prime order has a nontrivial proper subgroup. We also show that the existence of essential closures, normalizer, and abelianizer is respectively equivalent to ACA_{0} over $R C A_{0}$. Moreover, we show that characterizations for normalizers and abelianizers is respectively equivalent to $W K L_{0}$ over $R C A_{0}$. Note that these characterizations are of the form \bigsqcup.

In Chapter 6 we do Reverse Mathematics of countable commutative ring theory or ideal theory. We show that the existence of the sum, the product, the quotient, the radical of given two ideals is equivalent to $A C A_{0}$ over $R C A_{0}$. We also see that a characterization of nilradicals, which is again of the form \emptyset, is equivalent to WKL_{0} over RCA_{0}. Finally, the theory of commutative rings with ascending chain conditions is developed within $A C A_{0}$.

1 Subsystems of Second Order Arithmetic

In this chapter we briefly summarize the characters and properties of subsystems of second order arithmetic. We provide some axiom schemes and give rigorous definitions of systems which are used in this thesis. For more information for subsystems of second order arithmetic, see Simpson [61].

The formal system of second order arithmetic Z_{2} is a two-sorted first-order predicate logic. The language of second order arithmetic L_{2} consists of countably infinite number variables $i, j, k, l, m, n, x, y, z, \ldots$ and set variables X, Y, Z, \ldots, two distinct constant symbols 0 and 1 , two 2 -ary function symbols + and \cdot, and three 2-ary relation symbols $=,<$, and \in. Numerical terms are number variables, the constant symbols 0 and 1 , and $t+s$ and $t \cdot s$ whenever t and s are numerical terms. An atomic formula of L_{2} is of the form $t=s, t<s, t \in X$ where t and s are numeral terms and X is any set variable. We distinguish quantifiers of a formula of L_{2} between number quantifiers and set quantifiers according as it is applied to a number variable or a set variable. A number quantifier is said to be bounded if it is either of the form $(\exists i)(i<t \wedge \varphi)$ or $(\forall i)(i<t \rightarrow \varphi)$ where t is a numeral term not containing i. A formula φ of L_{2} is said to be Σ_{0}^{0} or Π_{0}^{0} if φ does not contain any set quantifiers and every number quantifier is bounded. For $k \in \omega$ (ω denotes the set of all natural numbers), a formula φ of L_{2} is said to be Σ_{k+1}^{0} (respectively Π_{k+1}^{0}) if φ is of the form $\exists i_{0} \exists i_{1} \ldots \exists i_{n} \psi$ (respectively $\forall i_{0} \forall i_{1} \ldots \forall i_{n} \psi$) where ψ is Π_{k}^{0} (respectively Σ_{k}^{0}). A formula φ of L_{2} is said to be $\Sigma_{0}^{1}, \Pi_{0}^{1}$, or arithmetical if φ does not contain any set quantifiers. For $k \in \omega$, a formula φ of L_{2} is said to be Σ_{k+1}^{1} (respectively Π_{k+1}^{1}) if φ is of the form $\exists X_{0} \exists X_{1} \ldots \exists X_{n} \psi$ (respectively $\forall X_{0} \forall X_{1} \ldots \forall X_{n} \psi$) where ψ is Π_{k}^{1} (respectively Σ_{k}^{1}).

1.1 The System RCA ${ }_{0}$

First we provide the schemes of induction and comprehension.
Definition 1.1 (induction). 1. For each $i=0,1$ and $k \in \omega$, the scheme of Σ_{k}^{i} induction (also denoted by $I \Sigma_{k}^{i}$) consists of all axioms of the form

$$
\varphi(0) \wedge \forall n(\varphi(n) \rightarrow \varphi(n+1)) \rightarrow \forall n \varphi(n)
$$

where $\varphi(n)$ is any Σ_{k}^{i} formula. The scheme of Π_{k}^{i} induction is defined similarly.
2. The scheme of Δ_{k}^{i} induction consists of all axioms of the form

$$
\forall n(\varphi(n) \leftrightarrow \psi(n)) \rightarrow((\varphi(0) \wedge \forall n(\varphi(n) \rightarrow \varphi(n+1))) \rightarrow \forall n \varphi(n))
$$

where $\varphi(n)$ is any Σ_{k}^{i} formula and $\psi(n)$ is any Π_{k}^{i} formula.
Definition 1.2 (comprehension). 1 . For each $i=0,1$ and $k \in \omega$, the scheme of Σ_{k}^{i} comprehension consists of all axioms of the form

$$
\exists X \forall n(n \in X \leftrightarrow \varphi(n))
$$

where $\varphi(n)$ is any Σ_{k}^{i} formula in which X does not occur freely. The scheme of Π_{k}^{i} comprehension is defined similarly.
2. The scheme of Δ_{k}^{i} comprehension consists of all axioms of the form

$$
\forall n(\varphi(n) \leftrightarrow \psi(n)) \rightarrow \exists X(\forall n(n \in X \leftrightarrow \varphi(n)))
$$

where $\varphi(n)$ is any Σ_{k}^{i} formula, $\psi(n)$ is any Π_{k}^{i} formula and X does not occur freely in $\varphi(n)$.

The axioms of second order arithmetic Z_{2} consist of basic axioms of arithmetic, and the schemes of induction and comprehension for every formulae. The subsystem RCA_{0} is defined to be the formal system in the language L_{2} whose axioms consists of basic axioms of arithmetic, the scheme of Σ_{1}^{0} induction and the scheme of Δ_{1}^{0} (recursive) comprehension. RCA A_{0} plays a role of a base theory in Reverse Mathematics throughout this thesis. The next two facts are convenient to cope with Σ_{1}^{0} notions. 2 is a formalized version of the fact in recursion theory: Every infinite recursively enumerable set contains an infinite recursive subset, cf. [64, Exercise 1.21] and [57].

Lemma 1.3. 1. Let $\varphi(x)$ be a Σ_{1}^{0} formula in which X and f do not occur freely. RCA_{0} proves that if $\varphi(n)$ holds for infinitely many $n \in \mathbb{N}$ (i.e., $\left.\left(\forall n_{0}\right)\left(\exists n>n_{0}\right) \varphi(n)\right)$, there exists a one-to-one function $f: \mathbb{N} \rightarrow \mathbb{N}$ such that $(\forall n)(\varphi(n) \leftrightarrow(\exists m)(f(m)=n))$.
2. Let $\varphi(x)$ be a Σ_{1}^{0} formula. RCA_{0} proves that if $\varphi(n)$ holds for infinitely many $n \in \mathbb{N}$, there exists an infinite (i.e., $\left.\left(\forall n_{0}\right)\left(\exists n>n_{0}\right)(n \in X)\right)$ set X such that $(\forall n)(n \in X \rightarrow \varphi(n))$.

Proof. 1 is Lemma II.3.7 of [61]. We show 2. Let f be a one-to-one function such that $(\forall n)(\varphi(n) \leftrightarrow(\exists m)(f(m)=n))$. Define a strictly increasing function g by primitive recursion by putting $g(0)=f(0), g(n+1)=f(\mu m[f(m)>g(n)])$. The image of g exists by Δ_{1}^{0} comprehension and it is a desired set.

We further introduce several schemes of axioms.
Definition 1.4 (bounded comprehension). For each $i=0,1$ and $k \in \omega$, the scheme of bounded Σ_{k}^{i} comprehension consists of all axioms of the form

$$
\forall n \exists X \forall i(i \in X \leftrightarrow(i<n \wedge \varphi(i)))
$$

where $\varphi(n)$ is any Σ_{k}^{i} formula in which X does not occur freely. The schemes of Π_{k}^{i} bounded comprehension and Δ_{k}^{i} bounded comprehension are defined similarly.

The scheme of induction and the scheme of bounded comprehension is provably equivalent in a following sense.

Theorem 1.5 (Theorem II.3.9, Exercise II.3.13 [61]). Σ_{1}^{0} and Π_{1}^{0} bounded comprehension.

1. RCA_{0} proves both
2. For each $k \in \omega, \operatorname{RCA}_{0}$ proves that Σ_{k}^{0} induction is equivalent to Σ_{k}^{0} bounded comprehension.

We describe the connection between induction scheme and the principle by the name of bounding scheme or collection scheme.

Definition 1.6 (bounding). For each $i=0,1$ and $k \in \omega$, the scheme of Σ_{k}^{i} bounding (also denoted by $\mathrm{B} \Sigma_{k}^{i}$) consists of all axioms of the form

$$
(\forall t)[(\forall n<t) \exists m \varphi(n, m) \rightarrow(\exists b)(\forall n<t)(\exists n<b) \varphi(n, m)]
$$

where $\varphi(n, m)$ is any Σ_{k}^{i} formula. The scheme of Π_{k}^{i} bounding and Δ_{k}^{i} bounding defined similarly.

It is known that for each $k \in \omega, \Sigma_{k+1}^{0}$ bounding is equivalent to Π_{k}^{0} bounding over RCA_{0}. Moreover, we have following results.

Theorem 1.7 (Kirby and Paris [40]). 1. For each $k \in \omega, \Sigma_{k}^{0}$ induction implies Σ_{k}^{0} bounding over RCA A_{0}. But not vice varsa.
2. For each $k \in \omega, \Sigma_{k+1}^{0}$ bounding implies Σ_{k}^{0} induction over RCA_{0}. But not vice varsa.

Theorem 1.8. For each $k \geq 2, \Sigma_{k}^{0}$ bounding is equivalent to Δ_{k}^{0} induction over $R C A_{0}$.

1.2 The System ACA $_{0}$

$A C A_{0}$ is defined to be the formal system in the language L_{2} whose axioms consist of basic axioms, the schemes of Σ_{0}^{1} induction and Σ_{0}^{1} (arithmetical) comprehension. It is known that $A C A_{0}$ is strictly stronger than $R C A_{0}$, i.e.,

$$
\mathrm{RCA}_{0} \subsetneq \mathrm{ACA}_{0} .
$$

ACA_{0} can be characterized by Σ_{1}^{0} comprehension. The following lemma is frequently used to show that various theorems of ordinary mathematics imply arithmetical comprehension.

Lemma 1.9 ([61] Lemma III.1.3). The following are equivalent over RCA_{0}.

1. $A C A_{0}$.
2. Σ_{1}^{0} comprehension.
3. For any one-to-one function $\alpha: \mathbb{N} \rightarrow \mathbb{N}$ there exists a set X such that $\forall i(i \in X \leftrightarrow \exists j(\alpha(j)=i))$, i.e., the image of α exists

We mention that if the function $\alpha: \mathbb{N} \rightarrow \mathbb{N}$ is increasing then RCA_{0} proves the existence of the image of α. We also mention that the following fact is useful when we wish to deduce arithmetical comprehension. For example, see Frittaion and Marcone [18, Theorem 3.4].

Definition 1.10 ([61] Theorem III.4.4). The following definition is made in RCA_{0}. Let $\alpha: \mathbb{N} \rightarrow \mathbb{N}$ be a one-to-one function. We say that $n \in \mathbb{N}$ is α-true if $(\forall m>n)(\alpha(m)>\alpha(n))$ and α-false otherwise.

Lemma 1.11. The following are equivalent over $R C A_{0}$.

1. $A C A_{0}$.
2. The set of all α-true elements $T=\{n: n$ is α-true $\}$ exists for any one-toone function $\alpha: \mathbb{N} \rightarrow \mathbb{N}$.
3. An infinite set of α-true elements T^{\prime} exists for any one-to-one function $\alpha: \mathbb{N} \rightarrow \mathbb{N}$.

Proof. ($1 \rightarrow 2$). Note that the statement " m is α-true" is Π_{1}^{0}.
$(2 \rightarrow 3)$. Note that there are infinitely many true elements.
$(3 \rightarrow 1)$. Let $\alpha: \mathbb{N} \rightarrow \mathbb{N}$ be a one-to-one function. By our assumption 3, there exists a set T^{\prime} such that $(\forall n)\left(\exists m \in T^{\prime}\right)(n<m)$ and $\left(\forall n \in T^{\prime}\right)(n$ is α-true). Since α is one-to-one and T^{\prime} is infinite, it follows that $(\forall n)(\exists m)\left(m \in T^{\prime} \wedge n \leq\right.$ $\alpha(m))$. By Σ_{0}^{0} axiom of choice of numbers there exists a function $\beta: \mathbb{N} \rightarrow \overline{\mathbb{N}}$ such that $(\forall n)\left(\beta(n) \in T^{\prime} \wedge n \leq \alpha(\beta(n))\right)$. Then $(\exists m)(\alpha(m)=n) \leftrightarrow(\exists m<$ $\beta(n))(\alpha(m)=n)$ for all $n \in \mathbb{N}$, because $n \leq \alpha(\beta(n))<\alpha(l)$ for all $l \geq \beta(n)$ since $\beta(n)$ is α-true. The right-hand-side of the equivalence is Σ_{0}^{0}. Thus by Δ_{1}^{0} comprehension there exists the image of α.

1.3 The System $W_{K} L_{0}$

$W K L_{0}$ is defined to be the formal system in the language L_{2} whose axioms consist of those of RCA_{0} plus weak König's lemma: every infinite $0-1$ tree has a path. It is known that $W K L_{0}$ is properly stronger than $R C A_{0}$ and properly weaker than ACA_{0}, i.e.,

$$
\mathrm{RCA}_{0} \subsetneq \mathrm{WKL}_{0} \subsetneq \mathrm{ACA}_{0} .
$$

Weak König's lemma requires somewhat subtle treatment rather than arithmetical comprehension. So in usual mathematics they tend to use arithmetical comprehension instead of weak König's lemma. However as we will see later surprisingly many theorems are provable in WKL_{0} and actually are equivalent to $W K L_{0}$ (over RCA_{0}). $W K L_{0}$ can be characterized by Σ_{1}^{0} separation. The scheme of separation is defined as follows.

Definition 1.12 (separation). For each $i=0,1$ and $k \in \omega$, the scheme of Σ_{k}^{i} separation consists of all axioms of the form

$$
\forall n \neg\left(\varphi_{1}(n) \wedge \varphi_{2}(n)\right) \rightarrow \exists X\left(\forall n\left(\varphi_{1}(n) \rightarrow n \in X\right) \wedge \forall n(\neg \varphi(n) \rightarrow n \notin X)\right)
$$

where $\varphi_{1}(n)$ and $\varphi_{2}(n)$ are any Σ_{k}^{i} formulas and X does not occur freely in $\varphi_{1}(n) \wedge \varphi_{2}(n)$. The scheme of Π_{k}^{i} separation is defined similarly.

The following lemma is frequently used to show that various theorems of ordinary mathematics imply weak König's lemma.

Lemma 1.13 ([61] Lemma IV.4.4). The following are equivalent over RCA $_{0}$.

1. WKL_{0}.
2. Σ_{1}^{0} separation.
3. For all one-to-one functions $\alpha, \beta: \mathbb{N} \rightarrow \mathbb{N}$ with $\forall i \forall j(\alpha(i) \neq \beta(j))$ there exists a set $X \subset \mathbb{N}$ such that $\forall i(\alpha(i) \in X \wedge \beta(i) \notin X)$.

1.4 Stronger Systems

For each $k \in \omega, \Pi_{k}^{1}-\mathrm{CA}_{0}$ is defined to be the formal system in the language L_{2} whose axioms consists of basic axioms, the schemes of Π_{k}^{1} induction and Π_{k}^{1} comprehension. ATR_{0} is defined to be the formal system in the language L_{2} whose axioms consists of those of ACA_{0} plus the scheme of arithmetical transfinite recursion. $R C A_{0}, W K L_{0}, A C A_{0}, A T R_{0}$, and $\Pi_{1}^{1}-C A_{0}$ are sometimes called "big five" systems. It is known that A_{0} is equivalent to Σ_{1}^{1} separation [61, Theorem V.5.1]. Clearly $\Pi_{k}^{1}-C A_{0}$ proves Σ_{k}^{1} comprehension. In particular, $\Pi_{1}^{1}-\mathrm{CA}_{0}$ proves Σ_{1}^{1} comprehension as well as Σ_{1}^{1} separation. Thus $\Pi_{1}^{1}-\mathrm{CA}_{0}$ is stronger than $A^{2} R_{0}$. It is known that $A T R_{0}$ can not prove Π_{1}^{1} comprehension and that $\Pi_{k}^{1}-\mathrm{CA}_{0}$ can not prove Π_{k+1}^{1} comprehension for each $k \in \omega$. Summarizing, we have:

$$
\mathrm{RCA}_{0} \subsetneq \mathrm{WKL}_{0} \subsetneq \mathrm{ACA}_{0} \subsetneq \mathrm{ATR}_{0} \subsetneq \Pi_{1}^{1}-\mathrm{CA}_{0} \subsetneq \Pi_{2}^{1}-\mathrm{CA}_{0} \subsetneq \cdots \subsetneq \mathrm{Z}_{2} .
$$

Such strong axioms are required in set theory, Ramsey theory, infinite game theory, and so on. It is worth investigating whether these axioms are essentially used in so-called ordinary mathematics.

2 Countable Sets, Relations, and Functions

This chapter provides the notions of (sequences of) countable sets, relations, and functions within $R C A_{0}$. Results in this chapter are used throughout of the rest of the thesis. Section 2.2 does Reverse Mathematics of some propositions of binary relations. In Section 2.3 we consider, in terms of Reverse Mathematics, extensions of partial functions with the scheme of axioms of choice of numbers . Section 2.4 is a brief survey on Ramsey theorems as atypical examples of Reverse Mathematics.

2.1 Basic Notions

It is known that RCA_{0} is strong enough to develop a coding method (see Simpson [61, II.2]). In particular we can encode pairs of natural numbers or finite sequences of natural numbers as single natural numbers. We write a code for a pair of natural numbers n and m as (n, m), a code for a sequence of natural numbers $n_{0}, n_{1}, \ldots, n_{l}$ as $\left\langle n_{0}, n_{1}, \ldots, n_{l}\right\rangle$ or $\left\langle n_{i}: i \leq l\right\rangle$. The first and second projection function for a code for a pair of natural numbers are denoted by π_{1} and π_{2} respectively, namely $\pi_{1}((n, m))=n$ and $\pi_{2}((n, m))=m$ hold. Also we write s_{i} for the i-th element of the sequence coded by s. By means of the coding method, we can formalize the notions of countable relations, countable functions, finite or infinite sequences of countable sets, and so on.

Definition 2.1 (binary relations). The following definitions are made in RCA_{0}. A countable binary relation R on a set $A \subset \mathbb{N}$ is a set of pairs of elements of A. We write $a R b$ to mean $(a, b) \in R$. A countable binary relation R is said to be transitive if R satisfies the condition $(\forall a, b, c \in A)(a R b \wedge b R c \rightarrow a R c)$, reflexive if R satisfies the condition $(\forall a \in A)(a R a)$, and symmetric if R satisfies the condition $(\forall a, b \in A)(a R b \rightarrow b R a)$ respectively. A transitive, reflexive and symmetric countable binary relation is said to be an equivalence relation. Given an equivalence relation on A, we can form the quotient set $A / R=\{a \in A$: $(\forall b \in A)(b<a \rightarrow \neg a R b)\}$.

The following definition are made within RCA_{0}. A sequence of countable sets \mathcal{A} is a set of pairs. We write $n \in A_{i}$ as $(n, i) \in \mathcal{A}$ and denote such a sequence as $\left\langle A_{i}: i \in \mathbb{N}\right\rangle$. Note that for given \mathcal{A} each $i, A_{i}=\{n:(n, i) \in \mathcal{A}\}$ exists by Δ_{1}^{0} comprehension. The next theorem shows that arithmetical comprehension is necessary and sufficient to assert the existence of the intersection or the union of a given sequence of countable sets.

Theorem 2.2 (intersections and unions). The following are equivalent over RCA_{0}.

1. $A C A_{0}$.
2. For any sequence of countable sets $\left\langle A_{i}: i \in \mathbb{N}\right\rangle, \bigcap_{i \in \mathbb{N}} A_{i}=\{n: \forall i(n \in$ $\left.\left.A_{i}\right)\right\}$ exists.
3. For any sequence of countable sets $\left\langle A_{i}: i \in \mathbb{N}\right\rangle, \bigcup_{i \in \mathbb{N}} A_{i}=\{n: \exists i(n \in$ $\left.\left.A_{i}\right)\right\}$ exists.

Proof. $1 \rightarrow 2$ (as well as $1 \rightarrow 3$) is trivial since the defining formula are arithmetical. $2 \rightarrow 3$ follows from De Morgan's Law. It remains to show $3 \rightarrow 1$. Instead of showing ACA_{0} directly, we show Lemma 1.9.2. Let $\varphi(n)$ be a Σ_{1}^{0} formula and write $\varphi(n) \equiv \exists i \theta(n, i)$ where $\theta(n, i)$ is Σ_{0}^{0}. Reasoning within RCA_{0}, define the sequence of sets $\left\langle A_{i}: i \in \mathbb{N}\right\rangle$ as $n \in A_{i} \leftrightarrow \theta(n, i)$. By our assumption 3 , the set $\bigcup_{i \in \mathbb{N}} A_{i}$ exists. It follows that $n \in \bigcup_{i \in \mathbb{N}} A_{i} \leftrightarrow \exists i \theta(n, i) \leftrightarrow \varphi(n)$. Thus by Δ_{1}^{0} comprehension $\exists X \forall n(n \in X \leftrightarrow \varphi(n))$. This completes the proof.

The next theorem shows that arithmetical comprehension is necessary and sufficient to assert the existence of the equivalence or transitive closure of a given countable binary relation.

Theorem 2.3 (equivalence and transitive closures). The following are equivalent over RCA_{0}.

1. $A C A_{0}$.
2. For any symmetric binary relation $R \subset A \times A$, there exists the equivalence relation R^{\prime} including R which is minimal with respect to set inclusion.
3. For any binary relation $R \subset A \times A$, there exists the transitive relation R^{\prime} including R which is minimal with respect to set inclusion.

Proof. First we show the implication $1 \rightarrow 2$. We reason within $A C A_{0}$. Let

$$
R^{\prime}=\left\{\left(a, a^{\prime}\right): \exists\left\langle a_{i} \in A: i \leq n\right\rangle\left[a=a_{0} \wedge(\forall i<n)\left(a_{i} R a_{i+1}\right) \wedge a_{n}=a^{\prime}\right]\right\} .
$$

Clearly R^{\prime} has the desired properties.
Next we show the implication $2 \rightarrow 1$. We reason within RCA_{0}. Instead of proving ACA_{0} directly, we show Lemma 1.9.3. Let $\alpha: \mathbb{N} \rightarrow \mathbb{N}$ be a one-to-one function. Let $A=\left\{a_{j}^{i}: i, j \in \mathbb{N}\right\} \cup\{b\}$ and

$$
R=\left\{\left(a_{j}^{i}, a_{j+1}^{i}\right),\left(a_{j+1}^{i}, a_{j}^{i}\right): i, j \in \mathbb{N}\right\} \cup\left\{\left(a_{j}^{i}, b\right),\left(b, a_{j}^{i}\right): \alpha(j)=i\right\}
$$

By our assumption 2, there exists the minimal equivalence relation R^{\prime} including R. Then it follows that $a_{0}^{i} R^{\prime} b \leftrightarrow \exists j(\alpha(j)=i)$ for all $i \in \mathbb{N}$. Hence, by Δ_{1}^{0} comprehension, the image of α exists. This completes the proof of $2 \rightarrow 1$.

Similarly we can prove the equivalence between 1 and 3 . We mention that to prove $1 \rightarrow 3\left\langle a_{i} \in A: i \leq n\right\rangle$ should be replaced by $\left\langle a_{i} \in A: i \leq n+1\right\rangle$ in order to eliminate unnecessary identity relations in defining R^{\prime}.

We remark that the reversals of the theorem above could be described as an easy consequence of Theorem 2.5 of Hirst [31]. On the other hand, weak König's lemma is strong enough to assert the existence of a nontrivial equivalence or transitive extension.

Theorem 2.4 (equivalence and transitive extensions). The following are equivalent over RCA_{0}.

1. WKL_{0}.
2. For any symmetric binary relation $R \subset A \times A$ and elements $a, a^{\prime} \in A$, if there is no sequence of elements of A such that

$$
a=a_{1} \wedge a_{1} R a_{2} \wedge a_{2} R a_{3} \wedge \cdots \wedge a_{n-1} R a_{n} \wedge a_{n}=a^{\prime}\left(2 \leq n, a_{i} \in A\right)
$$

then R can be extended to an equivalence relation R^{\prime} such that $\neg a R^{\prime} a^{\prime}$.
3. For any binary relation $R \subset A \times A$ and elements $a, a^{\prime} \in A$, if there is no sequence of elements of A such that

$$
a=a_{1} \wedge a_{1} R a_{2} \wedge a_{2} R a_{3} \wedge \cdots \wedge a_{n-1} R a_{n} \wedge a_{n}=a^{\prime}\left(2 \leq n, a_{i} \in A\right)
$$

then R can be extended to transitive relation R^{\prime} such that $\neg a R^{\prime} a^{\prime}$.
Proof. First we prove $1 \rightarrow 2$. We reason within WKL_{0}. Let $R \subset A \times A$ be a symmetric binary relation on A. Let $\left(a, a^{\prime}\right) \in A \times A$ be a pair of an element of A satisfying the condition above. Let T be the set of all $t \in 2^{<\mathbb{N}}$ such that

1. $\forall i<\operatorname{lh}(t)(t(i)=1 \rightarrow i \in A \times A)$,
2. $\forall i<\operatorname{lh}(t)(i \in R \rightarrow t(i)=1)$,
3. $\forall i<\operatorname{lh}(t)\left(\pi_{1}(i)=\pi_{2}(i) \rightarrow t(i)=1\right)$,
4. $\forall i, j<\operatorname{lh}(t)\left(\pi_{1}(i)=\pi_{2}(j) \wedge \pi_{2}(i)=\pi_{1}(j) \wedge t(i)=1 \rightarrow t(j)=1\right)$,
5. $\forall i<\operatorname{lh}(t), \forall\left\langle a_{j} \in A: j \leq n\right\rangle<\operatorname{lh}(t)\left[(\forall j<n)\left(a_{j} R_{t} a_{j+1}\right) \wedge i=\left(a_{0}, a_{n}\right) \rightarrow\right.$ $t(i)=1]$ where $x R_{t} y \equiv(\exists k<\operatorname{lh}(t))\left(t(k)=1 \wedge \pi_{1}(k)=x \wedge \pi_{2}(k)=y\right)$,
6. $\forall i<\operatorname{lh}(t)\left(i=\left(a, a^{\prime}\right) \rightarrow t(i)=0\right)$.

Clearly T is a tree. We claim that T is infinite. To see this, let $m \in \mathbb{N}$ be given. Define a Σ_{1}^{0} formula $\varphi(i) \equiv \exists\left\langle a_{j} \in A: j \leq m\right\rangle\left[(\forall j<m)\left(a_{j} R a_{j+1}\right) \wedge i=\right.$ $\left.\left(a_{0}, a_{m}\right)\right]$. By bounded Σ_{1}^{0} comprehension (Theorem 1.5), letting $Y=\{i<m$: $\varphi(i)\}$, define $t \in 2^{<\mathbb{N}}$ of length m by

$$
t(i)= \begin{cases}1 & (i \in Y) \\ 0 & (i \notin Y)\end{cases}
$$

Then clearly $t \in T$ and $\operatorname{lh}(t)=m$. This proves that T is infinite. Hence, by weak König's lemma, there exists a path f through T. Let R^{\prime} be the set of all $r \in A \times A$ such that $f(r)=1$. Then R^{\prime} is an equivalence relation such that $R^{\prime} \supset R$ and $\neg a R^{\prime} a^{\prime}$. This completes the proof of $1 \rightarrow 2$.

Second we prove $2 \rightarrow 1$. We reason within RCA_{0}. Instead of proving weak König's lemma directly, we show Lemma 1.13.3. Let $\alpha, \beta: \mathbb{N} \rightarrow \mathbb{N}$ be one-to-one functions such that $\forall i \forall j(\alpha(i) \neq \beta(j))$. Let $A=\left\{a_{j}^{i}: i, j \in \mathbb{N}\right\} \cup\{b, c\}$ and

$$
\begin{aligned}
R= & \left.\left\{\left(a_{j}^{i}, a_{j+1}^{i}\right),\left(a_{j+1}^{i}, a_{j}^{i}\right): i, j \in \mathbb{N}\right)\right\} \cup \\
& \left\{\left(a_{j}^{i}, b\right),\left(b, a_{j}^{i}\right): \alpha(j)=i\right\} \cup\left\{\left(a_{j}^{i}, c\right),\left(c, a_{j}^{i}\right): \beta(j)=i\right\} .
\end{aligned}
$$

Note that there does not exist any sequence of elements of A such that

$$
b=a_{1} \wedge a_{1} R a_{2} \wedge a_{2} R a_{3} \wedge \cdots \wedge a_{n-1} R a_{n} \wedge a_{n}=c\left(2 \leq n, a_{i} \in A\right)
$$

By our assumption 2, there exists an equivalence relation $R^{\prime} \supset R$ such that $\neg b R^{\prime} c$. Then it follows that $a_{0}^{\alpha(j)} R^{\prime} b \wedge \neg a_{0}^{\beta(j)} R^{\prime} b$ for all $j \in \mathbb{N}$. Setting $X=\left\{i: a_{0}^{i} R^{\prime} b\right\}$, we obtain $\forall j(\alpha(j) \in X \wedge \beta(j) \notin X)$. This completes the proof of $2 \rightarrow 1$.

The equivalence between 1 and 3 is proved in much same way. We mention that to prove $1 \rightarrow 3$ the items 3 and 4 should be omitted in constructing T.

If a relation is defined by an arithmetical but not Δ_{1}^{0} formula, we need arithmetical comprehension to assert the existence of the quotient set.

Theorem 2.5 (quotient sets). The following are equivalent over RCA_{0}.

1. $A C A_{0}$.
2. Let $\varphi(x, y)$ be a Σ_{1}^{0} equivalence relation on a set $A \subset \mathbb{N}$, i.e.,

- $(\forall a \in A)(\varphi(a, a))$,
- $(\forall a, b \in A)(\varphi(a, b) \rightarrow \varphi(b, a))$,
- $(\forall a, b, c \in A)(\varphi(a, b) \wedge \varphi(b, c) \rightarrow \varphi(a, c))$.

Then there exists a quotient set $A^{*} \subset A$ by φ, i.e.,

- $(\forall a \in A)\left(\exists b \in A^{*}\right)(\varphi(a, b))$,
- $\left(\forall a, b \in A^{*}\right)(\varphi(a, b) \rightarrow a=b)$.

3. Let $\varphi(x, y)$ be a Π_{1}^{0} equivalence relation on a set $A \subset \mathbb{N}$. Then there exists a quotient set $A^{*} \subset A$ by φ.

Proof. $1 \rightarrow 2$ is immediate. Instead of showing ACA_{0} directly, we show Lemma 1.9.3. We reason within RCA_{0}. Let $\alpha: \mathbb{N} \rightarrow \mathbb{N}$ be a one-to-one function. Define a Σ_{1}^{0} equivalence relation on $A=\mathbb{N}$ by

$$
\varphi(x, y) \equiv(x \in \operatorname{Im} \alpha \wedge y \in \operatorname{Im} \alpha) \vee x=y
$$

By our assumption 2, a quotient set $A^{*} \subset A$ exists. Let $a^{*} \in A^{*}$ be $\varphi\left(\alpha(0), a^{*}\right)$. It follows that $\left.i \in \operatorname{Im} \alpha \leftrightarrow i \notin A^{*} \backslash\left\{a^{*}\right\}\right)$. Thus by Δ_{1}^{0} comprehension the image of α exists. This completes the proof of $2 \rightarrow 1$. The equivalence between 1 and 3 is shown in a similar way.

2.2 The Scheme of Axiom of Choice of Numbers

A countable partial function $f: A \rightarrow B$ from a set A to a set B is a countable binary relation which satisfies $(\forall(a, b) \in f)(a \in A \wedge b \in B)$ and $\left(\forall(a, b),\left(a^{\prime}, b^{\prime}\right) \in\right.$ $F)\left(a=a^{\prime} \rightarrow b=b^{\prime}\right) . f$ is said to be total if $(\forall a \in A)(\exists b \in B)((a, b) \in f)$. We write $f(a)=b$ to mean $(a, b) \in f$. In what follows, by a function we mean a countable total function except where noted. The scheme of axiom of choice of numbers is defined as follows.

Definition 2.6 (axiom of choice of numbers). For each $i=0,1$ and $k \in \omega$, the scheme of Σ_{k}^{i} axiom of choice of numbers consists of all axioms of the form

$$
\forall n \exists m \varphi(n, m) \rightarrow \exists f \forall n \varphi(n, f(n)),
$$

where f ranges over countable total functions and $\varphi(n, m)$ is any Σ_{k}^{i} formula in which f does not occur freely. The scheme of Π_{k}^{i} axiom of choice of numbers is defined similarly.

Lemma 2.7. 1. For each $k \in \omega, \Sigma_{k}^{0}$ axiom of choice of numbers implies Π_{k}^{0} separation over RCA_{0}.
2. For each $k \in \omega, \Pi_{k}^{0}$ axiom of choice of numbers implies Π_{k+1}^{0} separation over RCA_{0}.

Proof. 1. Let $\varphi_{1}(n)$ and $\varphi_{2}(n)$ be Π_{k}^{0} formulae with $\forall n \neg\left(\varphi_{1}(n) \wedge \varphi_{2}(n)\right)$. Let

$$
\psi(n, m) \equiv\left(\neg \varphi_{1}(n) \wedge m=0\right) \vee\left(\neg \varphi_{2}(n) \wedge m=1\right)
$$

Notice that $\psi(n, m)$ is Σ_{k}^{0} and $\forall n \exists m \psi(n, m)$ holds. By Σ_{k}^{0} axiom of choice of numbers we have $\exists f \forall n \psi(n, f(n))$. By Δ_{1}^{0} comprehension let $X=\{n$: $f(n)=1\}$. Then clearly X is a separator of φ_{1} and φ_{2}.
2. Let $\varphi_{1}(n)$ and $\varphi_{2}(n)$ be Π_{k+1}^{0} formulae with $\forall n \neg\left(\varphi_{1}(n) \wedge \varphi_{2}(n)\right)$. Let $\varphi_{i}(n) \equiv \forall m \theta_{i}(n, m)$ where $\theta_{i}(m, n)$ is Σ_{k}^{0} formula, $i=0,1$. Let

$$
\psi(n, m) \equiv\left(\neg \theta_{1}\left(n, \pi_{1}(m)\right) \wedge \pi_{2}(m)=0\right) \vee\left(\neg \theta_{2}\left(n, \pi_{1}(m)\right) \wedge \pi_{2}(m)=1\right) .
$$

Notice that $\psi(n, m)$ is Π_{k}^{0} and $\forall n \exists m \psi(n, m)$ holds. $\mathrm{By} \Pi_{k}^{0}$ axiom of choice of numbers we have $\exists f \forall n \psi(n, f(n))$. By Δ_{1}^{0} comprehension let $X=\{n$: $\left.\pi_{2}(f(n))=1\right\}$. Then clearly X is a separator of φ_{1} and φ_{2}.

A corollary of the lemma is that $R C A_{0}$ proves Π_{1}^{0} separation since it is well known that RCA_{0} proves Σ_{1}^{0} axiom of choice of numbers. This answers [61, Exercise IV.4.8]

Theorem 2.8. The following are equivalent over RCA_{0}.

1. $A C A_{0}$
2. Σ_{0}^{1} axiom of choice of numbers.
3. Π_{1}^{0} axiom of choice of numbers.

Proof. $(1 \rightarrow 2)$. Let $\varphi(n, m)$ be an arithmetical formula and assume that $\forall n \exists m \varphi(n, m)$. Define a countable total function f by arithmetical comprehension as $f(n)=m \leftrightarrow \varphi(n, m) \wedge\left(\forall m^{\prime}<m\right)\left(\neg \varphi\left(n, m^{\prime}\right)\right) .(2 \rightarrow 3)$ is trivial. $(3 \rightarrow 1)$. We reason within RCA_{0}. By the previous lemma Π_{1}^{0} axiom of choice of numbers implies Π_{2}^{0} separation. On the other hand, Π_{2}^{0} separation implies Σ_{1}^{0} comprehension. Thus by Lemma 1.9 we have arithmetical comprehension.

The next theorem is about the domain of countable partial functions.
Theorem 2.9. The following are equivalent over RCA_{0}.

1. $A C A_{0}$.
2. For any countable partial function $f: \mathbb{N} \rightarrow \mathbb{N}$ there exists a set $X \subset \mathbb{N}$ such that $\forall n(n \in X \leftrightarrow \exists m(f(n)=m))$, i.e., the domain of f exists.
3. For any countable partial functions $f: \mathbb{N} \rightarrow \mathbb{N}$ there exists a total function $\tilde{f}: \mathbb{N} \rightarrow \mathbb{N}$ such that $(\forall n, m)(f(n)=m \rightarrow \tilde{f}(n)=m)$, i.e., a total extension of f exists.
Proof. $(1 \rightarrow 2)$ is immediate since the defining formula of X is Σ_{1}^{0}. To show $(2 \rightarrow 3)$, assume that $\operatorname{dom} f$, the domain of f, exists. By Δ_{1}^{0} comprehension, let $\tilde{f}=\{(n, m):(n, m) \in f \vee(n \notin \operatorname{dom} f \wedge m=0)\}$. Clearly \tilde{f} is a total extension of f. For $(3 \rightarrow 1)$, reasoning within RCA_{0}, we show Lemma 1.9.3. Let $\alpha: \mathbb{N} \rightarrow \mathbb{N}$ be a one-to-one function. Define a countable partial function as $f=\{(n, m)$: $\alpha(m)=n\}$, i.e., f is a partial inverse function of α. By our assumption 3, let \tilde{f} be a total extension of f. It follows that $\exists m(\alpha(m)=n) \leftrightarrow \alpha(\tilde{f}(n))=n$ for all n. Thus, by Δ_{1}^{0} comprehension, the image of α exists. This completes the proof.

The theorem above concerns with the scheme of strong axiom of choice of numbers which is defined as follows.

Definition 2.10 (strong axiom of choice of numbers). For each $i=0,1$ and $k \in \omega$, the scheme of Σ_{k}^{i} strong axiom of choice of numbers consists of all axioms of the form

$$
\exists f \forall n(\exists m \varphi(n, m) \rightarrow \varphi(n, f(n)))
$$

where f ranges over countable total functions and $\varphi(n, m)$ is any Σ_{k}^{i} formula in which f does not occur freely. The scheme of Π_{k}^{i} strong axiom of choice of numbers is defined similarly.

Theorem 2.11. The following are equivalent over $R C A_{0}$.

1. $A C A_{0}$.
2. Σ_{0}^{1} strong axiom of choice of numbers.
3. Σ_{0}^{0} strong axiom of choice of numbers.

Proof. ($1 \rightarrow 2$). Let $\varphi(n, m)$ be an arithmetical formula. Define a countable total function f by arithmetical comprehension as

$$
f(n)=m \leftrightarrow\left[\varphi(n, m) \wedge\left(\forall m^{\prime}<m\right) \neg \varphi\left(n, m^{\prime}\right)\right] \vee[\neg \exists m \varphi(n, m) \wedge m=0] .
$$

$(2 \rightarrow 3)$ is trivial. $(3 \rightarrow 1)$. We reason within RCA_{0}. Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be a countable partial function. Letting $\varphi(n, m) \equiv(f(n)=m)$, by our assumption 3 , we have a totalization of f Thus, by Theorem 2.9, we have arithmetical comprehension.

2.3 Extensions of Consistent Partial Functions

This section provides Reverse Mathematics results concerning the compactnesslike property of families of countable functions. Note that if a finite countable partial function is finite then it can be coded by a single number as a finite sequence of pairs of numbers.

Definition 2.12. The following definitions are made in RCA_{0}.

1. A sequence of countable partial functions $\left\langle f_{i}: i \in \mathbb{N}\right\rangle$ is consistent if

$$
(\forall i, j)\left(\forall a, b, b^{\prime}\right)\left((a, b) \in f_{i} \wedge\left(a, b^{\prime}\right) \in f_{j} \rightarrow b=b^{\prime}\right) .
$$

2. A set of (codes of) finite countable partial functions F is consistent if

$$
(\forall \sigma, \tau \in F)\left(\forall a, b, b^{\prime}\right)\left((a, b) \in \sigma \wedge\left(a, b^{\prime}\right) \in \tau \rightarrow b=b^{\prime}\right)
$$

3. A countable partial function f is an extension of a countable partial function g if $(\forall a, b)((a, b) \in g \rightarrow(a, b) \in f)$.
4. A sequence $\left\langle\left(a_{i}, b_{i}\right): i \in \mathbb{N}\right\rangle$ of pairs is said to be Σ_{1}^{0} partial function if $(\forall i, j)\left(a_{i}=a_{j} \rightarrow b_{i}=b_{j}\right)$, cf. Definition 6.35.

Theorem 2.13. The following are equivalent over $R C A_{0}$.

1. WKL_{0}.
2. Every consistent sequence of countable partial functions $\left\langle f_{i}: i \in \mathbb{N}\right\rangle$ has a partial extension, i.e., there exists a countable partial function f such that $(\forall i)\left(f_{i} \subset f\right)$.
3. Every consistent set of (codes of) finite countable partial functions F has a partial extension, i.e., there exists a countable partial function f such that $(\forall \sigma \in F)(\sigma \subset f)$.
4. Every Σ_{1}^{0} partial function $\left\langle p_{i}: i \in \mathbb{N}\right\rangle$ has a partial extension, i.e., there exists a countable partial function f such that $(\forall i)\left(p_{i} \in f\right)$.

Proof. $(1 \rightarrow 2)$. We reason within WKL_{0}. Let $\varphi(p) \equiv \exists i\left(p \in f_{i}\right)$ and $\psi(p) \equiv$ $\exists i \exists b\left(\left(\pi_{1}(p), b\right) \in f_{i} \wedge \pi_{2}(p) \neq b\right)$. (It is maybe easy to understand if we write $\varphi(a, b) \equiv \exists i\left(f_{i}(a)=b\right)$ and $\left.\psi(a, b) \equiv \exists i\left(f_{i}(a) \neq b\right)\right)$. Observing that both $\varphi(p)$ and $\psi(p)$ are Σ_{1}^{0}, by Σ_{1}^{0} separation (Lemma 1.13), we have a set X such that $\forall p((\varphi(p) \rightarrow p \in X) \wedge(p \in X \rightarrow \neg \psi(p)))$. By Δ_{1}^{0} comprehension let $f=\left\{p: p \in X \wedge p\right.$ is a pair $\left.\wedge\left(\forall b<\pi_{2}(p)\right)\left(\pi_{1}(p), b\right) \notin X\right\}$. It follows that f is a desired countable partial function.
$(2 \rightarrow 3)$. Reasoning within RCA_{0}, let $\left\langle\sigma_{i}: i \in \mathbb{N}\right\rangle$ be an enumeration of F. By our assumption 2, we have a desired countable partial function.
$(3 \rightarrow 4)$. By Δ_{1}^{0} comprehension define a consistent set of (codes of) finite countable partial functions F as follows.

$$
\sigma \in F \leftrightarrow \sigma \text { is a finite sequence }\left\langle q_{i}: i<k\right\rangle \text { and }(\forall i<k)\left(q_{i}=\left(a_{i}, b_{i}\right)\right) .
$$

By our assumption 3, we have a desired countable partial function.
$(4 \rightarrow 1)$. We reason within RCA_{0}. Instead of WKL_{0} we show the equivalent statement 3 of lemma 1.13. Let $\alpha, \beta: \mathbb{N} \rightarrow \mathbb{N}$ be one-to-one functions such that $(\forall i, j)(\alpha(i) \neq \beta(j))$. Define a Σ_{1}^{0} partial function $\left\langle p_{i}: i \in \mathbb{N}\right\rangle$ as $p_{2 i}=$ $(\alpha(i), 0), p_{2 i+1}=(\beta(i), 1)$. By our assumption 4, we have a partial extension f. Letting $X=\{n:(n, 0) \in f\}$ it follows that $\forall n((\exists m(\alpha(m)=n) \rightarrow n \in$ $X) \wedge(n \in X \rightarrow \neg \exists m(\beta(m)=n)))$. This completes the proof.

In the case of $\{0,1\}$-valued partial functions, an extension f can be taken as a total one. Especially the equivalence between 1 and 4 can be viewed as an analog of the fact in degree theory which says that a Turing degree \boldsymbol{a} is low degree if and only if every $\{0,1\}$-valued computable partial function has a total \boldsymbol{a}-computable extension. On the other hand, if we force f to be total in the previous theorem, assertion 2,3 and 4 obviously turns out to be equivalent to ACA_{0} over RCA_{0}, see Theorem 2.9.

Theorem 2.14. The following are equivalent over $R C A_{0}$.

1. WKL_{0}.
2. Every consistent sequence of countable partial $\{0,1\}$-valued functions has a total extension f.
3. Every consistent set of (codes of) finite countable partial $\{0,1\}$-valued functions F has a total extension f.
4. Every Σ_{1}^{0} partial $\{0,1\}$-valued function has a total extension f.

Proof. We show $1 \rightarrow 2$. We reason within WKL_{0}. Let T be the set of all $t \in 2^{<\mathbb{N}}$ such that $\forall i, k<\operatorname{lh}(t)\left((\forall v<2)\left((k, v) \in f_{i} \rightarrow t(i)=v\right)\right.$. Clearly T is an infinite tree. A path f through T is a desired function. Other implications are proven in much same way as the previous proof. Note that the Σ_{1}^{0} partial function of the previous proof is $\{0,1\}$-valued. This completes the proof.

2.4 Ramsey Theorem

Ramsey theory has been widely applied in combinatorics, functional analysis et al. Infinite Ramsey theorems are parametrized and rich in variety. They give anomalous examples from the perspective of Reverse Mathematics, namely, there are examples from Ramsey theorems whose logical strength can not be classified into "big five" systems.

Definition 2.15. The following definitions are made in RCA_{0}. For $X \subset \mathbb{N}$ and $k \in \mathbb{N} \backslash\{0\}$, let $[X]^{k}=\left\{s \in \mathbb{N}^{k}:(\forall i<k)\left(s_{i} \in X\right) \wedge(\forall i<k-1)\left(s_{i}<s_{i+1}\right)\right\}$. By $\mathrm{RT}(k, l)(0<k, l)$, i.e., Ramsey theorem for exponent k with l colors, we mean the assertion that for all $f:[\mathbb{N}]^{k} \rightarrow\{0,1,2, \ldots l-1\}$, there exists there exists $i<l$ and an infinite set $X \subset \mathbb{N}$ such that $\left(\forall s \in[X]^{k}\right)(f(s)=i)$. We denote $(\forall l>0) \mathrm{RT}(k, l)$ as $\mathrm{RT}(k)$.
$\mathrm{RT}(1)$ is the so-called (infinite version of) pigeon hall principle. Hirst [30] showed that $R T(1)$ is equivalent to Π_{1}^{0} bounding. (Hence it is also equivalent to Σ_{2}^{0} bounding.)

Proposition 2.16. RCA_{0} proves the following.

1. $(\forall k) \mathrm{RT}(k, 1)$.
2. $\left(\forall k, k^{\prime}, l, l^{\prime}\right)\left(k^{\prime}<k \wedge l^{\prime}<l \rightarrow\left(\mathrm{RT}(k, l) \rightarrow \mathrm{RT}\left(k^{\prime}, l^{\prime}\right)\right)\right)$.
3. $(\forall k)(\mathrm{RT}(k+1,2) \rightarrow \mathrm{RT}(k))$.
4. $(\forall k)(\forall l \geq 2)(\mathrm{RT}(k, 2) \wedge \mathrm{RT}(k, l) \rightarrow \mathrm{RT}(k, l+1))$.

Proof. 1 and 2 are trivial. We show 3. Fix $l \in \mathbb{N}$ and let $f:[\mathbb{N}]^{k} \rightarrow l$. Define $f^{\prime}:[\mathbb{N}]^{k+1} \rightarrow 2$ as

$$
f^{\prime}(\bar{a})= \begin{cases}0 & \text { if } f\left(\bar{a}^{\prime}\right)=f\left(\bar{a}^{\prime \prime}\right) \text { for all } \bar{a}^{\prime}, \bar{a}^{\prime \prime} \subset \bar{a} \\ 1 & \text { otherwise }\end{cases}
$$

By $\operatorname{RT}(k+1,2)$, we have a homogeneous set X. It is easy to see that $f^{\prime}(X)=0$. Thus X is a desired homogeneous set.

Next we show 4. For given $f:[\mathbb{N}]^{k} \rightarrow l+1$ define $f^{\prime}:[\mathbb{N}]^{k} \rightarrow l$ as

$$
f^{\prime}(\bar{a})= \begin{cases}f(\bar{a}) & \text { if } f(\bar{a})<l \\ l-1 & \text { otherwise }\end{cases}
$$

By $\operatorname{RT}(k, l)$, we have a homogeneous set X. If $f^{\prime}(X)<l-1$ then X is a desired homogeneous set. If $f^{\prime}(X)=l-1$ then define $f^{\prime \prime}:[X]^{k} \rightarrow 2$ as follows

$$
f^{\prime \prime}(\bar{a})= \begin{cases}0 & \text { if } f(\bar{a})=l-1 \\ 1 & \text { otherwise }\end{cases}
$$

By $\mathrm{RT}(k, 2)$, we have a homogeneous set Y. Clearly Y is a desired homogeneous set.

Specker $[67]$ constructed a computable coloring of $[\mathbb{N}]^{2}$ with no computable homogeneous set. It follows that RCA_{0} does not imply $\mathrm{RT}(2,2)$. On the other hand, Jockusch [38] constructed a computable coloring of $[\mathbb{N}]^{3}$ such that every homogeneous set computes $\mathbf{0}^{\prime}$. This fact is the essence of the proof that $\operatorname{RT}(3)$ implies ACA $_{0}$ over RCA ${ }_{0}$, see Simpson [61, Theorem III.7.6]. Using a result of Jockusch, Hirst [30] showed that WKL_{0} does not imply RT(2, 2). Seetapun [56] proved a theorem in recursion theory that entails that $\mathrm{RT}(2,2)$ does not imply ACA_{0} over WKL_{0}. More recently, Liu [44] proved that $\mathrm{RT}(2,2)$ does not imply $W_{K L}$ over RCA_{0}.

We turn to the tree version of Ramsey theorem.
Definition 2.17 (Simpson [61], page 21). 1. Two sequences in $\mathbb{N}<\mathbb{N}$ are said to be compatible if they are equal or one is an initial segment of the other.
2. A subset S of a tree T (S is need not to be a subtree of T) is perfect if every $\sigma \in S$ has a pair of incompatible extensions $\tau_{1}, \tau_{2} \in S$.

Note that the statement " S is perfect" is Π_{2}^{0}.
Definition 2.18. The following definitions are made in RCA_{0}. By $\mathrm{TT}(k, l)(0<$ k, l), i.e., Ramsey theorem for trees for exponent k with l colors, we mean the assertion that for all perfect tree T and $f:[T]^{k} \rightarrow\{0,1,2, \ldots, l-1\}$, there exists $i<l$ and a perfect subset $S \subset T$ such that $f\left(\sigma_{1}, \ldots, \sigma_{k}\right)=i$ for all $\left\langle\sigma_{1}, \ldots, \sigma_{k}\right\rangle \in\left[2^{<\mathbb{N}}\right]$. We denote $(\forall l>0) \operatorname{TT}(k, l)$ as $\operatorname{TT}(k)$.

It is known that the logical strength of $\mathrm{TT}(1)$ is between Σ_{2}^{0} bounding and Σ_{2}^{0} induction over $\mathrm{RCA}_{0}[7]$.

3 Countable Partially Ordered Sets (Posets)

In this chapter we do Reverse Mathematics of countable order theory, in particular we shed light on fixed point theorems. It is notable that famous equivalence between the axiom of choice, Zorn's lemma, and well-ordering theorem, which is a prehistoric result of Reverse Mathematics, appears in order theory. Some other statements (including fixed point theorems) in order theory equivalent to axiom of choice are known (cf. [71]). The first "orthodox" Reverse Mathematics result on fixed point theorem is Shioji-Tanaka [58], which showed that Brouwer fixed point theorem is equivalent to $W K L_{0}$ over $R C A_{0}$. However, we remark that their setting is considerably different from ours for we focus on countable posets. Section 3.1 provides basic notions with Reverse Mathematics results. Section 3.2 is devoted to Reverse Mathematics of order theoretical fixed point theory. Section 3.3 is a brief survey on combinatorial principles as atypical examples of Reverse Mathematics.

For more details on concepts of order theory, cf., e.g., Birkhoff's classic [4] or modern textbooks $[11,53,55]$. Monographs of fixed point theorems are also available, cf., [23, 24].

3.1 Basic Notions

Definition 3.1 (countable posets). The following definitions are made in RCA_{0}. A countable poset (also called a countable partially ordered set) P consists of a set $|P| \subset \mathbb{N}$ together with a binary relation \leq_{P} such that the system $\left(|P|, \leq_{P}\right)$ obeys the usual partially ordered set axioms, i.e.,

$$
\begin{aligned}
& (\forall x \in P)\left(x \leq_{P} x\right) \text { (reflexivity) } \\
& (\forall x, y \in P)\left(\left(x \leq_{P} y\right) \wedge\left(y \leq_{P} x\right) \rightarrow x=y\right)(\text { antisymmetricity }), \\
& (\forall x, y, z \in P)\left(\left(x \leq_{P} y\right) \wedge\left(y \leq_{P} z\right) \rightarrow x \leq_{P} z\right) \text { (transitivity) } .
\end{aligned}
$$

For notational convenience we write $|P|$ as P. We shall write $\left(x \leq_{P} y\right) \wedge(x \neq y)$ as $x<_{P} y$. A nonempty subset S of P is a chain if S is totally ordered by \leq_{P}, i.e., $(\forall x, y \in S)\left(x \leq_{P} y \vee y \leq_{P} x\right)$.

Lemma 3.2 (maximal chains). RCA_{0} proves that every countable poset has a maximal chain.

Proof. We reason within RCA_{0}. Let $\left\langle a_{i}: i \in \mathbb{N}\right\rangle$ be an enumeration of the elements of a countable poset P. Define $f: \mathbb{N} \rightarrow\{0,1\}$ by primitive recursion by putting $f(n)=1$ if $(\forall i<n)\left(f(i)=1 \rightarrow\left(\left(a_{i} \leq_{P} a_{n}\right) \vee\left(a_{n} \leq_{P} a_{i}\right)\right)\right)$, $f(n)=0$ otherwise. Let M be the set of all a_{i} such that $f(i)=1$. Clearly M is a maximal chain of P. This completes the proof

Definition 3.3 (countable lattices and countable complete lattices). The following definitions are made in RCA_{0}. A countable poset L is called a countable lattice if any two elements of L have a least upper bound and a greatest lower bound. A countable lattice L is complete if any subset of L has a least upper bound and a greatest lower bound.

The following proposition states that arithmetical comprehension is required to obtain binary functions $\sup _{L}$ and $\inf _{L}$ which take two elements to respectively a least upper bound and a greatest lower bound of them. On the other hand, if the order is total we can obtain $\sup _{L}$ and $\inf _{L}$ within RCA_{0} by defining $\sup _{L}(x, y)=\max _{L}\{x, y\}$ and $\inf _{L}(x, y)=\min _{L}\{x, y\}$.

Proposition 3.4. The following are equivalent over $R C A_{0}$.

1. $A C A_{0}$.
2. For any countable lattice L the binary function $\sup _{L}$ exists.
3. For any countable lattice L the binary function $\inf _{L}$ exists.

Proof. The implications $1 \rightarrow 2$ and $1 \rightarrow 3$ follow immediately since the defining formulae of a least upper bound and a greatest upper bound are arithmetical. We shall show the implication $2 \rightarrow 1$. (The implication $3 \rightarrow 1$ is shown dually.) We reason in RCA_{0}. Instead of proving $A C A_{0}$ directly, we will prove the equivalent statement [61, Lemma III.1.3.3]. Let $\alpha: \mathbb{N} \rightarrow \mathbb{N}$ be a one-to-one function. Define a countable lattice L by putting $|L|=\left\{\perp, \top, a_{i}, b_{j}^{k}: i, j, k \in \mathbb{N}\right\}$ where \perp and T are the bottom and the top respectively,

1. $b_{j}^{k} \leq_{L} b_{j^{\prime}}^{k} \leftrightarrow j \leq j^{\prime}$,
2. $a_{i} \leq_{L} b_{j}^{i} \leftrightarrow\left(\exists j^{\prime}<j\right)\left(\alpha\left(j^{\prime}\right)=i\right)$.

By our assumption 2, we have the binary function $\sup _{L}: L^{2} \rightarrow L$. It follows that $(\exists j)(\alpha(j)=i) \leftrightarrow \sup _{L}\left(a_{i}, \perp\right) \neq \top$. Thus the image of α exists by Δ_{1}^{0} comprehension. This completes the proof.

At this time we introduce within RCA_{0} a specific ordering on \mathbb{N} essentially due to Frittaion and Marcone [18]. Let $\alpha: \mathbb{N} \rightarrow \mathbb{N}$ be a one-to-one function. Recall that $n \in \mathbb{N}$ is said to be α-true if $(\forall m>n)(\alpha(m)>\alpha(n))$ and α-false otherwise. Then define an ordering \prec_{α} on \mathbb{N} as follows: for $n<m$,

$$
\begin{gathered}
m \prec_{\alpha} n \Leftrightarrow \alpha(n)>\alpha(k) \text { for some } n<k \leq m, \\
n \prec_{\alpha} m \Leftrightarrow \alpha(n)<\alpha(k) \text { for all } n<k \leq m .
\end{gathered}
$$

We shall write $\left(x \prec_{\alpha} y\right) \vee(x=y)$ as $x \preceq_{\alpha} y$. By the definition, the following hold: a) \preceq_{α} is total, b) if $n \in \mathbb{N}$ is α-true then $\left\{x: x \prec_{\alpha} n\right\}$ is finite, c) if $n \in \mathbb{N}$ is α-false then $\left\{x: n \prec_{\alpha} x\right\}$ is finite, d) $k \leq \#\left\{x>n: n \prec_{\alpha} x\right\}$ if and only if $n \prec_{\alpha} n+k$, and hence the statement $k \leq \#\left\{x: n \prec_{\alpha} x\right\}$ is Σ_{0}^{0}, and e) if $n \in \mathbb{N}$ is α-true and $m \in \mathbb{N}$ is α-false then $n \prec_{\alpha} m$. We will apply this ordering to deduce arithmetical comprehension using Lemma 1.11. This idea is due to Professor Takeshi Yamazaki.

The following criterion for completeness on lattices is known as an example of the Dual Principles for posets. It is not difficult to prove, but we need arithmetical comprehension.

Proposition 3.5. The following are equivalent over $R C A_{0}$.

1. $A C A_{0}$
2. Let L be a countable lattice. If there exists a least upper bound for every subset S of L, then there exists a greatest lower bound for every subset S of L, i.e., L is complete.
3. Let L be a countable lattice. If there exists a greatest lower bound for every subset S of L, then there exists a least upper bound for every subset S of L, i.e., L is complete.

Proof. First we show the implication $1 \rightarrow 2$. By arithmetical comprehension, let $S^{\prime}=\left\{x \in L:(\forall y \in S)\left(x \leq_{L} y\right)\right\}$ for given $S \subset L$. It is easily verified that a least upper bound for S^{\prime} is a greatest lower bound for S.

Second we show the implication $2 \rightarrow 1$. We reason in RCA_{0}. Instead of proving $A C A_{0}$ directly, we will prove the equivalent statement Lemma 1.11.3. Let $\alpha: \mathbb{N} \rightarrow \mathbb{N}$ be a one-to-one function. We may assume that there are infinitely many α-false elements. Define a countable lattice L by letting $|L|=\mathbb{N}$ and $n \leq_{L} m \leftrightarrow n \prec_{\alpha} m$. Observing that " n is α-false" is Σ_{1}^{0}, by Lemma 1.3.2, let $X \subset L$ be an infinite set of α-false elements. Clearly X does not have any greatest lower bound. By our assumption 2, there exists a subset $Y \subset L$ with no least upper bound. Clearly Y is an infinite set of α-true elements.

The equivalence between 1 and 3 is shown dually. This completes the proof.

Next we turn our attention to completeness on posets.
Definition 3.6 (CPOs). The following definitions are made within RCA_{0}. A nonempty subset D of a countable poset P is directed if

$$
(\forall x, y \in D)(\exists z \in D)\left(\left(x \leq_{P} z\right) \wedge\left(y \leq_{P} z\right)\right)
$$

A countable poset P is complete or a $C P O$ if P has the smallest element \perp_{P} and every directed subset D of P has a least upper bound. The least upper bound of D is denoted by $\sup D$. A subset S of a CPO P is a sub-CPO of P if $\perp_{P} \in S$ and $\sup D \in S$ for any directed subset D of S.

The following proposition is convenient to think of completeness.
Proposition 3.7. The following is provable within RCA_{0}. Let P be a countable poset. Then the following are equivalent.

1. Any directed subset of P has a least upper bound.
2. Any chain of P has a least upper bound.
3. Any \leq_{P}-increasing sequence of P has a least upper bound.

We can also show the similar result on greatest lower bounds.

Proof. The implication $1 \rightarrow 2$ is immediate since any chain is directed. First we show the implication $2 \rightarrow 3$. Let $\left\langle a_{i}: i \in \mathbb{N}\right\rangle$ be a \leq_{P}-increasing sequence of P. If $\left\langle a_{i}: i \in \mathbb{N}\right\rangle$ has a largest element a_{i}, then this a_{i} is a least upper bound of $\left\langle a_{i}: i \in \mathbb{N}\right\rangle$. Otherwise let C be an infinite subset of the range of $\left\langle a_{i}: i \in \mathbb{N}\right\rangle$. It follows that C is a chain of P and $\sup C=\sup \left\langle a_{i}: i \in \mathbb{N}\right\rangle$. Finally we show the contraposition of the implication $3 \rightarrow 1$. Assume that a directed subset D of P does not have any least upper bound. Observing that D is infinite, let $\left\langle d_{i}: i \in \mathbb{N}\right\rangle$ be an enumeration of D. Define a \leq_{P}-increasing sequence $\left\langle a_{i}: i \in \mathbb{N}\right\rangle$ of elements of P by primitive recursion by putting $a_{0}=d_{0}$, $a_{n+1}=$ the least $d \in D$ such that $a_{n} \leq_{P} d$ and $d_{n+1} \leq_{P} d$. (Here "least" refers to the ordering of \mathbb{N}.) It follows that $\left\langle a_{i}: i \in \mathbb{N}\right\rangle$ does not have any least upper bound since if it had one then it would be a least upper bound for D. This completes the proof.

In next section we investigate fixed point theorems. Before that we introduce the notions of maps on countable posets.

Definition 3.8 (maps). The following definitions are made in RCA_{0}. Let $\left(P, \leq_{P}\right.$) be a countable poset and let $F: P \rightarrow P$ be a self-map on $P . F$ is orderpreserving if $(\forall x, y \in P)\left(x \leq_{P} y \rightarrow F(x) \leq_{P} F(y)\right) . F$ is inflationary if $(\forall x \in$ $P)\left(x \leq_{P} F(x)\right) . F$ is continuous if for each \leq_{P}-increasing sequence $\left\langle a_{i}: i \in \mathbb{N}\right\rangle$ of elements of P having a least upper bound, the sequence $\left\langle F\left(a_{i}\right): i \in \mathbb{N}\right\rangle$ has a least upper bound and it equals $F\left(\sup \left\langle a_{i}: i \in \mathbb{N}\right\rangle\right)$. Note that every continuous function is order-preserving.

3.2 Fixed Point Theorems

This section is devoted to develop Reverse Mathematics of fixed point theory of countable lattices and posets. First we discuss the fixed point theory on countable complete lattices. The results on countable CPOs will be discussed in the latter part of this section.

The Knaster-Tarski fixed point theorem is fundamental and has tremendous applications. The theorem is first stated by Knaster and Tarski [41] in the restricted form, thereafter by Tarski [70] in its general form. We show that the countable version of the theorem is provable in RCA_{0}.

Proposition 3.9 (Knaster-Tarski fixed point theorem). The following is provable in RCA_{0}. Let L be a nonempty countable complete lattice. If $F: L \rightarrow L$ is order-preserving, then the set of all fixed points of F is nonempty and forms a countable complete lattice. In particular there are a least and a greatest fixed point of F.

Proof. Reasoning within RCA_{0}, let P be the set of all fixed points. It is easily seen that $\inf \left\{x \in L: x \leq_{L} F(x)\right\} \in P$ and hence P is not empty. ${ }^{1}$ To show

[^0]that P is complete, take a subset $X \subset P$ and take $a=\sup X(\in L)$. Letting $Y=\left\{y \in L: a \leq_{L} y \wedge F(y) \leq_{L} y\right\}$, take $b=\inf Y(\in L)$. It follows that $b \in P$ and b is a least upper bound for X in $P .{ }^{2}$ The existence of a greatest lower bound for X in P is shown dually. This completes the proof.

The Knaster-Tarski fixed point theorem within RCA_{0} does not provide the binary functions $\sup _{P}$ and $\inf _{P}$ on the set P of all fixed points (even if $\sup _{L}$ and $\sup _{L}$ are equipped by the lattice). In fact, we have

Proposition 3.10. The following are equivalent over RCA_{0}.

1. $A C A_{0}$.
2. Let L be a countable complete lattice with binary functions $\sup _{L}$ and $\inf _{L}$. Let $F: L \rightarrow L$ be an order-preserving self-map on L. Then the binary function $\sup _{P}$ exists where P is the set of all fixed points of F.
3. Let L be a countable complete lattice with binary functions $\sup _{L}$ and $\inf _{L}$. Let $F: L \rightarrow L$ be an order-preserving self-map on L. Then the binary function $\inf _{P}$ exists where P is the set of all fixed points of F.

Proof. The implications $1 \rightarrow 2$ and $1 \rightarrow 3$ are trivial. We only show the implication $2 \rightarrow 1$ for the implication $3 \rightarrow 1$ is shown dually. We reason within RCA_{0}. Instead of proving ACA_{0} directly, we will prove the equivalent statement [61, Lemma III.1.3.3]. Let $\alpha: \mathbb{N} \rightarrow \mathbb{N}$ be a one-to-one function. Define a countable complete lattice by putting $|L|=\left\{\perp, \top, a_{i}, b_{j}, c_{k}^{l}: i, j, k, l \in \mathbb{N}\right\}$ where \perp and \top are the bottom and the top respectively,

1. $c_{k}^{l} \leq_{L} c_{k^{\prime}}^{l} \leftrightarrow k \leq k^{\prime}$,
2. $a_{i} \leq_{L} c_{k}^{i}$,
3. $b_{i} \leq_{L} c_{k}^{i}$.

Define an order-preserving self-map F on L by putting

1. $F(\perp)=\perp$,
2. $F(T)=T$,
3. $F\left(a_{i}\right)=a_{i}$,
4. $F\left(b_{j}\right)=b_{j}$,
5. $F\left(c_{k}^{l}\right)=c_{k}^{l}$ if $\alpha(k)=l, F\left(c_{k}^{l}\right)=c_{k+1}^{l}$ otherwise.
[^1]Clearly the binary functions $\sup _{L}$ and $\inf _{L}$ exist. By our assumption 2, we have the binary function $\sup _{P}: P^{2} \rightarrow P$ where P is the set of all fixed points of F. It follows that $(\exists j)(\alpha(j)=i) \leftrightarrow \sup _{P}\left(a_{i}, b_{i}\right) \neq \top$. Thus the image of α exists by Δ_{1}^{0} comprehension. This completes the proof.

There is a nice converse to Knaster-Tarski theorem by Davis [12]. We give a proof of the converse in countable case within ACA_{0}. Moreover, we show that arithmetical comprehension is required to prove the converse.

Theorem 3.11 (Davis' converse). The following are equivalent over RCA_{0}.

1. $A C A_{0}$.
2. If L is a countable lattice such that every order-preserving self-map F : $L \rightarrow L$ has a fixed point, then L is complete.

Proof. $(1 \rightarrow 2)$. We reason in ACA_{0}. Let L be an incomplete countable lattice. We shall construct an order-preserving self-map on L with no fixed point. By Proposition 3.7, let $\left\langle a_{i}: i \in \mathbb{N}\right\rangle$ be a \leq_{L}-increasing sequence with no least upper bound. (In the case that $\left\langle a_{i}: i \in \mathbb{N}\right\rangle$ is a \leq_{L}-decreasing sequence with no greatest lower bound, the argument goes dually.) We may assume that $\left\langle a_{i}: i \in \mathbb{N}\right\rangle$ has no duplicates and so is strictly increasing. By arithmetical comprehension, let $U=\left\{x \in L:(\forall i)\left(a_{i} \leq_{L} x\right)\right\}$ be a set of all upper bounds of $\left\langle a_{i}: i \in \mathbb{N}\right\rangle$. Observing that U is infinite, let $\left\langle u_{i}: i \in \mathbb{N}\right\rangle$ be an enumeration of U. Define a sequence $\left\langle b_{i}: i \in \mathbb{N}\right\rangle$ of elements of L by primitive recursion by putting $b_{0}=u_{0}, b_{n+1}=\inf _{L}\left(b_{n}, u_{n+1}\right)$. (Note that the binary function $\inf _{L}$ exists by arithmetical comprehension.) It follows that $(\forall i)\left(b_{i} \in U\right)$ by Σ_{0}^{0} induction on $i .{ }^{3}$ Note that $(\exists i)\left(x \not L_{L} b_{i}\right)$ for all $x \in U$ since if there is a counter example x then this x would be a least upper bound of $\left\langle a_{i}: i \in \mathbb{N}\right\rangle$. Now we define a self-map F on L as follows. For $x \notin U$, let $F(x)=a_{i}$ where i is the least number such that $a_{i} \not \mathbb{L}_{L} x$; and for $x \in U$, let $F(x)=b_{i}$ where i is the least number such that $x \not \mathbb{L}_{L} b_{i}$. It follows that F is order-preserving and does not have any fixed point. This completes the proof of $1 \rightarrow 2$.
$(2 \rightarrow 1)$. We reason in RCA_{0}. Instead of proving ACA_{0} directly, we will prove the equivalent statement Lemma 1.11.2. Let $\alpha: \mathbb{N} \rightarrow \mathbb{N}$ be a one-to-one function. We may assume that there are infinitely many α-false elements. Define a countable lattice L by letting $|L|=\mathbb{N}$ and $n \leq_{L} m \leftrightarrow n \prec_{\alpha} m$. Observing that " n is α-false" is Σ_{1}^{0}, by Lemma 1.3.2, let $X \subset L$ be an infinite set of α false elements. Clearly X does not have any greatest lower bound. Therefore L is incomplete. By our assumption 2, there exists an order-preserving self-map $F: L \rightarrow L$ with no fixed point. It follows that $T=\left\{n: n<_{L} F(n)\right\}$ is the set of all α-true elements. This completes the proof of $2 \rightarrow 1$.

Next we turn our attention to fixed point theorems on CPOs. The following theorem can be found in Kantorovitch [39, Theorem I] (1939). The theorem is also known as Kleene fixed point theorem.

[^2]Proposition 3.12 (Tarski-Kantorovitch fixed point theorem). The following is provable in RCA_{0}. Let P be a CPO and $F: P \rightarrow P$ be a continuous self-map on P. Then the set of all fixed points of F is a CPO.

Proof. We reason within RCA_{0}. First we show that the set of all fixed points of F has the smallest element. Define a \leq_{P}-increasing sequence $\left\langle a_{i}: i \in \mathbb{N}\right\rangle$ by primitive recursion by putting $a_{0}=\perp_{P}$ and $a_{i+1}=F\left(a_{i}\right)$. Let a be a least upper bound of $\left\langle a_{i}: i \in \mathbb{N}\right\rangle$. It follows that

$$
a=\sup \left\langle a_{i}: i \in \mathbb{N}\right\rangle=\sup \left\langle F\left(a_{i}\right): i \in \mathbb{N}\right\rangle=F\left(\sup \left\langle a_{i}: i \in \mathbb{N}\right\rangle\right)=F(a)
$$

Therefore a is a fixed point of F. To show that a is the smallest, let a^{\prime} be a fixed point of F. It follows by Σ_{0}^{0} induction that $(\forall i)\left(a_{i} \leq_{P} a^{\prime}\right)$ namely a^{\prime} is an upper bound of $\left\langle a_{i}: i \in \mathbb{N}\right\rangle$. So we have $a \leq_{P} a^{\prime}$. Next we show 3 of Proposition 3.7 to show the completeness. Let $\left\langle b_{i}: i \in \mathbb{N}\right\rangle$ be a \leq_{P}-increasing sequence of fixed points. Since

$$
F\left(\sup \left\langle b_{i}: i \in \mathbb{N}\right\rangle\right)=\sup \left\langle F\left(b_{i}\right): i \in \mathbb{N}\right\rangle=\sup \left\langle b_{i}: i \in \mathbb{N}\right\rangle,
$$

$\sup \left\langle b_{i}: i \in \mathbb{N}\right\rangle$ is a fixed point. Thus $\left\langle b_{i}: i \in \mathbb{N}\right\rangle$ has a least upper bound in the set of all fixed points. This completes the proof.

The following statement can be found in Bourbaki [5] (1949) and Witt [74] (1951). The countable version of the theorem is easily proven in RCA_{0}.

Proposition 3.13 (Bourbaki-Witt fixed point theorem). The following is provable within RCA_{0}. Let P be a CPO and $F: P \rightarrow P$ be an inflationary self-map on P. Then F has a maximal fixed point. ${ }^{4}$

Proof. We reason in RCA_{0}. By Lemma 3.2, let $M \subset P$ be a maximal chain. It follows by the maximality of M that $a=\sup M$ is a maximal fixed point of F. This completes the proof.

Abian and Brown [1] (1961) proved a fixed point theorem of order-preserving maps on CPOs. The proof is much convoluted than the former theorems. We divide Abian-Brown theorem into two statements. We can prove the following version with maximality within RCA_{0}.

Proposition 3.14 (Abian-Brown Fixed Point Theorem I). The following is provable within RCA_{0}. Let P be a CPO and $F: P \rightarrow P$ be an order-preserving self-map on P. Then F has a maximal fixed point.

Proof. Reasoning within RCA_{0}, let $Q=\left\{x \in P: x \leq_{P} F(x)\right\}$. By Lemma 3.2, let M be a maximal chain of Q. Let $a=\sup M$ and fix any $x \in M$. Since F is order-preserving, $x \leq_{P} a$ implies $F(x) \leq_{P} F(a)$. On the other hand, since $x \in Q$ we have $x \leq_{P} F(x)$. Therefore we have $x \leq_{P} F(a)$. So $F(a)$ is an upper

[^3]bound of M and we have $a \leq_{P} F(a)$. Since F is order-preserving, we have $F(a) \leq_{P} F(F(a))$ and $F(a) \in Q$. Since M is maximal, we have $F(a) \in M$ and $F(a) \leq_{P} a$. Thus we have $a=F(a)$ and clearly a is maximal. This completes the proof.

To prove the version with minimality, we need arithmetical comprehension. Here we give a characterization of the statement of the theorem in terms of the existence of a certain kind of substructure. Note that the conditions (a), (b), and (c) of 2 are Π_{1}^{0} while the statement " Q is a sub-CPO of P " is Π_{1}^{1}. Although the proof in some literature concerns with notions of ordinals, cf., e.g., [55], our proof can be carried out in ACA_{0} sidestepping the notions of ordinals thanks to the countability.

Theorem 3.15 (Abian-Brown Fixed Point Theorem II). The following are equivalent over RCA_{0}.

1. $A C A_{0}$.
2. Let P be a CPO and $F: P \rightarrow P$ be an order-preserving self-map on P. Then there exists a sub-CPO Q of P such that
(a) $(\forall x \in Q)\left(x \leq_{P} F(x)\right)$,
(b) Q is F-invariant, i.e., $(\forall x \in Q)(F(x) \in Q)$,
(c) $(\forall x \in Q)(\forall y \in P)\left(y=F(y) \rightarrow x \leq_{P} y\right)$.
3. Let P be a CPO and $F: P \rightarrow P$ be an order-preserving self-map on P. Then F has a least fixed point.
4. Let P be a CPO and $F: P \rightarrow P$ be an order-preserving self-map on P. If F has a fixed point, then F has a least fixed point.

Proof. (1 $\rightarrow 2$). The set

$$
Q=\left\{x \in P: x \leq_{P} F(x) \wedge(\forall y \in P)\left(y=F(y) \rightarrow x \leq_{P} y\right)\right\}
$$

exists by arithmetical comprehension. Clearly Q includes \perp_{P} and satisfies the condition (a) and (c) by the definition. To show that Q satisfies the condition (b), let $x \in Q$. Since $x \leq_{P} F(x)$ and F is order-preserving, we have $F(x) \leq_{P}$ $F(F(x))$. Let $y \in P$ be a fixed point of F. Since $x \leq_{P} y$ and F is orderpreserving, we have $F(x) \leq_{P} F(y)=y$. Therefore we have $F(x) \in Q$ and thus Q satisfies the condition (b). Finally to show that Q is complete, let $D \subset Q$ be a directed subset and let $a=\sup D$. We shall show that $a \in Q$. Firstly take an element $x \in D$. Since $x \leq_{P} a$ and F is order-preserving, we have $F(x) \leq_{P} F(a)$. On the other hand, we have $x \leq_{P} F(x)$. Therefore we have $x \leq_{P} F(a)$ and consequently $F(a)$ is an upper bound of D. So we have $a \leq_{P} F(a)$. Secondly take a fixed point y of F. Since y is an upper bound of D, we have $a \leq_{P} y$. Thus we have $a \in Q$. This completes the proof of $1 \rightarrow 2$.
$(2 \rightarrow 3)$. By Lemma 3.2, let M be a maximal chain of Q. Let $a=\sup M$. Since Q is a sub-CPO of P, we have $a \in Q$. For any $x \in M$, we have $x \leq_{P} a$.

Since F is order-preserving, we have $F(x) \leq_{P} F(a)$. On the other hand, by (a), we have $x \leq_{P} F(x)$. Therefore we have $x \leq_{P} F(a)$, and consequently $F(a)$ is an upper bound of M. So we have $a \leq_{P} F(a)$. On the other hand, by (b), $F(a) \in Q$. By the maximality of M, we have $F(a) \in M$. So it follows that $F(a) \leq_{P} a$. Finally we have $a=F(a)$ and a is a least fixed point of F by (c). This completes the proof of $2 \rightarrow 3$.
$(3 \rightarrow 4)$ is trivial.
$(4 \rightarrow 1)$. We reason in RCA_{0}. Instead of proving ACA_{0} directly, we will prove the equivalent statement Lemma 1.11.3. Let $\alpha: \mathbb{N} \rightarrow \mathbb{N}$ be a one-toone function. We may assume that there are infinitely many α-false elements. Define a countable poset by putting $|P|=\left\{a_{i}^{j}, b_{k}: i, j, k \in \mathbb{N}\right\}$ and

1. $a_{i}^{j} \leq_{P} a_{i^{\prime}}^{j^{\prime}} \leftrightarrow\left(j \prec_{\alpha} j^{\prime}\right) \vee\left(j=j^{\prime} \wedge i \leq i^{\prime}\right)$,
2. $b_{k} \leq_{P} b_{k^{\prime}} \leftrightarrow k^{\prime} \leq k$,
3. $a_{i}^{j}<_{P} b_{k} \leftrightarrow k \leq \#\left\{x: j \prec_{\alpha} x\right\}$,
4. $b_{k}<_{P} a_{i}^{j} \leftrightarrow \#\left\{x: j \prec_{\alpha} x\right\}<k$.

Define an order-preserving self-map $F: P \rightarrow P$ by $F\left(a_{i}^{j}\right)=a_{i+1}^{j}, F\left(b_{k}\right)=b_{k}$. Clearly F has a fixed point, but does not have any least fixed point. By our assumption 4, P is incomplete. Therefore there exists a directed subset D of P with no least upper bound. Let X be an infinite set of elements $j \in \mathbb{N}$ such that $(\exists i)\left(a_{i}^{j} \in D\right)$. It follows that X is an infinite set of α-true elements. This completes the proof of $4 \rightarrow 1$.

The converse of the theorem is known, cf. Markowsky [46]. To prove this, we again need arithmetical comprehension.

Theorem 3.16 (Markowsky's Converse). The following are equivalent over RCA_{0}.

1. $A C A_{0}$.
2. If P is a countable poset such that every order-preserving self-map F : $P \rightarrow P$ has a least fixed point, then P is a CPO.

Proof. $(1 \rightarrow 2)$. We reason in ACA_{0}. Let P be a countable poset such that every order-preserving self-map has a least fixed point. P has the least element since any element is a fixed point of the identity map. To obtain a contradiction, suppose that P is not complete. By Proposition 3.7, let $\left\langle a_{i}: i \in \mathbb{N}\right\rangle$ be a \leq_{P}-increasing sequence with no least upper bound. We may assume that $\left\langle a_{i}\right.$: $i \in \mathbb{N}\rangle$ is strictly increasing. By arithmetical comprehension, let $U=\{x \in P$: $\left.(\forall i)\left(a_{i} \leq_{P} x\right)\right\}$ be a set of all upper bounds for $\left\langle a_{i}: i \in \mathbb{N}\right\rangle$. Now we define a self-map F on P by $F(x)=a_{i}$ where i is the least number such that $a_{i} \not \not_{P} x$ if $x \notin U, F(x)=x$ if $x \in U$. Clearly F is order-preserving and does not have a least fixed point, a contradiction. This completes the proof of $1 \rightarrow 2$.
$(2 \rightarrow 1)$. We reason in RCA_{0}. Instead of proving ACA_{0} directly, we will prove the equivalent statement Lemma 1.11.3. Let $\alpha: \mathbb{N} \rightarrow \mathbb{N}$ be a one-to-one function. We may assume that there are infinitely many α-false elements. Define a countable poset P by letting $|P|=\mathbb{N}$ and $n \leq_{P} m \leftrightarrow n \succeq_{\alpha} m$. Observing that " n is α-false" is Σ_{1}^{0}, by Lemma 1.3.2, let $X \subset P$ be an infinite set of α-false elements. Clearly X is a directed set with no least upper bound. Therefore P is incomplete. By our assumption 2, there exists an order-preserving self-map $F: P \rightarrow P$ with no least fixed point. It is easy to check that if n is α-false then n is not a fixed point and $n<_{P} F(n)$. We will claim that a set of α-true elements $Y=\left\{n: F(n) \leq_{P} n\right\}$ is infinite. If F has a fixed point then F has infinitely many ones. So Y is infinite. If F does not have a fixed point then n is α-true $\leftrightarrow F(n)<_{P} n$. Thus in both case the claim holds. This completes the proof of $2 \rightarrow 1$.

3.3 Combinatorial Principles

In this section we refer to combinatorial principles which are not classified into "big five" systems.
Definition 3.17 (CAC and ADS, [59]). Let S be a subset of a countable partially ordered set $\left(P,<_{P}\right) . S$ is said to be a chain if $(\forall a, b \in S)\left(a<_{P} b \vee a=\right.$ $\left.b \vee b<_{P} a\right) . S$ is said to be an antichain if $(\forall a, b \in S)\left(\neg\left(a<_{P} b\right) \wedge \neg\left(b<_{P} a\right)\right)$. S is said to be an ascending sequence if $(\forall a, b \in S)\left(a<b \rightarrow a<_{P} b\right)$. S is said to be a descending sequence if $(\forall a, b \in S)\left(a<b \rightarrow a>_{P} b\right)$.

CAC (Chain AntiChain) states that every countable infinite partially ordered set has an infinite subset that is either a chain or an antichain. ADS (Ascending or Descending Sequence) states that every countable infinite linear ordered set has an infinite subset S that is either an ascending sequence or a descending sequence.

It is possible that we define an ascending or a descending sequence as a function rather than a set. However it does not make difference in the sense that for example if we have an ascending sequence as a set then we have an ascending sequence as a function and vise versa via Lemma 1.3. As they say in [59], by a nice application of $\operatorname{RT}(2,2)$, CAC is shown.

Proposition 3.18. $\mathrm{RCA}_{0}+\mathrm{RT}(2,2)$ proves CAC.
Proof. Let P be a countable infinite partially ordered set. Define $f:[\mathbb{N}]^{2} \rightarrow$ $\{0,1\}$ as

$$
f((a, b))= \begin{cases}0 & \left(a \in P \wedge b \in P \wedge\left(a<_{P} b \vee b<_{P} a\right)\right) \\ 1 & \text { (otherwise) }\end{cases}
$$

By RT(2,2), we have infinite subset X of \mathbb{N} and $i \in\{0,1\}$ such that $(\forall\langle a, b\rangle \in$ $\left.[X]^{2}\right)(f(\langle a, b\rangle)=i)$.

In the case of $i=0$, clearly $X \subset P$ and X is an infinite chain.
In the case of $i=1$, let $Y=X \cap P$. Clearly $Y \subset P$ and Y is an infinite antichain.

It is known that the following diagram holds and WKL_{0} is incomparable with CAC nor ADS over $\mathrm{RCA}_{0}[43,59]$

$$
\mathrm{RCA}_{0} \subsetneq \mathrm{RCA}_{0}+\mathrm{ADS} \subsetneq \mathrm{RCA}_{0}+\mathrm{CAC} \subsetneq \mathrm{RCA}_{0}+\mathrm{RT}(2,2)
$$

The statement argued in the following proposition is from [11, 2.40 Theorem].
Proposition 3.19. RCA_{0} proves that ADS is equivalent to the following statement. A countable partially ordered set has an infinite chain if and only if it has an ascending chain or a descending chain.

Proof. First we prove the statement within $\mathrm{RCA}_{0}+\mathrm{ADS}$. Let P be a countable partially ordered set. If P has an ascending or a descending sequence, then it is an infinite chain. (We don't need ADS to show this direction.) Conversely, assume that we have an infinite chain C of P. Observing that C is a countable infinite linear ordered set, by ADS, we have an ascending or a descending chain of C.

Second we prove within RCA_{0} that the statement implies ADS. Let $\left(L,<_{L}\right)$ be a countable infinite linear ordered set. Observing L itself is an infinite chain of L, by the statement L has an ascending or a descending sequence. This completes the proof.

4 Countable Semigroups and Monoids

In this chapter we do Reverse Mathematics of countable semigroup theory. In Section 2.2, we show that Isbell's zaig-zag theorem is equivalent to $W K L_{0}$ over $R C A_{0}$. In Section 2.3, we explore the Reverse Mathematics of the Rees theorem. We see that $A C A_{0}$ proves the Rees theorem for countable semigroups. The research for the reversal is ongoing.

4.1 Basic Notions

The following definitions are made in RCA_{0}. A countable semigroup S consists of a nonempty set $|S| \subset \mathbb{N}$ together with a binary operation $\cdot_{S}:|S|^{2} \rightarrow|S|$ which is associative, that is, $(\forall s, t, r \in S)\left(\left(s \cdot{ }_{S} t\right) \cdot s r=s \cdot{ }_{S}(t \cdot S r)\right)$. For notational convenience we write $|S|$ as $S, s \cdot{ }_{S} t$ as $s t$ for $s, t \in S,(s t) r(=s(t r))$ as $s t r$, and so on. If there exists a distinguished element $1_{S} \in S$ which satisfies $1_{S} s=s 1_{S}=s$ for all $s \in S$, we say that the element is an identity and that the system $\left(S, \cdot_{S}, 1_{S}\right)$ is a countable monoid. A distinguished element $0_{S} \in S$ which satisfies $0_{S} s=s 0_{S}=0_{S}$ for all $s \in S$ is called a zero. A element $e \in S$ which satisfies $e e=e$ is called an idempotent. A subset $I \subset S$ which satisfies $(\forall s \in S)(\forall a \in I)(s a \in I \wedge a s \in I)$ is called an ideal. Furthermore, If $I \neq S$ then I is called a proper ideal. A relation R on a semigroup is called left compatible if $(\forall s, t, a \in S)(s R t \rightarrow a s R a t)$ and right compatible if $(\forall s, t, a \in S)(s R t \rightarrow s a R t a)$. It is called compatible if $\left(\forall s, t, s^{\prime}, t^{\prime} \in S\right)\left(s R t \wedge s^{\prime} R t^{\prime} \rightarrow s s^{\prime} R t t^{\prime}\right)$. One can see that a relation is compatible if and only if it is both left and right compatible. An compatible equivalence relation is called congruence. A congruence on a semigroup S give rise to a quotient semigroup S / R. Notions of homomorphisms and isomorphisms on semigroups or monoids are made in a straightforward way. For more information for semigroup theory see, for example, Higgins [28], Howie [36], or Tamura [68]. The following lemma is an analog of Lemma 2.4.

Lemma 4.1. The following is provable within WKL_{0}. Let S be a semigroup and R be a reflexive, symmetric, and compatible relation on S. Let $s, t \in S$ not have a sequence $a_{1}, a_{2}, \ldots, a_{n} \in S$ such that

$$
s=a_{1} \wedge a_{1} R a_{2} \wedge \cdots \wedge a_{n-1} R a_{n} \wedge a_{n}=t
$$

Then R can be extended to a congruence R^{\prime} such that $\neg s R^{\prime} t$.
Proof. The same ideas as for Theorem 2.4 applies. In defining the binary tree T, add the following two clauses for left and right compatibility.
$\forall i, j<\operatorname{lh}(t), \forall a<\operatorname{lh}(t)\left[a \in M \wedge t(i)=1 \wedge \pi_{1}(j)=a \pi_{1}(i) \wedge \pi_{2}(j)=a \pi_{2}(i) \rightarrow t(j)=1\right]$,
$\forall i, j<\operatorname{lh}(t), \forall a<\operatorname{lh}(t)\left[a \in M \wedge t(i)=1 \wedge \pi_{1}(j)=\pi_{1}(i) a \wedge \pi_{2}(j)=\pi_{2}(i) a \rightarrow t(j)=1\right]$.

4.2 Dominions and Isbell's Zig-Zag Theorem

In this section we determine the exact logical strength of the existence of dominions and Isbell's zig-zag theorem for countable monoids. If A and B are monoids and $A \subset B$, then we say both that A is a submonoid of B and B is a monoid extension of A. Below we define the notions of dominions and zig-zags. Note that the assertion " b is dominated by A " is Π_{1}^{1} while " b has a zig-zag over A" is Σ_{1}^{0}.

Definition 4.2 (dominions). The following definitions are made in RCA_{0}. Let $A \subset B$ be monoids and $b \in B . b$ is dominated by A if for any monoid C and for any pair of homomorphisms $f, g: B \rightarrow C$, if $(\forall a \in A)(f(a)=g(a))$, abbreviated $f \upharpoonright_{A}=g \upharpoonright_{A}$, then $f(b)=g(b)$. The dominion of A is the set of all elements of B that is dominated by A. The dominion of A forms a submonoid of B including A.

Definition 4.3 (zig-zags). Let $A \subset B$ be monoids and $b \in B$. A zig-zag of b over A is a triple of sequences $\left\langle\left\langle a_{0}, a_{1}, \ldots, a_{2 m}\right\rangle,\left\langle x_{1}, x_{2}, \ldots, x_{m}\right\rangle,\left\langle y_{1}, y_{2}, \ldots, y_{m}\right\rangle\right\rangle$ such that

1. $a_{i} \in A$ and $x_{j}, y_{j} \in B(0 \leq i \leq 2 m, 1 \leq j \leq m)$,
2. $b=x_{1} a_{0}=a_{2 m} y_{m}$,
3. $a_{0}=a_{1} y_{1}, a_{2 i} y_{i}=a_{2 i+1} y_{i+1}(1 \leq i<m)$,
4. $x_{i} a_{2 i-1}=x_{i+1} a_{2 i}(1 \leq i<m), x_{m} a_{2 m-1}=a_{2 m}$.

For example, the system $\left(\mathbb{Z},+_{\mathbb{Z}}, 0_{\mathbb{Z}}\right)$ forms a countable monoid. Let $A=$ $\{0, j+1, j+2, \ldots\}(0 \leq j)$ and $B=\mathbb{Z} . A$ is a submonoid of B and $1 \in B$ has a zig-zag

$$
a_{0}=j+2, a_{1}=j+1, a_{2}=0, x_{1}=-j-1, y_{1}=1
$$

over A. It is convenient to illustrate this by the equations below

$$
\begin{aligned}
1 & =(-j-1)+(j+2) \\
& =(-j-1)+(j+1)+1 \\
& =\quad 0+1 .
\end{aligned}
$$

We see that 1 is dominated by A since

$$
\begin{aligned}
f(1) & =f((-j-1)+(j+2)) \\
& =f(-j-1)+f(j+2) \\
& =f(-j-1)+g(j+2) \\
& =f(-j-1)+g((j+1)+1) \\
& =f(-j-1)+g(j+1)+g(1) \\
& =f(-j-1)+f(j+1)+g(1) \\
& =f((-j-1)+(j+1))+g(1) \\
& =f(0)+g(1) \\
& =g(0)+g(1) \\
& =g(0+1) \\
& =g(1)
\end{aligned}
$$

for any countable monoid C and any homomorphisms $f, g: B \rightarrow C$ such that $f \upharpoonright_{A}=g \upharpoonright_{A}$. On the other hand, if we let $A^{\prime}=\{0\}$, then $1 \in B$ does not have a zig-zag over A^{\prime} and is not dominated by A^{\prime}. This simple difference between the two cases is a key idea to show the reversals.

In general, it is provable in RCA_{0} that if b has a zig-zag over A then b is dominated by A by Δ_{1}^{0} induction on the length of the zig-zag. Isbell's zig-zag theorem for countable monoids states that the converse direction is also hold. That is, if A is a submonoid of B, then $b \in B$ is dominated by A if and only if b has a zig-zag over A. We show that the zig-zag theorem is equivalent to $W_{K L} L_{0}$ over RCA_{0}.

Theorem 4.4. The following are equivalent over RCA_{0}.

1. WKL_{0}.
2. Isbell's zig-zag theorem for countable monoids.

Proof. $(1 \rightarrow 2)$. We show "only if" part reasoning within WKL_{0}. Let $A \subset B$ be monoids and $b^{*} \in B$ not have any zig-zag over A. We shall construct a monoid C and two homomorphisms $f, g: B \rightarrow C$ such that $f \upharpoonright_{A}=g \upharpoonright_{A}$ and $f\left(b^{*}\right) \neq g\left(b^{*}\right)$. Let L be the set of all elements of B plus a new element |. Let M be the monoid of all finite words over the alphabet L. Define a relation $R \subset M \times M$ by

1. $\sigma \tau \rho R \sigma \tau^{\prime} \rho$ if τ and τ^{\prime} do not contain | and the computation of τ in B equals to the computation of τ^{\prime} in B,
2. $\sigma a|\rho R \sigma| a \rho, \sigma|a \rho R \sigma a| \rho$ if $a \in A$,
3. $\sigma\|\tau R \sigma \tau, \sigma \tau R \sigma\| \tau$.

By the argument in Hoffman's proof in [32], there does not exist any sequence of M such that

$$
b^{*}\left|=w_{1} \wedge w_{1} R w_{2} \wedge w_{2} R w_{3} \wedge \cdots \wedge w_{n-1} R w_{n} \wedge w_{n}=\right| b^{*}\left(2 \leq n, w_{i} \in M\right)
$$

By Lemma 4.1, there exists a congruence $R^{\prime} \supset R$ such that $\neg b^{*}\left|R^{\prime}\right| b^{*}$. Thus we can form a quotient monoid $C=M / R^{\prime}$. Define $f, g: B \rightarrow C$ by $f(b)=b$ and $g(b)=|b|$ for all $b \in B$. Clearly C, α and β have the desired properties. This completes the proof of $1 \rightarrow 2$.
$(2 \rightarrow 1)$. We reason within RCA_{0}. Instead of proving weak König's lemma directly, we will prove the equivalent statement Lemma 1.13.3. Let $\alpha, \beta: \mathbb{N} \rightarrow \mathbb{N}$ be one-to-one functions such that $\left(\forall j, j^{\prime}\right)\left(\alpha(j) \neq \beta\left(j^{\prime}\right)\right)$. Let $B=\bigoplus_{i \in \mathbb{N}} \mathbb{Z} x_{i}+\mathbb{Z} y$, the free abelian group generated by a set of indeterminates $\left\{x_{0}, x_{1}, x_{2}, \ldots, y\right\}$. Define a sequence of submonoids $\left\langle A_{i}: i \in \mathbb{N}\right\rangle$ of B as $A_{i}=\left\{0_{B}\right\} \cup\left\{j x_{i}:\left(\exists j^{\prime}<\right.\right.$ $\left.m)\left(f\left(j^{\prime}\right)=i\right)\right\}$ where 0_{B} is the identity of B. It follows that

$$
A_{i}= \begin{cases}\left\{0_{B},(j+1) x_{i},(j+2) x_{i}, \ldots\right\} & \text { if } \alpha(j)=i \\ \left\{0_{B}\right\} & \text { if no such } j \text { exists }\end{cases}
$$

Let $A=\bigoplus_{i \in \mathbb{N}} A_{i}$ as a subset of B. Note that A is a submonoid of B. Now we shall see that the subgroup S of B generated by $\left\{(j+1) x_{\beta(j)}-y: j \in \mathbb{N}\right\}$ exists. Given an element b of B, say $b=\sum_{i=0}^{n} c_{i} x_{l_{i}}-c y\left(c_{i}, c \in \mathbb{Z}, c_{i} \neq 0\right)$, we see that $b \in S$ if and only if for each $i \leq n$ there exists $k_{i} \leq\left|c_{i}\right|$ such that $\beta\left(k_{i}\right)=l_{i}$ and $\sum_{i=0}^{n} c_{i} /\left(k_{i}+1\right)=c$. Thus S exists by Δ_{1}^{0} comprehension and we can form the quotient group $B^{\prime}=B / S$. Let $A^{\prime}=\{\bar{a}: a \in A\}$ where \bar{a} is an element of B^{\prime} corresponding to a (however from now on we shall use the same symbols as the elements of B to denote elements of B^{\prime} and shall not use overbar symbols for our convenience). Note that A^{\prime} is a submonoid of B^{\prime} and y does not have a zig-zag over A^{\prime}. By our assumption 2 , let C be a monoid and $f, g: B^{\prime} \rightarrow C$ be homomorphisms such that $f \upharpoonright_{A^{\prime}}=g \upharpoonright_{A^{\prime}}$ and $f(y) \neq g(y)$. Let $D=\left\{b \in B^{\prime}: f(b)=g(b)\right\}$. It follows that $x_{\alpha(j)} \in D$ and $x_{\beta(j)} \notin D$ for all $j \in \mathbb{N}$. Setting $X=\left\{i: x_{i} \in D\right\}$ we obtain $(\forall j)(\alpha(j) \in X \wedge \beta(j) \notin X)$. Thus by Lemma 1.13, we have weak König's lemma. This completes the proof of $2 \rightarrow 1$.

Next we state the equivalence between ACA_{0} and the existence of dominions.
Theorem 4.5. The following are equivalent over RCA_{0}.

1. $A C A_{0}$.
2. If A is a submonoid of B, the dominion of A exists.

Proof. $(1 \rightarrow 2)$. We reason within ACA $_{0}$. By Theorem 4.4, we have Isbell's zig-zag theorem for countable monoids. Then, b is dominated by A if and only if b has a zig-zag over A. The right-hand side of this equivalence is arithmetical. Hence, by arithmetical comprehension, we obtain the dominion of A. This completes the proof of $1 \rightarrow 2$.
$(2 \rightarrow 1)$. We reason within RCA_{0}. Instead of proving ACA_{0} directly, we will prove the equivalent statement Lemma 1.9.3. Let $\alpha: \mathbb{N} \rightarrow \mathbb{N}$ be a given one-toone function. Let $B=\bigoplus_{i \in \mathbb{N}} \mathbb{Z} x_{i}$ be the free abelian group generated by a set of indeterminates $\left\{x_{0}, x_{1}, x_{2}, \ldots\right\}$. Define a sequence of submonoids $\left\langle A_{i}: i \in \mathbb{N}\right\rangle$ of B as $A_{i}=\left\{0_{B}\right\} \cup\left\{j x_{i}:\left(\exists j^{\prime}<j\right)\left(f\left(j^{\prime}\right)=i\right)\right\}$ where 0_{B} is the identity of B. It follows that $A_{i}= \begin{cases}\left\{0_{B},(j+1) x_{i},(j+2) x_{i}, \ldots\right\} & \text { if } \alpha(j)=i, \\ \left\{0_{B}\right\} & \text { if no such } j \text { exists. }\end{cases}$
Let $A=\bigoplus_{i \in \mathbb{N}} A_{i}$ as a subset of B. Note that A is a submonoid of B. By our assumption 2, let D be the dominion of A. We shall show that $x_{i} \in D \leftrightarrow$ $(\exists j)(\alpha(j)=i)$ for all $i \in \mathbb{N}$. If $(\exists j)(\alpha(j)=i)$ then x_{i} has a zig-zag and hence dominated by A. To show the converse direction, let $\neg(\exists j)(\alpha(j)=i)$. Define a pair of homomorphisms $f, g: B \rightarrow B$ as f is the identity map and $g\left(\sum j_{k} x_{k}\right)=\sum_{k \neq i} j_{k} x_{k}$. It follows that $f \upharpoonright_{A}=g \upharpoonright_{A}$ and $f\left(x_{i}\right)=x_{i} \neq 0_{B}=$ $g\left(x_{i}\right)$. Thus x_{i} is not dominated by A. Hence, by Δ_{1}^{0} comprehension, we obtain $(\exists X)(\forall i)(i \in X \leftrightarrow(\exists j)(\alpha(j)=i))$. Thus by Lemma 1.9, we have arithmetical comprehension. This completes the proof of $2 \rightarrow 1$.

Finally, we show that in standard literatures they show the strictly stronger assertion (2 of the proposition below) than the zig-zag theorem.

Theorem 4.6. The following are equivalent over RCA_{0}.

1. $A C A_{0}$.
2. If A is a submonoid of B, then there exist a monoid C and a pair of homomorphisms $f, g: B \rightarrow C$ satisfying following two conditions

- $f \upharpoonright_{A}=g \upharpoonright_{A}$,
- $f(b)=g(b)$ if and only if b has a zig-zag over $A(b \in B)$.

Proof. $(1 \rightarrow 2)$. We carry out Hoffman's proof [32] within ACA $_{0}$. For given monoids $A \subset B$, let M and R be the monoid and the binary relation on M same as the proof of Theorem 4.4. By the argument in Hoffman's proof in [32], b has a zig-zag over A if and only if there is a sequence of M such that

$$
b\left|=w_{1} \wedge w_{1} R w_{2} \wedge w_{2} R w_{3} \wedge \cdots \wedge w_{n-1} R w_{n} \wedge w_{n}=\right| b\left(2 \leq n, w_{i} \in M\right)
$$

By Theorem 2.3, there exists the transitive closure R^{\prime} of $R . R^{\prime}$ is a congruence of M, giving rise to a quotient monoid $C=M / R^{\prime}$. Define $f, g: B \rightarrow C$ by $f(b)=b$ and $g(b)=|b|$ for all $b \in B$. Clearly C, f and g have the desired properties. This completes the proof of $1 \rightarrow 2$.
$(2 \rightarrow 1)$. We reason within RCA_{0}. By Theorem 4.5, it suffices to show that for a given monoids $A \subset B$ there exists the dominion of A. Let $A \subset B$ be monoids. By our assumption 2, let C be a monoid and $f, g: B \rightarrow C$ be homomorphisms such that $f(b)=g(b)$ if and only if b has a zig-zag over A. Letting $D=\{b \in B: f(b)=g(b)\}$, we see that D is the dominion of A. This completes the proof of $2 \rightarrow 1$.

4.3 Rees Theorem

In this section we explore the logical strength of the Rees theorem for countable semigroups. Similarly as the Artin-Wedderburn theorem which motivated the Rees theorem, this theorem reveals the structure of a certain class of semigroups.

The following definitions are made in RCA_{0}. Let S be a semigroup without zero. S is called simple if $(\forall s, t \in S)(\exists a, b \in S)(a s b=t)$. If S is simple then S has no proper ideals. Define the partial order on the set of all idempotents in S as $e \leq_{S} f$ if $e f=f e=e . S$ is called complete if there exists a minimal element with respect to this order. The next is the example of a complete and simple semigroup.

Definition 4.7 (Rees Matrix Semigroup). The following definitions are made in RCA_{0}. Let G be a countable group (for the notion of countable groups, see Section 5), I and Λ be nonempty sets, and $P: \Lambda \times I \rightarrow G$. Let $|S|=$ $I \times G \times \Lambda$ and define the binary operation $\cdot s$ on $|S|$ by putting $(i, a, \lambda) \cdot s(j, b, \mu)=$ $(i, a P(\lambda, j) b, \mu)$. The system $(|S|, \cdot S)$ forms a countable semigroup and is called a Rees matrix semigroup and denoted by $M(G ; I, \Lambda, P)$.

We can easily prove within RCA_{0} that a Rees matrix semigroup does not have a zero, simple, and complete. In fact, every idempotent of a Rees matrix semigroup is minimal. the Rees Theorem states that the converse holds, namely that every simple and complete semigroup without zero is isomorphic to some Rees matrix semigroup. (The Rees theorem for semigroups with 0 is also available. However we do not treat this part to simplify the argument.) We can prove the theorem within ACA_{0}.

Proposition 4.8. $A^{\prime} A_{0}$ proves the Rees theorem for countable semigroups.
Proof. The proof of Theorem 3.2.3 in Howie [36] can be carried out within ACA ${ }_{0}$ by means of Theorem 2.5.

It is expected that the reversal holds, that is, the Rees theorem implies arithmetical comprehension over RCA ${ }_{0}$. Reasoning within RCA_{0}, there exists the left equivalence $\{(s, t) \in S \times S:(\exists x, y \in S)(x s=t \wedge y t=s)\}$ of a Rees matrix semigroup $S=M(G ; I, \Lambda, P)$ for we know the structure of the semigroup. In fact, (i, a, λ) and (j, b, μ) are left equivalent if and only if $\lambda=\mu$. So one strategy is to find a simple and complete semigroup without zero whose left equivalence computes the image of a given injection. More precisely, it is enough to show following in order to show the reversal.

Conjecture 4.9. The following implies ACA_{0} over RCA_{0}. Let S be a simple and complete semigroup without zero. Then the left equivalence $\{(s, t) \in S \times S$: $(\exists x, y \in S)(x s=t \wedge y t=s)\}$ exists.

We have only partial results.
Proposition 4.10. The following implies ACA_{0} over RCA_{0}. Let S be a complete semigroup without zero. Then the left equivalence $\{(s, t) \in S \times S:(\exists x, y \in$ $S)(x s=t \wedge y t=s)\}$ exists.

Proof. Reasoning within RCA_{0} we show arithmetical comprehension via Lemma 1.9. Let $\alpha: \mathbb{N} \rightarrow \mathbb{N}$ be a one-to-one function. By Δ_{1}^{0} comprehension, let $S=\bigoplus_{i \in \mathbb{N}} \mathbb{N} x_{i} /(2 j+3) x_{\alpha(j)}=0, j \in \mathbb{N}$. Define an associative operation $+_{S}$ on S as a usual component-wise addition. An identity of S is an only idempotent of S hence S is complete. Clearly S does not have a zero. By our assumption, let L be a left equivalence on S. It follows that $i \in \operatorname{Im} \alpha$ if and only if $x_{i} L x_{i}$. Therefore by Δ_{1}^{0} comprehension the image of α exists. This completes the proof. (Note that S is not simple.)

Question 4.11. Does or does not the Rees theorem for countable semigroups imply $A C A_{0}$?

5 Countable Groups

In this chapter we do Reverse Mathematics of countable group theory. Section 5.1 is strongly effected by Downey et al. [13, 14]. Section 5.2 develops theory of neat subgroups by Honda in second order arithmetic. Section 5.3 and 5.4 is respectively devoted to Reverse Mathematics of normalizers and abelianizers. Abelianizers are as known as derived subgroups or commutator groups.

5.1 Basic Notions

The following definitions are made in RCA_{0}. A countable group G consists of a nonempty set $|G| \subset \mathbb{N}$ together with a binary operation ${ }^{\circ}{ }_{G}:|G|^{2} \rightarrow|G|$, a unary operation ${ }^{-1_{G}}:|G| \rightarrow|G|$, and a distinguished element $e_{G} \in|G|$ such that the system $\left(|G|, \cdot{ }_{G},{ }^{-1_{G}}, e_{G}\right)$ obeys the usual group axioms. For notational convenience we write $|G|$ as G and $g \cdot{ }_{G} h$ as $g h$ for $g, h \in G$. If the binary operation satisfies the commutativity, then G is said to be a countable abelian group. In this case we often write \cdot_{G} as $+_{G},{ }^{-1_{G}}$ as $-_{G}$, and e_{G} as 0_{G} additively.

Various notions such as subgroups, normal subgroups, homomorphisms, or isomorphisms are made in a straightforward way. Moreover, RCA RA_{0} establishes the following facts (cf. Solomon [65, Appendix]);

1. Given a normal subgroup N of a countable group G we can form the quotient group G / N of G by N.
2. Given a (possibly infinite) sequence of countable groups $\left\langle G_{i}: i \in \mathbb{N}\right\rangle$ we can form the direct sum $\bigoplus_{i \in \mathbb{N}} G_{i}$ of $\left\langle G_{i}: i \in \mathbb{N}\right\rangle$.
3. Given two countable groups G_{0} and G_{1} we can form the free product $G_{0} * G_{1}$ of G_{0} and G_{1}.
4. Given a (possibly infinite) set $S \subset \mathbb{N}$ we can form the free group and the free abelian group generated by S. We call S the set of indeterminates or alphabets.

For 1, we define the elements of G / N as the minimal (with respect to the order on the natural numbers) representatives of the equivalence classes under the equivalence relation induced by N. The operations on G / N are defined appropriately, cf. Simpson [61, Definition III.5.2]. For 2, 3, and 4, note that the elements in each case can be encoded as finite sequences of elements of given countable groups or alphabets. Especially, an element of the free group generated by S (as known as a word) is of a form $a a b c a^{-1} b b a c^{-1}$ where $a, b, c \in$ S. We define the exponent of each occurrence of an alphabet in a word as follows; the exponents of x is 1 and the exponents of x^{-1} is -1 . We can also define the appropriate operations in each case.

Definition 5.1 (presented groups). The following definition is made in RCA ${ }_{0}$. Let $G=F\left(\left\{x_{0}, x_{1}, \ldots\right\}\right)$ be a free group with infinite alphabets and $R \subset G$. Assume $(\exists N)(N=\langle\langle R\rangle\rangle)$ where $\langle\langle R\rangle\rangle$ denotes the normal subgroup generated
by R, i.e., the subgroup generated by elements of R and their conjugates. We say that G / N is a presented group by the generator $\left\{x_{0}, x_{1}, \ldots\right\}$ and the relator R and write it as $\left\langle\left\{x_{0}, x_{1}, \ldots\right\} \mid R\right\rangle$.

Note that proving $(\exists N)(N=\langle\langle R\rangle\rangle)$ within RCA_{0} corresponds to showing that the word problem for $G /\langle\langle R\rangle\rangle$ is solvable.

In the rest of this section we consider the existence of subgroups in terms of Reverse Mathematics. In ordinary group theory it is known that the class of subgroups of a group forms a lattice with respect to set inclusion. Given two subgroups of a group, the meet of them is the intersection of them and the join of them is the group generated by them. The join of subgroups are also known as the sum of them. It is fairly easy to see that the existence of the meet can be proved in $R C A_{0}$. We show that proving the existence of the join requires $A C A_{0}$ even in the case of a direct sum of an abelian group. Note that the direct sum in this context differs from the previous notion. The direct sum in question is a subset of the original group. Eventually within RCA_{0} we can form a group isomorphic to the direct sum outside of the original group since the direct sum is definable by a Σ_{1}^{0} formula, see Simpson [61, Lemma II.3.7].

Proposition 5.2. The following are equivalent over $R C A_{0}$.

1. $A C A_{0}$.
2. $H+I$, the generated subgroup by $H \cup I$ exists for any subgroups H, I of any countable group G.
3. $B \oplus C$, the generated subgroup by $B \cup C$ exists for any subgroups B, C of any countable abelian group A provided that $B \cap C=\left\{0_{A}\right\}$.

Proof. The implications $1 \rightarrow 2$ is easy and $2 \rightarrow 3$ is trivial. It remains to prove $3 \rightarrow 1$. We reason within $R C A_{0}$. Instead of showing $A C A_{0}$ we shall prove the equivalent statement Lemma 1.9.2. Let $\alpha: \mathbb{N} \rightarrow \mathbb{N}$ be a one-to-one function. Let $A=\left(\bigoplus_{i \in \mathbb{N}} \mathbb{Z} x_{i}\right) \oplus\left(\bigoplus_{i \in \mathbb{N}} \mathbb{Z} y_{i}\right)$ be the free abelian group generated by the infinite set of indeterminates $\left\{x_{i}, y_{i}: i \in \mathbb{N}\right\}$. Let B be the subgroup of A generated by $\left\{(j+1) x_{\alpha(j)}+(j+1) y_{\alpha(j)}: j \in \mathbb{N}\right\}$. B is defined by Δ_{1}^{0} comprehension as follows: An element $\sum_{i=0}^{m} q_{i} x_{i}+\sum_{i=0}^{m} r_{i} y_{i}\left(q_{i}, r_{i} \in \mathbb{Z}\right)$ belongs to B if and only if

- $(\forall i \leq m)\left(q_{i}=r_{i}\right)$, and
- $(\forall i \leq m)\left[q_{i} \neq 0 \rightarrow\left(\exists j, s \leq\left|q_{i}\right|\right)\left(\alpha(j)=i \wedge(j+1) s=\left|q_{i}\right|\right)\right]$.

Similarly, let C be the subgroup of A generated by $\left\{(j+2) x_{\alpha(j)}+(j+1) y_{\alpha(j)}\right.$: $j \in \mathbb{N}\}$. It follows that $B \cap C=\left\{0_{A}\right\}$ and hence $B \oplus C$ exists by our assumption 3. Then for all $i \in \mathbb{N}$ we have $(\exists j)(\alpha(j)=i) \leftrightarrow x_{i} \in B \oplus C$. It follows by Δ_{1}^{0} comprehension that the image of α exists. This completes the proof.

In [13,14], Downey, Hirschfeldt, Kach, Lempp, Mileti, and Montálban showed the following.

- Over $\mathrm{RCA}_{0}, \mathrm{WKL}_{0}$ is equivalent to the statement "Every countable commutative ring with identity that is not a field has a nontrivial proper ideal".
- Over $\mathrm{RCA}_{0}, \mathrm{ACA}_{0}$ is equivalent to the statement "Every countable commutative ring with identity that is not a field has a finitely generated nontrivial proper ideal"
- Over $\mathrm{RCA}_{0}, W^{2} L_{0}$ is equivalent to the statement "Every countable vector space of dimension greater than one (over an infinite field) has a nontrivial proper subspace".
- Over RCA $A_{0}, A C A_{0}$ is equivalent to the statement "Every countable vector space of dimension greater than one (over an infinite field) has a finitedimensional nontrivial proper subspace".

We shall show similar results of countable groups by slightly modifying the construction of [13].
Theorem 5.3. The following are equivalent over RCA_{0}.

1. WKL_{0}.
2. Every nontrivial countable group that is not a cyclic group of prime order has a nontrivial proper subgroup.
3. Every nontrivial countable abelian group that is not a cyclic group of prime order has a nontrivial proper subgroup.

Proof. The implication $1 \rightarrow 2$ is easy and $2 \rightarrow 3$ is trivial. It remains to prove $3 \rightarrow 1$. We reason within RCA_{0}. Instead of showing WKL_{0} we shall prove the equivalent statement Lemma 1.13.2. Let $\alpha, \beta: \mathbb{N} \rightarrow \mathbb{N}$ be functions such that $\operatorname{Im} \alpha \cap \operatorname{Im} \beta=\emptyset$. We may assume that $\operatorname{Im} \alpha \cup \operatorname{Im} \beta \neq \mathbb{N}$. Let $\operatorname{Im}^{s} \alpha=$ $\{n:(\exists m<s)(\alpha(m)=n)\}$ and $\operatorname{Im}^{s} \beta=\{n:(\exists m<s)(\beta(m)=n)\}$. Let $V^{\infty}=\bigoplus_{i \in \mathbb{N}} \mathbb{Q} e_{i}=\left\langle v_{i}: i \in \mathbb{N}\right\rangle$ be the vector space over rational numbers on the basis e_{0}, e_{1}, \ldots and suppose that the elements are listed as v_{0}, v_{1}, \ldots. Fix a one-to-one function $g: \mathbb{N}^{3} \rightarrow \mathbb{N}$ such that $g(i, j, n)>$ maximum of the index numbers of the basis appears in the expression of v_{i} and v_{j} for any $i, j, n \in \mathbb{N}$. For example, if $v_{1}=2 e_{3}+4 e_{5}+6 e_{7}$ and $v_{10}=20 e_{30}+40 e_{50}+60 e_{70}$ then $g(1,10,100)>70$. This is the very same setting as in Proof of Theorem 1.5 of [13] where $F=\mathbb{Q}$. Note that $\operatorname{Im} \alpha, \operatorname{Im}^{s} \alpha, \operatorname{Im} \beta$, and $\operatorname{Im}^{s} \beta$ correspond to A, A_{s}, B, and B_{s} in the proof respectively. In the construction of $U_{2}, U_{3}, U_{4}, \ldots$, each λ can be taken as an integer in the case of $n \in \operatorname{Im}^{s} \alpha$. Meanwhile, in the case of $n \in \operatorname{Im}^{s} \beta$, each λ can be of the form $1 / k$ where k is an integer. Therefore it follows that there exists a nontrivial proper subspace U of V^{∞} such that for any $i, j, n \in \mathbb{N}$ if $v_{i}, v_{j} \notin U$ then

- $n \in \operatorname{Im} \alpha \rightarrow(\exists k \in \mathbb{Z})\left(x_{h(i, j, n)}-k v_{i} \in U\right)$ for some nonzero $k \in \mathbb{Z}$, and
- $n \in \operatorname{Im} \beta \rightarrow(\exists k \in \mathbb{Z})\left(k x_{h(i, j, n)}-v_{j} \in U\right)$ for some nonzero $k \in \mathbb{Z}$.

Viewing V^{∞} as an abelian group with respect to the addition and U as a subgroup of V^{∞}, let $G=V^{\infty} / U$ be the quotient group of V^{∞} by U. Since $e_{g(1,2, n)}$ has infinite order modulo U, G is not a cyclic group of prime order. Apply the assumption 3 to obtain a nontrivial proper subgroup H of G. Let W be a subgroup of V^{∞} corresponding to H and take $v_{i} \in W \backslash U$ and $v_{j} \in V^{\infty} \backslash W$. It follows that $S=\left\{n: e_{g(i, j, n)} \in W\right\}$ is a separator of $\operatorname{Im} \alpha$ and $\operatorname{Im} \beta$. This completes the proof.

In the proof above, W may not be a subspace of V^{∞} viewed as a vector space although it is a subgroup of V^{∞} viewed as an abelian group. The theorem above suggests that $R C A_{0}$ is not strong enough and $W K L_{0}$ is sufficiently strong to develop the usual basic group theory using notions of subgroups. In fact, Theorem 5.7, Theorem 5.13, and Theorem 5.17 illustrates this. Similarly as [13], we have the following theorem combining the above results with Arslanov's Completeness Criterion [2].

Theorem 5.4. The following are equivalent over RCA_{0}.

1. $A C A_{0}$.
2. Every nontrivial countable group which is not a cyclic group of prime order has a finitely generated nontrivial proper subgroup.
3. Every nontrivial countable abelian group which is not a cyclic group of prime order has a finitely generated nontrivial proper subgroup.

5.2 Neat Subgroups

In this section we develop the theory of neat subgroups of countable abelian groups in second order arithmetic. We also give some Reverse Mathematics results. This work is intended as a survey or an introduction of the topic of abelian group theory, for now it is hard to find organized reports about it. The notion of essential subgroups and neat subgroups appears in Honda [33](1956), where he used the different terminology "rich" instead of "essential". See also Fuchs [19, section 28](1958), Honda-Nagata [34](1969), and Fuchs [20](1970). The notion of neat hulls appears implicitly in Fuchs [19, page 92, i)]. Rangaswamy continued to study neat hulls, cf., for example, [51]. The definition of divisible closures of Simpson [61, Definition III.6.3] mentions essentiality.

Definition 5.5. The following definitions are made in $R C A_{0}$.

1. A subgroup A of a countable abelian group G is an essential subgroup of G if

$$
(\forall g \in G)\left(g \neq 0_{G} \rightarrow(\exists n \in \mathbb{N})\left(n g \in A \backslash\left\{0_{G}\right\}\right)\right)
$$

2. A subgroup M of a countable abelian group G is an essentially closed subgroup of G or is essentially closed in G if

$$
(\forall g \in G \backslash M)(\exists n \in \mathbb{Z})(\exists h \in M)\left(n g+h \neq 0_{G} \wedge(\forall m \in \mathbb{N})\left(m(n g+h) \notin M \backslash\left\{0_{G}\right\}\right)\right) .
$$

3. A subgroup N of a countable abelian group G is a neat subgroup of G or is neat in G if

$$
N \cap p G=p N, \text { i.e., }(\forall g \in G)(p g \in N \rightarrow(\exists a \in N)(p g=p a))
$$

for any prime p.
4. Let A and M be subgroups of a countable abelian group G. We say that M is an essential closure of A in G if A is an essential subgroup of M and M is essentially closed.
5. Let A, N be subgroups of a countable abelian group G. We say that N is a neat hull of A in G if A is a subgroup of N, N is a neat subgroup of G, and there does not exist a neat subgroup N^{\prime} of G such that $A \subset N^{\prime} \subsetneq N$.

Although the definitions above may appear more intricate than the standard ones, we choose the equivalent formulations to avoid second order quantification in the light of our weak base theory. For instance, the last part of the second clause states the maximality of $M ; M$ is no longer an essential subgroup of the subgroup generated by $M \cup\{g\}$. The proposition below itemizes the results we can prove within RCA_{0}.

Proposition 5.6. The following are provable in RCA_{0}.

1. The property of being a neat subgroup is transitive, that is, the following holds. Let A be a neat subgroup of a countable abelian group G and B be a neat subgroup of A. Then B is a neat subgroup of G.
2. Let A be a subgroup of a countable abelian group G. A is essentially closed in G if and only if A is a neat subgroup in G.
3. Let A, M be subgroups of a countable abelian group G. If M is an essential closure of A in G then M is a neat hull of A in G.

Proof. (1). Let p be a prime and $g \in G$ satisfy $p g \in B(\subset A)$. Since A is neat in G, there exists $a \in A$ such that $p a=p g \in B$. Since B is neat in A, there exists $b \in B$ such that $p b=p a=p g$. Thus B is neat in G. This completes the proof of 1
(2). First suppose that A is a neat subgroup of G and, for a contradiction, that A is not essentially closed in G. Take $g \in G \backslash A$ such that A is an essential subgroup of the subgroup generated by $A \cup\{g\}$. By Σ_{0}^{0} induction, let $n \geq 2$ be the smallest natural number such that $n g \in A$. Put $n=p n^{\prime}$ where p is a prime. Since $p n^{\prime} g \in A \cap p G$ and A is a neat subgroup of G, we have $a \in A$ such that $p n^{\prime} g=p a$. Put $g^{\prime}=n^{\prime} g-a$ and suppose, for a contradiction, that $g^{\prime} \notin A$. Let $m \geq 2$ be a natural number such that $m g^{\prime} \in A \backslash\left\{0_{G}\right\}$ (such m exists since g^{\prime} is generated by $A \cup\{g\}$ and $g^{\prime} \neq 0_{G}$. Since $p g^{\prime}=0_{G}$ it follows that $p \Lambda m$. By Euclid's algorithm which is provable in RCA_{0}, let $k, l \in \mathbb{Z}$ be such that $k p+l m=1$. We have $A \ni l m g^{\prime}=(1-k p) g^{\prime}=g^{\prime}-k p g^{\prime}=g^{\prime}$, a contradiction. It follows that $g^{\prime} \in A$. Therefore $n^{\prime} g \in A$, a contradiction with the minimality of n.

Next suppose that A is not a neat subgroup of G and take a prime p and $g \in G$ such that $(p g \in A) \wedge(p g \notin p A)$. We show that A is an essential subgroup of the subgroup generated by $A \cup\{g\}$, which implies that A is not essentially closed. Take a non-zero element g^{\prime} generated by $A \cup\{g\}$ with the plan of finding a natural number n such that $n g^{\prime} \in A \backslash\left\{0_{G}\right\}$. If $g^{\prime} \in A$ nothing is to be proved. If not, it follows that $(\exists n \geq 2)\left(n g^{\prime} \in A\right)$. If $n g^{\prime} \neq 0_{G}$ nothing is to be proved. If not, by Σ_{0}^{0} induction, take the smallest natural number $n \geq 2$ such that $n g^{\prime}=0_{G}$. Put $n=q n^{\prime}$ where q is a prime. We have $q n^{\prime} g^{\prime}=0_{G}$ and $n^{\prime} g^{\prime} \neq 0_{G}$ by the minimality of n. Suppose, for a contradiction, that $n^{\prime} g^{\prime} \notin A$ and let $n^{\prime} g^{\prime}=a+k g(a \in A, 0<k<p)$. Suppose, for a contradiction, that $q=p$. We have $0_{G}=q n^{\prime} g^{\prime}=p n^{\prime} g^{\prime}=p(a+k g)=p a+k p g$. Therefore we have $p a=-k p g$. By Euclid's algorithm, let $l, m \in \mathbb{Z}$ be such that $l p+m k=1$. We have $m p a=-m k p g=(l p-1) p g$. Therefore we have $p g=p(l p g-m a) \in p A$, a contradiction. It follows that $q \neq p$. Again by Euclid's algorithm, let $i, j \in \mathbb{Z}$ be such that $i p+j q=1$. We have $0_{G}=j q n^{\prime} g^{\prime}=(1-i p) n^{\prime} g^{\prime}=n^{\prime} g^{\prime}-i p n^{\prime} g^{\prime}$ and hence $n^{\prime} g^{\prime}=i p n^{\prime} g^{\prime} \in A$, a contradiction. (Note that $p g^{\prime} \in A$.) It follows that $n^{\prime} g^{\prime} \in A \backslash\left\{0_{G}\right\}$. This completes the proof of 2 .
(3). By the definition, M is essentially closed in G. It follows from 1 that M is a neat subgroup in G. Suppose that M^{\prime} is a subgroup of G such that $A \subset M^{\prime} \subsetneq M$ and let $g \in M \backslash M^{\prime}$. It follows that M^{\prime} is an essential subgroup of the subgroup generated by $M^{\prime} \cup\{g\}$ since, by the definition, A is an essential subgroup of M. Therefore M^{\prime} is not essentially closed in G. It follows again from 1 that M^{\prime} is not a neat subgroup in G. Thus M is a neat hull of A in G. This completes the proof of 3 .

The theorem below indicates that $W K L_{0}$ is strong enough to conclude that essential closures and neat hulls are the same notion. One possible reason why weak König's lemma is required is that in the definition of neat hulls we do mention set quantifiers. However, unlike maximality, it does not seem easy to define minimality of a subgroup without mentioning other subgroups.

Theorem 5.7. The following is provable in WKL_{0}. Let A, M be subgroups of a countable abelian group G. If M is a neat hull of A in G then M is an essential closure of A in G.

Proof. ${ }^{5}$ Suppose that M is a neat hull of A in G. Since M is neat in G, it follows that M is essentially closed in G by Proposition 5.6.2. It remains to show that A is an essential subgroup of M.

First we show that M / A is torsion via weak König's lemma. Suppose not, for a contradiction, and let $g^{*} \in M \backslash A$ witness that M / A is not torsion. We shall construct a neat subgroup M^{\prime} of M such that $A \subset M^{\prime}$ and $g^{*} \notin M^{\prime}$. Let $\left\langle g_{i}: i \in \mathbb{N}\right\rangle$ be a one-to-one enumeration of the elements of M such that $g_{0}=0_{G}$ and $g_{1}=g^{*}$. Let T be the set of all $t \in 2^{<\mathbb{N}}$ such that

1. $0<\operatorname{lh}(t) \rightarrow t(0)=1$;

[^4]2. $1<\operatorname{lh}(t) \rightarrow t(1)=0$;
3. $\forall i<\operatorname{lh}(t)\left(g_{i} \in A \rightarrow t(i)=1\right)$;
4. $\forall i, j, k<\operatorname{lh}(t)\left(g_{i}-{ }_{G} g_{j}=g_{k} \wedge t(i)=t(j)=1 \rightarrow t(k)=1\right)$;
5. $\forall i, j, k<\operatorname{lh}(t)\left(p_{i} g_{j}=g_{k} \wedge t(k)=1 \rightarrow t(j)=1\right)$ where p_{i} is the i-th prime.

Clearly T is a tree. We claim that T is infinite. To see this, let $m \in \mathbb{N}$ be given. Define a Σ_{1}^{0} formula $\varphi(i) \equiv(\exists n>0)\left(n g_{i} \in A\right)$. By bounded Σ_{1}^{0} comprehension, let $Y=\{i<m: \varphi(i)\}$. Define $t \in 2^{<\mathbb{N}}$ of length m by putting $t(i)=1$ if $i \in Y$, $t(i)=0$ otherwise. Then $t \in T$ and $\operatorname{lh}(t)=m$. This proves that T is infinite. By weak König's lemma, let f be a path through T. Let M^{\prime} be the set of all $g_{i} \in M$ such that $f(i)=1$. Clearly M^{\prime} is a neat subgroup of M. Since M is neat in G it follows that M^{\prime} is neat in G. This contradicts minimality of M. Thus M / A is torsion.

Second we show that A is an essential subgroup of M. Suppose, for a contradiction, that A is not an essential subgroup of M. Then we can take $g^{*} \in$ $M \backslash A$ and a prime p such that $p g^{*}=0_{G}$ (cf. [33, Proposition 5]). In fact, since M / A is torsion and A is not an essential subgroup of M, there exists $g \in M \backslash A$ and $n \geq 2$ such that $n g=0_{G}$. By Σ_{0}^{0} induction, we may assume that n is the smallest natural number such that $n g=0_{G}$. Put $n=p n^{\prime}$ where p is a prime and $g^{*}=n^{\prime} g$. Clearly g and p have desired property. Now we shall construct a maximal subgroup $M^{\prime} \subset M$ such that $A \subset M^{\prime}$ and $g^{*} \notin M^{\prime}$. Let us say that a finite set $X \subset M$ is good if $g^{*} \notin\langle X \cup A\rangle$. We show that " X is good" is Δ_{1}^{0}. Let $X=\left\{h_{0}, h_{1}, \ldots, h_{n}\right\}$. From the fact that $(\forall i \leq n)(\exists m>0)\left(m h_{i} \in A\right)$, by Σ_{0}^{0} bounding, we have $(\exists b)(\forall i \leq n)(0<\exists m<b)\left(m h_{i} \in A\right)$. Thus " X is good" is equivalent to the bounded sentence $\left(\exists k_{0}, k_{1}, \ldots, k_{n}<b\right)\left(g^{*}-\sum_{i=0}^{n} k_{i} h_{i} \in A\right)$. Let $\left\langle g_{i}: i \in \mathbb{N}\right\rangle$ be a one-to-one enumeration of the elements of M. Define $f: \mathbb{N} \rightarrow\{0,1\}$ by primitive recursion putting $f(i)=1$ if $\left\{g_{j}: j<i \wedge f(j)=\right.$ $1\} \cup\left\{g_{i}\right\}$ is good, $f(i)=0$ otherwise. Let M^{\prime} be the set of all $g_{i} \in M$ such that $f(i)=1$. This completes the construction of M^{\prime}. We show that M^{\prime} is essentially closed in M. We have $\left(\forall g \in M \backslash M^{\prime}\right)\left(g^{*} \in\left\langle M^{\prime} \cup\{g\}\right\rangle\right)$ by maximality of M^{\prime}. It is enough to show that $(1<\forall k<p)\left(k g^{*} \notin M^{\prime}\right)$. By Euclidean algorithm, we have $(\exists n, m \in \mathbb{Z})(n p+m k=1)$. It follows that $m\left(k g^{*}\right)=(1-n p) g^{*}=g^{*}$ and $k g^{*} \notin M^{\prime}$. Therefore M^{\prime} is essentially closed in M, and it follows by Proposition 5.6.2 that M^{\prime} is a neat subgroup of M. Thus, by Proposition 5.6.1, M^{\prime} is a neat subgroup of G and this contradicts the minimality of M. This completes the proof.

It is expected that the reversal of the theorem above also holds. The method of Proof of Theorem 5.3 is not applicable for the subgroup U is unfortunately neat in V^{∞}.

Question 5.8. Does the following statement implies WKL_{0} over RCA_{0} ? Let A, M be subgroups of a countable abelian group G. If M is a neat hull of A in G then M is an essential closure of A in G.

In ordinary abelian group theory, it is common to use Zorn's lemma to prove that every subgroup of an abelian group has an essential closure or a neat hull. We show that (countable version of) this statement is equivalent to $A C A_{0}$ over RCA_{0}.
Theorem 5.9. The following are equivalent over RCA_{0}.

1. $A C A_{0}$.
2. If A, B, and C are subgroups of a countable abelian group G such that B is an essential subgroup of C and $B \subset A \subset C$, then there exists an essential closure M of A in G such that $C \subset M$.
3. For a subgroups A of a countable abelian group G, there exists an essential closure M of A in G.
4. Let A be a subgroup of a countable abelian group G. Then there exists a neat hull N of A in G.

Proof. $(1 \rightarrow 2)$. We reason within ACA_{0}. Let us say that a subset X of G is good if any element $g \neq 0_{G}$ generated by elements of X satisfies $(\exists n \in \mathbb{N})(n g \in$ $\left.A \backslash\left\{0_{G}\right\}\right)$. Note that the predicate "good" is arithmetical. Obviously C is good. Let $\left\langle g_{i}: i \in \mathbb{N}\right\rangle$ be a one-to-one enumeration of $G \backslash C$. Using arithmetical comprehension, define a function $f: \mathbb{N} \rightarrow\{0,1\}$ by primitive recursion putting $f(i)=1$ if $C \cup\left\{g_{j}: j<i \wedge f(j)=1\right\} \cup\left\{g_{i}\right\}$ is good, $f(i)=0$ otherwise. Let M be C plus the set of all g_{i} such that $f(i)=1$. Clearly $C \subset M$. By checking $(\forall g, h \in M)\left(g-{ }_{G} h \in M\right)$ we see that M forms a group. It is also easy to check that M is an essential closure of A in G. This completes the proof of $1 \rightarrow 2$.
$(2 \rightarrow 3)$. Let $A=B=C$ and apply 2.
$(3 \rightarrow 4)$. If we have an essential closure M of A in G, then, by Theorem 5.7 and weak König's lemma which is provable in ACA_{0}, M is a neat hull of A in G.
$(4 \rightarrow 1)$. We reason within RCA_{0}. Instead of showing arithmetical comprehension directly, we will show the equivalent statement Lemma 1.9.2. Let $\alpha: \mathbb{N} \rightarrow \mathbb{N}$ be a one-to-one function. Let $G=\bigoplus_{i=0}^{\infty} \mathbb{Z} x_{i}$ be the free abelian group generated by the infinite set of indeterminates $\left\{x_{i}: i \in \mathbb{N}\right\}$. By Δ_{1}^{0} comprehension, define a subgroup A of G as

$$
\sum_{i=0}^{n} q_{i} x_{i} \in A \leftrightarrow(\forall i \leq n)\left(q_{i} \neq 0 \rightarrow\left(\exists j, s \leq\left|q_{i}\right|\right)\left(\alpha(j)=i \wedge p_{j} s=\left|q_{i}\right|\right)\right)
$$

where p_{j} is the j-th prime.
By our assumption 2 there exists a neat hull N of A in G. We claim that $(\forall i)\left(i \in \operatorname{Im} \alpha \leftrightarrow x_{i} \in N\right)$. First suppose that $i \in \operatorname{Im} \alpha$ and $\alpha(j)=i$. Then $p_{j} x_{i} \in N$ and since N is neat there exists $g \in N$ such that $p_{j} x_{i}=p_{j} g$. It follows that $g=x_{i}$ and this belongs to N. Next suppose that $i \notin \operatorname{Im} \alpha$. By Δ_{1}^{0} comprehension, define a subgroup N^{\prime} of G as

$$
g \in N^{\prime} \leftrightarrow g \in N \wedge \text { the } i \text {-th component of } g \text { equals } 0 \text {. }
$$

It is easily seen that $N^{\prime} \subset N$ and N^{\prime} is neat. By the minimality of N we have $N^{\prime}=N$ and $x_{i} \notin N$. Hence, by Δ_{1}^{0} comprehension, the image of α exists. This completes the proof of $4 \rightarrow 1$.

It should be noted that under the assumption that an essential closure of a subgroup exists, we can easily prove in RCA_{0} that essential closures and neat hulls are the same notion. We establish this for convenience of the reader who has little interest in Reverse Mathematics.

Proposition 5.10. The following are provable in RCA_{0}. Assume that every subgroup of a countable abelian group has an essential closure. Let A, M be subgroups of a countable abelian group. If M is a neat hull of A in G then M is an essential closure of A in G.

Proof. Suppose that M is a neat hull of A in G. Since M is neat in G, by Proposition 5.6.2, it follows that M is essentially closed in G. It remains to show that A is an essential subgroup of M. By our assumption, let M^{\prime} be an essential closure of A in M. By Proposition 5.6.2, M^{\prime} is neat in M. Therefore M^{\prime} is neat in G by Proposition 5.6.1. By the minimality of M, we have $M=M^{\prime}$. Since A is an essential subgroup of M^{\prime}, A is an essential subgroup of M. This completes the proof.

5.3 Normalizers

In this section we consider the existence and the characterization of normalizers in terms of Reverse Mathematics. Solomon [66] showed that the existence of the center of a countable group is equivalent to $A C A_{0}$ over $R C A_{0}$. We show that the existence of the normalizer of a subgroup of a countable group is also equivalent to $A C A_{0}$ over $R C A_{0}$. We also show that a certain formulation of the characterization of normalizers is equivalent to $W K L_{0}$ over $R C A_{0}$. There are several ways in defining normalizers, which are all equivalent in ordinary mathematics. In the light of our weak base theory, we must be attentive to differences between such definitions for we often require set existence axioms to show the equivalence of different definitions.

Definition 5.11. The following definitions are made in RCA_{0}. Let G be a countable group, H be a subgroup of G, and N be a subgroup of G including H. We say that

1. N is a normalizer of H if H is a normal subgroup of N, (We sometimes abbreviate this by $H \triangleleft N$.)
2. N is the largest normalizer of H if N is a normalizer of H and $N^{\prime} \subset N$ for any normalizer N^{\prime} of H,
3. N is a the Σ_{1}^{1}-definable normalizer of H if $(\forall g \in G)(g \in N \leftrightarrow \exists$ normalizer N^{\prime} of H such that $g \in N^{\prime}$, (We abbreviate the right-hand side as $g \in$ $\bigcup_{H \triangleleft N^{\prime}} N^{\prime}$.)
4. and N is the Π_{1}^{0}-definable normalizer of H if $(\forall g \in G)(g \in N \leftrightarrow(\forall h \in$ $\left.H)\left(g h g^{-1} \in H \wedge g^{-1} h g \in H\right)\right)$.

Reasoning in RCA_{0}, it is easy to see that

1. N is the largest normalizer if and only if N is the Σ_{1}^{1}-definable normalizer,
2. if N is the Π_{1}^{0}-definable normalizer then N is the largest normalizer,
3. and if N is the Σ_{1}^{1}-definable normalizer then $(\forall g \in G)(g \in N \rightarrow(\forall h \in$ $\left.H)\left(g h g^{-1} \in H \wedge g^{-1} h g \in H\right)\right)$,
for given G, H, and N. It seems not to be able to prove the converse implication of 3 in RCA_{0}-we will consider this matter later. Therefore it is reasonable to take the stronger definition 4 of Definition 5.11 as a standard definition of the normalizer in RCA_{0}. We show that the existence of normalizers even in the weakest sense requires arithmetical comprehension.

Theorem 5.12. The following are equivalent over $R C A_{0}$.

1. $A C A_{0}$.
2. For each countable group G and its subgroup H, the largest normalizer of H exists.

Proof. $(1 \rightarrow 2)$. The Π_{1}^{0}-definable normalizer $N=\left\{g \in G:(\forall h \in H)\left(g h g^{-1} \in\right.\right.$ $\left.\left.H \wedge g^{-1} h g \in H\right)\right\}$ of H exists by arithmetical comprehension and N is the largest normalizer of H.
$(2 \rightarrow 1)$. We reason within RCA_{0}. Instead of proving ACA_{0} directly, we will prove the equivalent statement Lemma 1.9.2. Let $\alpha: \mathbb{N} \rightarrow \mathbb{N}$ be a one-to-one function. Define a sequence of sets $\left\langle H_{i}: i \in \mathbb{N}\right\rangle$ by putting $j \in H_{i} \leftrightarrow(j \neq$ $0 \rightarrow \alpha(j-1)=i)$. Define a sequence of binary operations on H_{i} 's so that each H_{i} become a cyclic group of order 2 , say $\left\{e_{i}, h_{i}\right\}$, if $i \in \operatorname{Im} \alpha$, a trivial group otherwise. Define a sequence of groups $\left\langle G_{i}: i \in \mathbb{N}\right\rangle$ by putting $G_{i}=H_{i} * \mathbb{Z}$, the free product of H_{i} and \mathbb{Z}.

Now let $G=\bigoplus_{i \in \mathbb{N}} G_{i}$ and H be a subgroup of G consisting of all elements in which integers do not occur. By our assumption 2, let N be the largest normalizer of H. We show that $i \in \operatorname{Im} \alpha \leftrightarrow\left(\epsilon_{0}, \ldots, \epsilon_{i-1}, 1\right) \notin N$ where each ϵ_{k} is the identity of G_{k}. First suppose that $i \in \operatorname{Im} \alpha$. Then $\left(\epsilon_{0}, \ldots, \epsilon_{i-1}, 1\right)$. $\left(\epsilon_{0}, \ldots, \epsilon_{i-1}, h_{i}\right) \cdot\left(\epsilon_{0}, \ldots, \epsilon_{i-1}, 1\right)^{-1} \notin H$. It follows that $\left(\epsilon_{0}, \ldots, \epsilon_{i-1}, 1\right) \notin N$ since H is a normal subgroup of N. Second suppose that $i \notin \operatorname{Im} \alpha$. By Δ_{1}^{0} comprehension, define a subgroup N^{\prime} of G consisting of an element $g \in G$ such that when we replace the i-th component of g by ϵ_{i} it belongs to N. It is easy to see that N^{\prime} is a normalizer of H including N. It follows by the maximality of N that $N=N^{\prime}$ and hence $\left(\epsilon_{0}, \ldots, \epsilon_{i-1}, 1\right) \in N$. Thus the image of α exists by Δ_{1}^{0} comprehension. This completes the proof.

Note that G in the proof above also serves for showing that the existence of the center implies arithmetical comprehension, since it follows that $i \in \operatorname{Im} \alpha \leftrightarrow$ $\left(\epsilon_{0}, \ldots, \epsilon_{i-1}, 1\right) \notin C$ where C is the center of G.

Now we consider the postponed matter, the Π_{1}^{0}-characterization of the normalizer. Consider the logical strength of the following statement, which claims the equivalence between two definitions of normalizers.
\dagger : Let G be a countable group, H be a subgroup of G, and N be a subgroup of G including $H . N$ is the largest normalizer of G if and only if N is the Π_{1}^{0}-definable normalizer.

The statement \dagger can be logically equivalently transformed within RCA_{0} and splits into the existential and the characterization problem of normalizers:

$$
\begin{aligned}
\dagger & \Longleftrightarrow(\forall G)(\forall H)(\forall N)\left[N=\bigcup_{H \triangleleft N^{\prime}} N^{\prime} \leftrightarrow N=\left\{g \in G:(\forall h \in H)\left(g h g^{-1} \in H \wedge g^{-1} h g \in H\right)\right\}\right] \\
& \Longleftrightarrow(\forall G)(\forall H)(\forall N)\left[N=\bigcup_{H \triangleleft N^{\prime}} N^{\prime} \rightarrow N \supset\left\{g \in G:(\forall h \in H)\left(g h g^{-1} \in H \wedge g^{-1} h g \in H\right)\right\}\right] \\
& \Longleftrightarrow(\forall G)(\forall H)(\forall N)\left[N=\bigcup_{H \triangleleft N^{\prime}} N^{\prime} \rightarrow \bigcup_{H \triangleleft N^{\prime}} N^{\prime} \supset\left\{g \in G:(\forall h \in H)\left(g h g^{-1} \in H \wedge g^{-1} h g \in H\right)\right\}\right] \\
& \Longleftrightarrow(\forall G)(\forall H)\left[\neg(\exists N)\left(N=\bigcup_{H \triangleleft N^{\prime}} N^{\prime}\right) \vee(\forall g \in G)\left(g \in \bigcup_{H \triangleleft N^{\prime}} N^{\prime} \leftarrow(\forall h \in H)\left(g h g^{-1} \in H \wedge g^{-1} h g \in H\right)\right]\right.
\end{aligned}
$$

where G, H, and N range over countable groups, subgroups of G, and subgroups of G including H respectively. The left-hand-side of the last disjunction says that there does not exist the largest normalizer. We show that the right-handside of the disjunction - the Π_{1}^{0} characterization of the largest normalizer-is provable in $W K L_{0}$, and in fact equivalent to $W K L_{0}$ over RCA_{0}.

Theorem 5.13. The following is equivalent over RCA_{0}.

1. WKL_{0}.
2. $(\forall g \in G)\left(g \in \bigcup_{H \triangleleft N^{\prime}} N^{\prime} \leftrightarrow(\forall h \in H)\left(g h g^{-1} \in H \wedge g^{-1} h g \in H\right)\right)$ for any countable group G and its subgroup H.

Proof. ($1 \rightarrow 2$). We have already seen that the implication from left to right is provable in RCA_{0}. Reasoning in WKL_{0}, we show the converse direction. Let $\left\langle g_{i}\right.$: $i \in \mathbb{N}\rangle$ be an enumeration of G and assume that g_{0} satisfies $(\forall h \in H)\left(g_{0} h g_{0}^{-1} \in\right.$ $\left.H \wedge g_{0}^{-1} h g_{0} \in H\right)$. We shall construct a normalizer N^{\prime} of G such that $g_{0} \in N^{\prime}$ via weak König's lemma. Let T be the set of all $t \in 2^{<\mathbb{N}}$ such that

1. $0<\operatorname{lh}(t) \rightarrow t(0)=1$,
2. $\forall i<\operatorname{lh}(t)\left(g_{i} \in H \rightarrow t(i)=1\right)$,
3. $\forall i, j, k<\operatorname{lh}(t)\left(t(i)=t(j)=1 \wedge g_{i} g_{j}^{-1}=g_{k} \rightarrow t(k)=1\right)$,
4. $\forall i, j<\operatorname{lh}(t)\left(g_{i} \in H \wedge t(j)=1 \rightarrow g_{j} g_{i} g_{j}^{-1} \in H\right)$.

Clearly T is a tree. To see that T is infinite, let $m \in \mathbb{N}$ be given. By bounded Π_{1}^{0} comprehension (Theorem 1.5), letting $Y=\left\{i: i<m \wedge(\forall h \in H)\left(g_{i} h g_{i}^{-1} \in\right.\right.$ $\left.\left.H \wedge g_{i}^{-1} h g_{i} \in H\right)\right\}$, define $t \in 2^{<\mathbb{N}}$ by $t=\left\{\begin{array}{ll}1 & (i \in Y) \\ 0 & (i \notin Y) .\end{array}\right.$ We see $t \in T$ and hence T is infinite. By weak König's lemma there exists a path f through T. It follows that $N^{\prime}=\left\{g_{i}: f(i)=1\right\}$ is a normalizer with desired properties. This completes the proof of $1 \rightarrow 2$.
$(2 \rightarrow 1)$. Instead of WKL_{0} we show the equivalent statement Lemma 1.13.3. Let $\alpha, \beta: \mathbb{N} \rightarrow \mathbb{N}$ be one-to-one functions such that $\operatorname{Im} \alpha \cap \operatorname{Im} \beta=\emptyset$. Let G and H be the same as in Proof of Theorem 5.12. Write $\left(\epsilon_{0}, \ldots, \epsilon_{i-1}, c\right)$ as $c x_{i}$ where $i \in \mathbb{N}$ and $c \in \mathbb{Z}$ and let $R=\left\{j!x_{\beta(0)}-x_{\beta(j)}: j \in \mathbb{N}\right\}$. Reasoning in RCA_{0}, we show that the normal subgroup $\langle\langle R\rangle\rangle$ generated by R exists. Note that the conjugate of an element of R again belongs to R. Given $g \in G \backslash\left\{0_{G}\right\}$, if g is not of the form

$$
c x_{\beta(0)}+\sum_{i=0}^{n} c_{i} x_{k_{i}}\left(c \in \mathbb{Z}, c_{i} \in \mathbb{Z} \backslash\left\{0_{\mathbb{Z}}\right\}\right)
$$

then $g \notin\langle\langle R\rangle\rangle$. Suppose that g is of the form above. We show that $g \in\langle\langle R\rangle\rangle$ if and only if

$$
\left(\exists j_{0}, j_{1}, \ldots, j_{n} \leq|c|+\sum_{i=0}^{n}\left|c_{i}\right|\right)\left[(\forall i \leq n)\left(\beta\left(j_{i}\right)=k_{i}\right) \wedge \sum_{i=0}^{n} c_{i} j_{i}!=c\right]
$$

In fact, if $g \in\langle\langle R\rangle\rangle$ then

$$
\left(\exists j_{0}, j_{1}, \ldots, j_{n}\right)\left[(\forall i \leq n)\left(\beta\left(j_{i}\right)=k_{i}\right) \wedge \sum_{i=0}^{n} c_{i} j_{i}!=c\right]
$$

It is enough to show that $(\forall i \leq n)\left(j_{i} \leq|c|+\sum_{i=0}^{n}\left|c_{i}\right|\right)$. Let $j_{i^{*}}=\max \left\{j_{0}, j_{1}, \ldots, j_{n}\right\}$.
From

$$
c_{i^{*}} j_{i^{*}}!=c-\sum_{i \neq i^{*}} c_{i} j_{i}!
$$

we have

$$
\begin{aligned}
\left|c_{i^{*}}\right| j_{i^{*}}! & \leq|c|+\sum_{i \neq i^{*}}\left|c_{i}\right| j_{i}! \\
& \leq|c|\left(j_{i^{*}}-1\right)!+\sum_{i \neq i^{*}}\left|c_{i}\right|\left(j_{i^{*}}-1\right)!
\end{aligned}
$$

Therefore we have

$$
j_{i^{*}} \leq\left(1 /\left|c_{i *}\right|\right)\left(|c|+\sum_{i \neq i^{*}}\left|c_{i}\right|\right) \leq|c|+\sum_{i=0}^{n}\left|c_{i}\right|
$$

hence

$$
(\forall i \leq n)\left(j_{i} \leq|c|+\sum_{i=0}^{n}\left|c_{i}\right|\right)
$$

Thus $\langle\langle R\rangle\rangle$ exists by Δ_{1}^{0} comprehension. Let $G^{\prime}=G /\langle\langle R\rangle\rangle$ and H^{\prime} be the subgroup of G^{\prime} consisting of all elements in which integers do not occur. From now on, we identify an element of G with the corresponding element in G^{\prime}. Since $g=x_{\beta(0)}=\left(\epsilon_{0}, \ldots, \epsilon_{\beta(0)-1}, 1\right)$ satisfies the condition $\left(\forall h \in H^{\prime}\right)\left(g h g^{-1} \in\right.$ $\left.H \wedge g^{-1} h g \in H\right)$, by our assumption 2 , there exists a subgroup N^{\prime} of G^{\prime} such that $H^{\prime} \triangleleft N^{\prime} \wedge g \in N^{\prime}$. It follows that if $i \in \operatorname{Im} \alpha$ then $x_{i} \notin N^{\prime}$ and if $i \in \operatorname{Im} \beta$ then $x_{i} \in N^{\prime}$. Thus, setting $S=\left\{n: x_{n} \in N^{\prime}\right\}$ by Δ_{1}^{0} comprehension, a separator of $\operatorname{Im} \alpha$ and $\operatorname{Im} \beta$ exists. This completes the proof of $2 \rightarrow 1$.

By the previous theorem, it follows that the statement \dagger-weaker statement than 2 of the Theorem 5.13 - is provable in $W_{K L}$. Although it is expected that the statement \dagger is equivalent to $W K L_{0}$ over RCA_{0}, it seems to require more "recursion theoretic" construction like [13] rather than our method to prove it. Maybe it is not good to stick to calibrate the logical strength of not so natural statement such as \dagger. If we still want to explore, a key to the solution is a kind of non-abelian version of Theorem 5.3. To show the statement \dagger implies WKL_{0} over RCA_{0} it suffices to show the conjecture below. If we have such a subgroup H then we have a proper subgroup N^{\prime} of G which strictly includes H by the statement \dagger where $N=H$. It follows that N^{\prime} encodes a separator of $\operatorname{Im} \alpha$ and $\operatorname{Im} \beta$.

Conjecture 5.14. The following is provable in RCA_{0}. Let $\alpha, \beta: \mathbb{N} \rightarrow \mathbb{N}$ be one-to-one functions such that $\operatorname{Im} \alpha \cap \operatorname{Im} \beta=\emptyset$. Let G be the free group generated by the infinite set of indeterminates $\left\{x_{i}: i \in \mathbb{N}\right\}$. Fix a one-to-one enumeration $\left\langle g_{i}: i \in \mathbb{N}\right\rangle$ of G and a one-to-one function $h: \mathbb{N}^{3} \rightarrow \mathbb{N}$ such that $h(i, j, k)>$ maximum of the index numbers of the basis occurring in g_{i} and g_{j} for any $i, j, k \in \mathbb{N}$. Then there exists a nontrivial proper subgroup H of G such that

- if $n \in \operatorname{Im} \alpha$ then there exists $k \in \mathbb{Z}$ such that $x_{h(i, j, n)} g_{i}^{-k} \in H$,
- if $n \in \operatorname{Im} \beta$ then there exists $k \in \mathbb{Z}$ such that $x_{h(i, j, n)}^{-k} g_{j} \in H$,
for all $i, j, n \in \mathbb{N}$ with $g_{i}, g_{j} \notin H$,
- H is not a normal subgroup of G, and
- $(\exists g \in G \backslash H)(\forall h \in H)\left(g h g^{-1} \in H\right)$.

One of difficulties to prove the conjecture is to show that $g \in\langle Z\rangle$ is Δ_{1}^{0} for an element $g \in G$ and a finite subset $Z \subset G$. Fortunately, Nielsen [50] had solved the generalized word problem for free groups (see also [45, pages 131 and $132]$, [6, page 116], and [47, page 4]). So we only have to check that the algorithm is uniform with respect to Z and does not depend on strong induction.

5.4 Abelianizers (a. k. a. Derived Subgroups or Commutator Groups)

Abelianizers, derived subgroups, and commutator groups all denote the same notion in ordinary group theory. In this section we consider the existence and
the characterization of them. Interestingly enough, we can find the correspondence between the results of normalizers and abelianizers. Consciously of the correspondence we adopt the terminology "abelianizer" although it is less popular than the others.

Definition 5.15. Let G be a countable group and A be a normal subgroup of G. We say that

1. A is an abelianizer of G if G / A is abelian, (We sometimes abbreviate this by $A \propto G$. This is a temporary notation only in this thesis.)
2. A is the smallest abelianizer of G if A is an abelianizer of G and $A \subset A^{\prime}$ for any abelianizer A^{\prime} of G,
3. A is the Π_{1}^{1}-definable abelianizer of G if

$$
(\forall g \in G)\left(g \in A \leftrightarrow g \in A^{\prime} \text { for any abelianizer } A^{\prime} \text { of } G\right)
$$

(We abbreviate the right-hand-side as $g \in \bigcap_{A^{\prime} \propto G} A^{\prime}$.)
4. and A is the Σ_{1}^{0}-definable abelianizer if A is the subgroup generated by commutators, elements of the form $g_{0} g_{1} g_{0}^{-1} g_{1}^{-1}\left(g_{0}, g_{1} \in G\right)$. (Note that the subgroup generated by commutators is always normal since

$$
c\left(a b a^{-1} b^{-1}\right) c^{-1}=\left(c a c^{-1}\right)\left(c b c^{-1}\right)\left(c a c^{-1}\right)^{-1}\left(c b c^{-1}\right)^{-1}
$$

We abbreviate the right-hand-side as $g \in\left\langle g_{0} g_{1} g_{0}^{-1} g_{1}^{-1}: g_{0}, g_{1} \in G\right\rangle$. With this notations the condition of the definition of the Σ_{1}^{0}-definable abelianizer is stated as $\left.(\forall g \in G)\left(g \in A \leftrightarrow g \in\left\langle g_{0} g_{1} g_{0}^{-1} g_{1}^{-1}: g_{0}, g_{1} \in G\right\rangle\right).\right)$

Reasoning in RCA_{0}, it is easy to see that

1. A is the smallest abelianizer if and only if A is the Π_{1}^{1}-definable abelianizer,
2. if A is the Σ_{1}^{0}-definable abelianizer then A is the smallest abelianizer,
3. and if A is the Π_{1}^{1}-definable abelianizer then $(\forall g \in G)(g \in A \leftarrow g \in$ $\left.\left\langle g_{0} g_{1} g_{0}^{-1} g_{1}^{-1}: g_{0}, g_{1} \in G\right\rangle\right)$,
for given G and A. Similarly as in the case of normalizers, it is convenient to adopt the strongest definition when we develop group theory in a weak fragments of second order arithmetic. We first show that the existence of abelianizers even in the weakest sense requires arithmetical comprehension. The characterization of abelianizers will be discussed later.

Theorem 5.16. The following are equivalent over RCA_{0}.

1. $A C A_{0}$.
2. For each countable group G, the set of all commutators exists.
3. For each countable group G, the smallest abelianizer of G exists.

Proof. $(1 \rightarrow 2)$. The set of all commutators is definable by a Σ_{1}^{0} formula and exists by arithmetical comprehension. $(1 \rightarrow 3)$. The Σ_{1}^{0}-definable abelianizer $A=\left\langle g_{0} g_{1} g_{0}^{-1} g_{1}^{-1}: g_{0}, g_{1} \in G\right\rangle$ exists by arithmetical comprehension and A is the smallest abelianizer of G.

We show $2 \rightarrow 1$ and $3 \rightarrow 1$ via Lemma 1.9. Let $\alpha: \mathbb{N} \rightarrow \mathbb{N}$ be a one-to-one function. Reasoning in $\mathrm{RCA}_{0}, G=\left\langle\left\{a_{i}, b_{i}, c_{i}: i \in \mathbb{N}\right\}\right|\left\{a_{\alpha(j)} c_{j} b_{j} c_{j}^{-1} b_{j}^{-1}: j \in\right.$ $\mathbb{N}\}\rangle$ exists. To see this, let G_{0} be the free group generated by the alphabets $\left\{a_{i}, b_{i}, c_{i}: i \in \mathbb{N}\right\}$. We shall show that the normal subgroup N generated by $\left\{a_{\alpha(j)} c_{j} b_{j} c_{j}^{-1} b_{j}^{-1}: j \in \mathbb{N}\right\}$ exists. For given $w \in G_{0}$, let m be the maximum index of b 's and c 's occurring in w and n be the number of all the occurrences of a 's in w. It follows that $w \in N$ if and only if there exists a finite sequence $j_{0}, j_{1}, \ldots, j_{l} \leq m(l<n)$ and occurrences $a_{i_{0}}, a_{i_{1}}, \ldots, a_{i_{l}}$ in w such that $\alpha\left(j_{k}\right)=$ $i_{k}(0 \leq \forall k \leq l)$ and w is reduced to the empty sequence when each $a_{i_{k}}$ is replaced by $b_{i_{k}} c_{i_{k}} b_{i_{k}}^{-1} c_{i_{k}}^{-1}$. Thus N exists by Δ_{1}^{0} comprehension. From now on, we identify an alphabet of G_{0} with the corresponding element in G.
$(2 \rightarrow 1)$. Let C be the set of all commutators of G. We show that $a_{i} \in C \leftrightarrow$ $i \in \operatorname{Im} \alpha$. If $i \in \operatorname{Im} \alpha$ we have $a_{i}=b_{j} c_{j} b_{j}^{-1} c_{j}^{-1} \in C$ for some $j \in \mathbb{N}$. Suppose that $i \notin \operatorname{Im} \alpha$ and $a_{i} \in C$ for a contradiction. Then $a_{i}=g h g^{-1} h^{-1}$ for some $g, h \in G$. Note that the sum of the exponents of a_{i} 's in the right-hand-side equals 0 and a_{i} will never newly appear by transforming the right-hand-side using relators. So the right-hand-side will never be a_{i}, a contradiction. Thus by Δ_{1}^{0} comprehension the image of α exists. This completes the proof of $2 \rightarrow 1$.
$(3 \rightarrow 1)$. Let A be the smallest abelianizer of G. We show that $a_{i} \in A \leftrightarrow$ $i \in \operatorname{Im} \alpha$. If $i \in \operatorname{Im} \alpha$ we have $a_{i}=b_{j} c_{j} b_{j}^{-1} c_{j}^{-1} \in A$ for some $j \in \mathbb{N}$. Suppose that $i \notin \operatorname{Im} \alpha$. It follows that

$$
A^{\prime}=\left\{g \in G: \text { the sum of the exponent of } a_{i} \text { 's occurring in } g \text { equals } 0\right\}
$$

is a normal subgroup of G and G / A^{\prime} is abelian. It follows that $A \subset A^{\prime}$ by the minimality of A. Since obviously $a_{i} \notin A^{\prime}$ it follows that $a_{i} \notin A$. Thus by Δ_{1}^{0} comprehension the image of α exists. This completes the proof of $3 \rightarrow 1$.

Now we consider the Σ_{1}^{0}-characterization of the abelianizer. The following equivalences hold within RCA_{0}.
\ddagger : Let G be a countable group and A be a normal subgroup of G.
A is the smallest abelianizer if and only if A is the Σ_{1}^{0}-definable abelianizer.

$$
\begin{aligned}
\ddagger & \Longleftrightarrow(\forall G)(\forall A)\left[A=\bigcap_{A^{\prime} \propto G} A^{\prime} \leftrightarrow A=\left\langle g_{0} g_{1} g_{0}^{-1} g_{1}^{-1}: g_{0}, g_{1} \in G\right\rangle\right] \\
& \Longleftrightarrow(\forall G)(\forall A)\left[A=\bigcap_{A^{\prime} \propto G} A^{\prime} \rightarrow A \subset\left\langle g_{0} g_{1} g_{0}^{-1} g_{1}^{-1}: g_{0}, g_{1} \in G\right\rangle\right] \\
& \Longleftrightarrow(\forall G)(\forall A)\left[A=\bigcap_{A^{\prime} \propto G} A^{\prime} \rightarrow \bigcap_{A^{\prime} \propto G} A^{\prime} \subset\left\langle g_{0} g_{1} g_{0}^{-1} g_{1}^{-1}: g_{0}, g_{1} \in G\right\rangle\right] \\
& \Longleftrightarrow(\forall G)\left[\neg(\exists A)\left(A=\bigcap_{A^{\prime} \propto G} A^{\prime}\right) \vee(\forall g \in G)\left(g \in \bigcap_{A^{\prime} \propto G} A^{\prime} \rightarrow g \in\left\langle g_{0} g_{1} g_{0}^{-1} g_{1}^{-1}: g_{0}, g_{1} \in G\right\rangle\right)\right]
\end{aligned}
$$

where G and A ranges over countable groups and normal subgroups of G respectively. The left-hand-side of the disjunction says that there does not exists the smallest abelianizer. We show that the right-hand-side of the disjunctionthe Σ_{1}^{0} characterization of the smallest abelianizer-is equivalent to $W K L_{0}$ over RCA_{0}.

Theorem 5.17. The following are equivalent over $R C A_{0}$.

1. WKL_{0}.
2. $(\forall g \in G)\left(g \in \bigcap_{A^{\prime} \propto G} A^{\prime} \leftrightarrow g \in\left\langle g_{0} g_{1} g_{0}^{-1} g_{1}^{-1}: g_{0}, g_{1} \in G\right\rangle\right)$ for any countable abelian group G.

Proof. ($1 \rightarrow 2$). We have already seen that the implication from right to left is provable in RCA_{0}. Reasoning in $W K L_{0}$, we show the converse direction. Let $\left\langle g_{i}: i \in \mathbb{N}\right\rangle$ be an enumeration of G such that $g_{0} \notin\left\langle g h g^{-1} h^{-1}: g, h \in G\right\rangle$. We shall construct an abelianizer A^{\prime} of G such that $g_{0} \notin A^{\prime}$ via weak König's lemma. Let T be the set of all $t \in 2^{<\mathbb{N}}$ such that

1. $0<\operatorname{lh}(t) \rightarrow t(0)=0$,
2. $\forall i, j, k<\operatorname{lh}(t)\left(t(i)=t(j)=1 \wedge g_{i} g_{j}^{-1}=g_{k} \rightarrow t(k)=1\right)$,
3. $\forall i, j, k<\operatorname{lh}(t)\left(t(i)=1 \wedge g_{k}=g_{j} g_{i} g_{j}^{-1} \rightarrow t(k)=1\right)$,
4. $\forall i, j, k<\operatorname{lh}(t)\left(g_{k}=g_{i} g_{j} g_{i}^{-1} g_{j}^{-1}\right) \rightarrow t(k)=1$.

Clearly T is a tree. To see that T is infinite, let $m \in \mathbb{N}$ be given. By bounded Σ_{1}^{0} comprehension (Theorem 1.5), letting $Y=\left\{i: i<m \wedge g_{i} \in\left\langle g h g^{-1} h^{-1}: g, h \in\right.\right.$ $G\rangle\}$, define $t \in 2^{<\mathbb{N}}$ by $t=\left\{\begin{array}{ll}1 & (i \in Y) \\ 0 & (i \notin Y) .\end{array}\right.$ We see $t \in T$ and hence T is infinite. By weak König's lemma there exists a path f through $T . A^{\prime}=\left\{g_{i}: f(i)=1\right\}$ is an abelianizer with desired properties. This completes the proof of $1 \rightarrow 2$.
$(2 \rightarrow 1)$. Instead of $W K L_{0}$ we show the equivalent statement Lemma 1.13.3. Let $\alpha, \beta: \mathbb{N} \rightarrow \mathbb{N}$ be one-to-one functions such that $\operatorname{Im} \alpha \cap \operatorname{Im} \beta=\emptyset$. Reasoning in $\mathrm{RCA}_{0}, G=\left\langle\left\{a_{i}, b_{i}, c_{i}, d: i \in \mathbb{N}\right\} \mid\left\{a_{\alpha(j)} c_{j} b_{j} c_{j}^{-1} b_{j}^{-1}, a_{\beta(j)}^{j+1} d^{-1}: j \in \mathbb{N}\right\}\right\rangle$ exists. To see this, we give a recursive procedure to determine whether or not a word from alphabets $\left\{a_{i}, b_{i}, c_{i}, d: i \in \mathbb{N}\right\}$ is an element of the normal subgroup N generated by $\left\{a_{\alpha(j)} c_{j} b_{j} c_{j}^{-1} b_{j}^{-1}, a_{\beta(j)}^{j+1} d^{-1}: j \in \mathbb{N}\right\}$. Let G_{0} be the free group generated by the alphabets $\left\{a_{i}, b_{i}, c_{i}, d: i \in \mathbb{N}\right\}$. For a given word $w \in G_{0}$, let m_{a} be the maximum index of a 's occurring in w and $m_{b, c}$ be the maximum index of b 's and c 's occurring in w. With the plan of reducing w to the empty sequence, we try the following procedure. First find every pair of $i \leq m_{a}$ and $j \leq m_{b, c}$ such that $\alpha(j)=i$ and replace every occurrence of a_{i} with $b_{j} c_{j} b_{j}^{-1} c_{j}^{-1}$. Second for each occurrence of d find a pair of $i \leq m_{a}$ and $j \leq \operatorname{lh}(w)$ such that $\beta(j)=i$ and replace d with a_{i}^{j+1}. The possible choice of first step is at most one and that of second step is at most finite. If we succeed then $w \in N$ and vice versa.

From now on, we identify an alphabet of G_{0} and its corresponding element in G. Since $d \notin\left\langle g h g^{-1} h^{-1}: g, h \in G\right\rangle$, by our assumption 2, there exists an abelianizer A^{\prime} of G such that $d \notin A^{\prime}$. It follows that $S=\left\{n: a_{n} \in A^{\prime}\right\}$ is a separator of $\operatorname{Im} \alpha$ and $\operatorname{Im} \beta$. This completes the proof of $2 \rightarrow 1$.

By the previous theorem, it follows that the statement \ddagger is provable in WKL_{0}. To show the reversal it is enough to show the conjecture below. The exploration for a proof seems to be harder than in the case of normalizers since RCA_{0} does not prove that $g \in\langle\langle Z\rangle\rangle$ is Δ_{1}^{0} for an element $g \in G$ and a finite subset $Z \subset G$ where $\langle\langle Z\rangle\rangle$ denotes the normal subgroup generated by Z. This negative result is followed by the undecidability of the decision problem for groups.

Conjecture 5.18. The following is provable in RCA_{0}. Let $\alpha, \beta: \mathbb{N} \rightarrow \mathbb{N}$ be one-to-one functions such that $\operatorname{Im} \alpha \cap \operatorname{Im} \beta=\emptyset$. Let G be the free group generated by countably infinitely many indeterminates $\left\{x_{i}: i \in \mathbb{N}\right\}$. Fix a one-to-one enumeration $\left\langle g_{i}: i \in \mathbb{N}\right\rangle$ of G and a one-to-one function $h: \mathbb{N}^{3} \rightarrow \mathbb{N}$ such that $h(i, j, k)>$ maximum of the index numbers of the basis occurring in g_{i} and g_{j} for any $i, j, k \in \mathbb{N}$. Then there exists a nontrivial proper subgroup H of G such that

- if $n \in \operatorname{Im} \alpha$ then there exists $k \in \mathbb{Z}$ such that $x_{h(i, j, n)} g_{i}^{-k} \in H$,
- if $n \in \operatorname{Im} \beta$ then there exists $k \in \mathbb{Z}$ such that $x_{h(i, j, n)}^{-k} g_{j} \in H$,
for all $i, j, n \in \mathbb{N}$ with $g_{i}, g_{j} \notin H$,
- H is a normal subgroup of G,
- Not all elements of G / H are the product of commutators, and
- G / H is not abelian.

In this chapter we study the existence of three notions-essential closures (or neat hulls), normalizers and abelianizers. The logical strength of the existence is equivalent to ACA_{0} in each case. We also study characterizations of normalizers and abelianizers. The logical strength of them is equivalent to $W K L_{0}$ in each case. (Any characterization of essential closures is not expressive in such way since an essential closure does not always exist uniquely.) 2 of Theorem 5.13 and 2 of Theorem 5.17 are considered to be almost trivial in ordinary group theory. It is interesting to note that WKL_{0} is actually equivalent to them despite the appearance.

6 Countable Commutative Rings

In this chapter we do Reverse Mathematics of countable commutative ring theory or ideal theory. Section 6.2 shows that arithmetical comprehension is the appropriate axiom to develop countable ideal theory. Section 6.3 is a survey with somewhat new results on Reverse Mathematics of polynomial rings based on Friedman, Simpson, and Smith [16]. Section 6.4 and 6.5 develop theories of certain classes of commutative rings in weak second order arithmetic. Section 6.5 is a survey on other topics.

6.1 Basic Notions

The following definitions are made in RCA_{0}. A countable commutative ring R consists of a nonempty set $R \subset \mathbb{N}$ together with binary operations $+_{R}, \cdot_{R}$: $|R|^{2} \rightarrow|R|$, a unary operation $-_{R}:|R| \rightarrow|R|$, and distinguished elements $0_{R}, 1_{R} \in|R|$ such that the system $\left(|R|,+_{R}, \cdot_{R},-_{R}, 0_{R}, 1_{R}\right)$ obeys the usual commutative ring axioms. For notational convenience we write $|R|$ as $R, a+{ }_{R}\left(-{ }_{R} b\right)$ as $a-{ }_{R} b$, and $a \cdot{ }_{R} b$ as $a b$ for $a, b \in R$. Various notions such as subrings, ideals, quotient rings, homomorphisms, or isomorphisms are made in a straightforward way. The notion of countable R-modules can be made in a similar way as countable vector spaces in Definition III.4.1 of Simpson [61]. The notion of a ring of polynomials over R for given countable commutative ring R is also can be made via a coding method. For more information for commutative ring theory see any textbooks, for example, Nagao [49], Hotta [35], Morita [48], and Reid [52].

Definition 6.1. The following definitions are made in RCA_{0}. Let R be a countable commutative ring and $a \in R$ be an elements of R.

1. a is said to be a unit or invertible if $(\exists b \in R)\left(a b=1_{R}\right)$.
2. a is said to be a zero divisor if $(\exists b \in R)\left(b \neq 0_{R} \wedge a b=0_{R}\right)$.
3. a is said to be irreducible if $a \neq 0_{R}, a$ is not a unit, and

$$
(\forall b, c \in R)(a=b c \rightarrow b \text { is a unit } \vee c \text { is a unit })
$$

4. a is said to be prime if $a \neq 0_{R}, a$ is not a unit, and

$$
(\forall b, c \in R)(a|b c \rightarrow a| b \vee a \mid c)
$$

where $u \mid v$ denotes $(\exists w \in R)(u w=v)$ for $u, v \in R$.
The following additional notions are also developable within RCA_{0}. A countable commutative ring is said to be a field if every element other than 0_{R} is a unit, and a domain if 0_{R} is the only zero divisor. Clearly every field is a domain. It is easily verified that every prime element of a countable domain is irreducible.

We summarize the fact that the existence of the set of all elements of various notions is equivalent to arithmetical comprehension.

Theorem 6.2. The following are equivalent over RCA_{0}.

1. $A C A_{0}$
2. The set of all units exists for each countable commutative ring.
3. The set of all zero divisors exists for each countable commutative ring.
4. The set of all irreducible elements exists for each countable commutative ring.
5. The set of all prime elements exists for each countable commutative ring.

Proof. Clearly 1 implies the other items since each notion of units, zero divisors, irreducible elements, and prime elements is defined by respectively $\Sigma_{1}^{0}, \Sigma_{1}^{0}, \Pi_{2}^{0}$, and Π_{2}^{0} formula. Reasoning within $R C A_{0}$, we show arithmetical comprehension from each item via Lemma 1.9. Let $\alpha: \mathbb{N} \rightarrow \mathbb{N}$ be a one-to-one function.
$(2 \rightarrow 1)$. Let R_{0}, K_{0}, R, h be the same as in the proof of Theorem III.5.5 of Simpson [61]. By our assumption, let U the set of all units of R. It follows that $i \in \operatorname{Im} \alpha$ if and only if $h^{-1}\left(x_{i}\right) \in U$ for each $i \in \mathbb{N}$. Thus the image of α exists by Δ_{1}^{0} comprehension. This completes the proof.
$(3 \rightarrow 1)$. Let $R=\mathbb{Q}\left[\left\langle x_{i}: i \in \mathbb{N}\right\rangle\right]$ and I be the ideal of R generated by the polynomials $x_{\alpha(j)}^{j+1}, j \in \mathbb{N}$. By our assumption, let Z be the set of all zero divisors of R / I. It follows that $i \in \operatorname{Im} \alpha$ if and only if $x_{i} \in Z$. Thus the image of α exists by Δ_{1}^{0} comprehension. This completes the proof.
$(4 \rightarrow 1)$ is shown in the proof of Theorem 4.1 of Friedman, Simpson, and Smith [16].
$(5 \rightarrow 1)$. The proof in [16], the commutative ring is taken as the polynomial ring over a countable field. It will be shown within RCA_{0} that the notions of irreducible element and the prime element are the same in polynomial rings over countable fields (Theorem 6.38). Thus 5 implies 1.

A countable commutative ring is said to be local if the ring has at most one maximal ideal. 2 of the theorem above implies arithmetical comprehension even if we restrict R to be a local ring. In fact, R in the proof of $(2 \rightarrow 1)$ is a local ring since it is provable within RCA_{0} that all elements of units have the property of ideals, cf. Proposition 6.20. As it is mentioned, 4 and 5 of the theorem above implies arithmetical comprehension even if we restrict R to be the polynomial ring over a countable field.

The rest of this section is devoted to study construction of rings of fractions in weak second order arithmetic. Firstly we show that such constructions for countable commutative domains can be carried out within RCA_{0}.

Definition 6.3. The following definitions are made in RCA_{0}. Let R be a countable commutative ring. A subset $S \subset R$ is multiplicatively closed if $(\forall a, b \in S)(a b \in S)$. Let S be a multiplicatively closed set including 1_{R}. A ring of fractions of R with respect to S consists of a ring R^{\prime} with a homomorphism $h: R \rightarrow R^{\prime}$ satisfying following clauses

1. $(\forall a \in R)\left(h(a)=0_{R^{\prime}} \rightarrow a\right.$ is a zero divisor $)$,
2. $(\forall s \in S)(h(s)$ is a unit),
3. $\left(\forall a^{\prime} \in R^{\prime}\right)(\exists a \in R)(\exists s \in S)\left(a^{\prime}=h(a) h(s)^{-1}\right)$.

Note that if R is a countable domain namely 0_{R} is an only zero divisor then ker $h=\left\{0_{R}\right\}$ namely h is an injective homomorphism.

Proposition 6.4. The following is provable in RCA_{0}. Let R be a commutative ring and $S \subset R$ be a multiplicatively closed set including 1_{R}. If S does not contain any zero divisor, then a ring of fractions of R with respect to S exists.

Proof. Reasoning within RCA_{0}, define an equivalence $(r, s) \sim\left(r^{\prime}, s^{\prime}\right)$ on $R \times S$ by $r s^{\prime}-{ }_{R} r^{\prime} s=0_{R}$. Define a countable commutative ring R^{\prime} by $\left|R^{\prime}\right|=R \times S / \sim$, $(r, s)+_{R^{\prime}}\left(r^{\prime}, s^{\prime}\right)=\left(r s^{\prime}+_{R} r^{\prime} s, s s^{\prime}\right),(r, s) \cdot R^{\prime}\left(r^{\prime}, s^{\prime}\right)=\left(r r^{\prime}, s s^{\prime}\right), 0_{R^{\prime}}=\left(0_{R}, 1_{R}\right)$, and $1_{R^{\prime}}=\left(1_{R}, 1_{R}\right)$. Define a homomorphism $h: R \rightarrow R^{\prime}$ by $h(a)=\left(a, 1_{R}\right)$. It is easily verified that $\left(R^{\prime}, h\right)$ forms a ring of fractions of R with respect to S. This completes the proof.

If R is a countable commutative domain then $S=R \backslash\left\{0_{R}\right\}$ is multiplicatively closed, includes 1_{R}, and does not contain any zero divisor. A ring of fractions R^{\prime} of R with respect to S forms a field. R^{\prime} is called a field of fractions of R.

If R is a countable commutative domain and P is a prime ideal of R (the formal definition of prime ideals is given in Definition 6.9) then $R \backslash P$ is multiplicatively closed, includes 1_{R}, and does not contain any zero divisor. A ring of fractions R^{\prime} of R with respect to $R \backslash P$ forms a local ring. Moreover, the existence of the unique maximal ideal of R^{\prime} is provable within $\mathrm{RCA}_{0} . R^{\prime}$ is called a localization of R.

Proposition 6.5. The following is provable within RCA_{0}. Let R be a countable commutative domain and P be a prime ideal of R. Let R^{\prime} be a ring of fractions of R with respect to $S=R \backslash P$. Then the unique maximal ideal of R^{\prime} exists.

Proof. We reason within RCA_{0}. Let $a^{\prime} \in R^{\prime}$ and $a^{\prime}=h(a) h(s)^{-1}(a \in R, s \in S)$. Clearly if $a \in S$ then a^{\prime} is a unit. Conversely suppose that a^{\prime} is a unit. Let $b^{\prime}=h(b) h(t)^{-1}\left(b^{\prime} \in R^{\prime}, b \in R, t \in S\right)$ be such that $a^{\prime} b^{\prime}=1_{R^{\prime}}$. We have $1_{R^{\prime}}=$ $h(a) h(s)^{-1} h(b) h(t)^{-1}$ and $a b=s t$ since h is injective. Therefore we have $a \in S$ since $a \notin S$ implies $a b \notin S$. Thus a is not a unit if and only if $a \in P$. Observing that there exists a function which takes an element $a^{\prime} \in R^{\prime}$ to a pair of elements $a \in R$ and $s \in S$ such that $a^{\prime}=h(a) h(s)^{-1}$, let $M=\left\{a^{\prime}=h(a) h(s)^{-1} \in\right.$ $\left.R^{\prime}: a \in P\right\}$. Let $a^{\prime}=h(a) h(s)^{-1}, b^{\prime}=h(b) h^{t}, a+_{R^{\prime}} b=h(c) h(u)^{-1}, a b=$ $h(d) h(v)^{-1}(a, b, c, d \in R, s, t, u, v \in S)$. We have $P \ni a t u+b s u=c s t$, therefore $c \in P$, and $P \ni a b v=d s t$, therefore $d \in P$ since P is prime. Thus M is an ideal of R^{\prime}. It is easily verified that M is the unique maximal ideal. This completes the proof.

Secondly we show that the existence of rings of fractions in general case is equivalent to $A C A_{0}$ over $R C A_{0}$.

Theorem 6.6. The following are equivalent over RCA_{0}.

1. $A C A_{0}$.
2. For any commutative ring R and multiplicatively closed set $S \subset R$ including 1_{R}, a ring of fractions of R with respect to S exists.
3. For any commutative R and multiplicatively closed set $S \subset R$ including 1_{R}, a ring R^{\prime} with a homomorphism $h: R \rightarrow R^{\prime}$ satisfying clause 1 and 2 of definition 6.3 exists.

Proof. ($1 \rightarrow 2$). The usual construction of a ring of fractions works in ACA_{0}. Define a binary relation on $R \times S$ as $(r, s) \sim\left(r^{\prime}, s^{\prime}\right) \leftrightarrow(\exists s \in S)\left(s\left(r s^{\prime}-{ }_{R} r^{\prime} s\right)=\right.$ 0_{R}) where $(r, s),\left(r^{\prime}, s^{\prime}\right) \in R \times S$. Note that this relation is Σ_{1}^{0} definable. We can easily see that this is an equivalence relation.
$(2 \rightarrow 3)$ is trivial.
$(3 \rightarrow 1)$. Instead of showing ACA_{0}, we shall show the equivalent assertion 3 of lemma 1.9. Let $\alpha: \mathbb{N} \rightarrow \mathbb{N}$ be a one-to-one function. Let $R_{0}=\mathbb{Q}\left[x_{i}, y_{i}: i \in\right.$ $\mathbb{N}]$ be the polynomial ring over the rational fields \mathbb{Q} with countably infinitely many indeterminates $x_{i}, y_{i}, i \in \mathbb{N}$. Let $I \subset R_{0}$ be the ideal generated by the polynomials $x_{\alpha(j)} y_{\alpha(j)}^{j+1}, j \in \mathbb{N}$. I exists by Δ_{1}^{0} comprehension (we can show this fact in the same way as Simpson [61, Theorem IV.6.4]). Form a quotient ring $R=R_{0} / I$. Let S be the set of all monomials of the form $q y_{m_{1}}^{e_{1}} y_{m_{2}}^{e_{2}} \cdots y_{m_{k}}^{e_{k}}$ with $q \in \mathbb{Q}, q \neq 0,0 \leq k$. Observing that S is multiplicatively closed set including 1_{R}, let R^{\prime} and $h: R \rightarrow R^{\prime}$ be a ring and a homomorphism obtained by our assumption 3. It follows that $(\exists j)(\alpha(j)=0) \leftrightarrow h\left(x_{i}\right)=0_{R}^{\prime}$ for all i. Thus by Δ_{1}^{0} comprehension, the image of α exists. This completes the proof.

Definition 6.7. The following definition is made in RCA_{0}. Let R be a commutative ring. A total ring of fractions of R consists of a ring R^{\prime} with a monomorphism $h: R \rightarrow R$ satisfying following clauses

1. $(\forall a \in R)(a$ is not a zero divisor $\rightarrow h(a)$ is a unit),
2. $\left(\forall a^{\prime} \in R^{\prime}\right)(\exists a \in R)(\exists s \in R)\left(s\right.$ is not a zero divisor $\left.\wedge a^{\prime} h(s)=h(a)\right)$.

Theorem 6.8. The following are equivalent over RCA_{0}.

1. $A C A_{0}$
2. For any commutative ring R, a total ring of fractions of R exists.
3. For any commutative ring R, a ring R^{\prime} with a monomorphism $h: R \rightarrow R^{\prime}$ satisfying clause 1 of definition 6.7 exists.

Proof. ($1 \rightarrow 2$). The set of all zero divisors Z exists by arithmetical comprehension. Observing that $R \backslash Z$ does not have any zero divisor, we can construct R^{\prime} and h by the same method as we did in proposition 6.4.
$(2 \rightarrow 3)$ is trivial.
$(3 \rightarrow 1)$. By Proposition 6.2 it is enough to show that for any commutative ring R the set of all divisors exists. Let R be a commutative ring and by our assumption $3\left(R^{\prime}, h\right)$ be a total ring of fractions of R. It follows that ($\forall a \in$ $R)(a$ is a zero divisor $\leftrightarrow h(a)$ is not a unit $)$. Notice that the righthand side is Π_{1}^{0} while lefthand side is Σ_{1}^{0}. Thus by Δ_{1}^{0} comprehension there exists the set of all zero divisors. This completes the proof of 3 to 1 .

6.2 Reverse Ideal Theory

Firstly, we summarize Reverse Mathematics results on the existence of various kinds of ideals.

Definition 6.9. The following definitions are made in RCA_{0}. Let I be a nontrivial proper ideal of a countable commutative ring R.

1. I is said to be prime if $(\forall a, b \in R)(a b \in I \rightarrow a \in I \vee b \in I)$.
2. I is said to be radical if $(\forall a \in R)(\forall n)\left(a^{n} \in I \rightarrow a \in I\right)$.
3. I is said to be primary if $(\forall a, b \in R)\left(a b \in I \wedge a \notin I \rightarrow(\exists n)\left(b^{n} \in I\right)\right)$.
4. I is said to be irreducible if $(\forall a, b \in R)(I=(I \cup\{a\}) \cap(I \cup\{b\}) \rightarrow a \in$ $I \vee b \in I)$.
5. I is said to be maximal if $(\forall a \in R \backslash I)((I \cup\{a\})=R)$.
6. I is said to be principal if $(\exists a \in R)(I=(a))$.
7. I is said to be finitely generated if $\left(\exists a_{0}, \ldots, a_{k} \in R\right)\left(I=\left(a_{0}, \ldots, a_{k}\right)\right)$.

Here (S) and $\left(r_{0}, \ldots, r_{k}\right)$ denote the ideal generated by respectively S and $\left\{r_{0}, \ldots, r_{k}\right\}$ for $S \subset R$ and $r_{0}, \ldots, r_{k} \in R$.

Clearly every prime ideal is radical, primary, and irreducible.
Theorem 6.10. The following are equivalent over RCA_{0}.

1. WKL_{0}.
2. Every countable commutative ring which is not a field has a prime ideal.
3. Every countable commutative ring which is not a field has a radical ideal.
4. Every countable commutative ring which is not a field has a primary ideal.
5. Every countable commutative ring which is not a field has an irreducible ideal.
6. Every countable commutative ring which is not a field has a nontrivial proper ideal.

Proof. The equivalence between 1, 2 and 3 is Theorem IV.6.4 of Simpson [61]. (See also Theorem 3.1 of Freedman, Simpson, and Smith [16].) The implications $2 \rightarrow 4,2 \rightarrow 5,4 \rightarrow 6$, and $5 \rightarrow 6$ are trivial. The equivalence between 1 and 6 is shown in Downey, Lempp, and Militei [14].

Theorem 6.11. The following are equivalent over RCA_{0}.

1. $A C A_{0}$.
2. Every countable commutative ring which is not a field has a maximal ideal.
3. Every countable commutative ring which is not a field has a principal nontrivial proper ideal.
4. Every countable commutative ring which is not a field has a finitely generated nontrivial proper ideal.

Proof. The equivalence between 1 and 2 is Theorem III.5.5 of Simpson [61]. (See also Theorem 4.2 of Freedman, Simpson, and Smith [16].) The implications $1 \rightarrow 3$ and $3 \rightarrow 4$ are trivial. The equivalence between 1 and 4 is shown in Downey, Lempp, and Mileti [14].

Secondly, we discuss the basic theory of nilradicals, Jacobson radicals, annihilators, and local rings from the standpoint of Reverse Mathematics.

Theorem 6.12. The following are equivalent over $R C A_{0}$.

1. $A C A_{0}$.
2. $\operatorname{Nil}(R)=\left\{r \in R:(\exists n>0)\left(r^{n}=0_{R}\right)\right\}$, the nilradical of R exists for any countable commutative ring R.
3. $\operatorname{Jac}(R)=\left\{r \in R:(\forall a \in R)(\exists b \in R)\left(r a-1_{R}\right) b=1_{R}\right\}$, the Jacobson radical of R exists for any countable commutative ring R.
4. Let R be a countable commutative ring and S be a subset of an R-module. Then

$$
\operatorname{Ann}_{R}(S)=\left\{r \in R:(\forall s \in S)\left(r s=0_{R}\right)\right\}
$$

the annihilator of S exists.
Proof. The implications $1 \rightarrow 2,1 \rightarrow 3$, and $1 \rightarrow 4$ are trivial. The implication $2 \rightarrow 1$ is shown by a similar method as in the proof of Theorem 4.2 of Downey et al. [14]. It remains to show the implication $3 \rightarrow 1$ and $4 \rightarrow 1$.
$(3 \rightarrow 1)$. Assume 3. Reasoning within RCA_{0}, we show arithmetical comprehension via Lemma 1.9. Let $\alpha: \mathbb{N} \rightarrow \mathbb{N}$ be a one-to-one function. Let R_{0}, K_{0}, R, h be the same as in the proof of Theorem III.5.5 of Simpson [61]. By 3 the $\operatorname{Jacobson}$ radical $\operatorname{Jac}(R)$ of R exists. We show that $i \in \operatorname{Im} \alpha$ if and only if $h^{-1}\left(x_{i}\right) \notin \operatorname{Jac}(R)$. If $i \in \operatorname{Im} \alpha$ then $h^{-1}\left(x_{i}\right)$ is invertible in R, hence $h^{-1}\left(x_{i}\right) \notin \operatorname{Jac}(R)$. Conversely, if $h^{-1}\left(x_{i}\right) \in \operatorname{Jac}(R)$, let $a \in R$ be such that $a \cdot h^{-1}\left(x_{i}\right)-1_{R}$ is not invertible in R. Put $h(a) \cdot x_{i}-1_{R}=r / s$ where
$r, s \in R_{0}, s \neq 0_{R}$. It follows that r does not contain any monomial of the form $q x_{\alpha\left(m_{1}\right)}^{e_{1}} x_{\alpha\left(m_{2}\right)}^{e_{2}} \ldots x_{\alpha\left(m_{k}\right)}^{e_{k}}(q \in \mathbb{Q}, q \neq 0, k \geq 0)$. Put $h(a)=t / u$ where $t, u \in R_{0}, u \neq 0_{R}$ and have $s t x_{i}=r u+s u$. The right-hand-side contains at least one monomial of the form $q x_{\alpha\left(m_{1}\right)}^{e_{1}} x_{\alpha\left(m_{2}\right)}^{e_{2}} \ldots x_{\alpha\left(m_{k}\right)}^{e_{k}}(q \in \mathbb{Q}, q \neq 0, k \geq 0)$. Thus we conclude that $i \in \operatorname{Im} \alpha$. By Δ_{1}^{0} comprehension $\operatorname{Im} \alpha$ exists. This completes the proof of $3 \rightarrow 1$.
$(4 \rightarrow 1)$. Assume 4. Reasoning within RCA_{0}, we show arithmetical comprehension via Lemma 1.9. Let $\alpha: \mathbb{N} \rightarrow \mathbb{N}$ be a one-to-one function. Let $R=\mathbb{Z}\left[x_{i}: i \in \mathbb{N}\right] /\left(\left\{x_{i} x_{j}: i, j \in \mathbb{N}, i \neq j\right\}\right)$ and $J=\left\{(j+1) x_{\alpha(j)}: j \in \mathbb{N}\right\}$. By $4, \operatorname{Ann}_{R}(J)$ exists. It follows that $i \in \operatorname{Im} \alpha$ if and only if $x_{i} \notin \operatorname{Ann}_{R}(J)$. Thus Im α exists by Δ_{1}^{0} comprehension. This completes the proof of $4 \rightarrow 1$.

Recall that R in the proof of $3 \rightarrow 1$ is a local ring, hence the Jacobson radical of R equals the unique maximal ideal of R.

In ordinary mathematics, the nilradical can also be characterized as the intersection of all prime ideals of the ring. Note that this statement is of the form $(\forall R)(\forall a \in R)(\varphi(R, a) \leftrightarrow \psi(R, a))$ where R ranges countable commutative rings, φ is Σ_{1}^{0}, and ψ is Π_{1}^{1}. We show that WKL_{0} is needed to develop such an argument.

Proposition 6.13. RCA_{0} proves the following. If R is a countable commutative ring and $r \in R$ is nilpotent, then r belongs to every prime ideal of R.

Proof. We reason within RCA_{0}. Let $r \in R$ be nilpotent and $P \subset R$ be a prime ideal. From $r^{n}=0_{R} \in P$ we have $r \in P$ by Σ_{0}^{0} induction. This completes the proof.

Proposition 6.14. WKL_{0} proves the following. If R is a countable commutative ring and $r \in R$ belongs to every prime ideal of R, then r is nilpotent.

Proof. We reason within WKL_{0}. We use Exercise 4.6.6 of Simpson [61] to show the contraposition of the statement. Let $r \in R$ be not nilpotent. Letting $\varphi(x) \equiv\left(x=0_{R}\right)$ and $\psi(x) \equiv(\exists n)\left(r^{n}=x\right)$, we have a prime ideal $P \subset R$ such that $r \notin P$. This completes the proof.

Theorem 6.15. The following are equivalent over RCA_{0}.

1. WKL_{0}.
2. If R is a countable commutative ring and $r \in R$ belongs to every prime ideal of R, then r is nilpotent.

Proof. The implication $1 \rightarrow 2$ is the previous proposition. It remains to show that 2 implies 1. By Theorem 4.6.4 of Simpson [61], it is enough to show that for any commutative ring R which is not a field there exists a prime ideal of R. Since 1_{R} is not nilpotent, using our assumption 2 , there exists a prime ideal $P \subset R$ such that $1_{R} \notin P$. This completes the proof.

Remark 6.16. We have presented several mathematical statements which are equivalent to $W_{K L}$: Isbell's zig-zag theorem (Theorem 4.4), a characterization of normalizers (Theorem 5.13), a characterization of abelianizer (Theorem 5.17), and a characterization of nilradicals (Theorem 6.15). Each of statements plus weak König's lemma itself asserts the equivalence between a Σ_{1}^{1} sentence and a Π_{1}^{0} sentence. More precisely, it is of the form

$$
(\forall x \in|M|)(\exists X \varphi(x, X) \leftrightarrow \psi(x))
$$

where M is an algebraic (or more generally a mathematical) system, and φ and ψ is Π_{1}^{0}. Theorems or claims with such logical structure are seen here and there in ordinary mathematics. It is expected that a general relationship between such characterizations and $W K L_{0}$ lurks. One possible future work is to investigate a relationship between characterizations and set existence axioms more extensively and find meta-theorems about this phenomenon. See also Lemma VIII.2.4.2 of [61].

The argument on Jacobson radicals works parallel as we did in the case of nilradicals. In this case, instead of $W_{K L}$, we need $A C A_{0}$. In ordinary mathematics, the Jacobson radical can also be characterized as the intersection of all maximal ideals of the ring. Note that this statement is of the form $(\forall R)(\forall a \in R)(\varphi(R, a) \leftrightarrow \psi(R, a))$ where R rages countable commutative rings, φ is Π_{2}^{0}, and ψ is Π_{1}^{1}. We show that ACA $_{0}$ is needed to develop such argument.

Proposition 6.17. RCA_{0} proves the following. If R is a countable commutative ring and $r \in R$ satisfies the condition $(\forall a \in R)(\exists b \in R)\left(\left(r a-1_{R}\right) b=1_{R}\right)$, then r belongs to every maximal ideal of R.

Proof. We reason within RCA_{0}. Let $r \in R$ satisfy the condition $(\forall a \in R)(\exists b \in$ $R)\left(\left(r a-1_{R}\right) b=1_{R}\right)$ and $M \subset R$ be a maximal ideal of R. Suppose for a contradiction that $r \notin M$. Since M is maximal, there exists $m \in M$ and $a \in R$ such that $m+r a=1_{R}$. It follows that $r a-1_{R} \in M$, a contradiction for M can not contain a unit. So we have $r \in M$ and this completes the proof.

Proposition 6.18. ACA $_{0}$ proves the following. If R is a countable commutative ring and $r \in R$ belongs to every maximal ideal of R, then r satisfies the condition $(\forall a \in R)(\exists b \in R)\left(\left(r a-1_{R}\right) b=1_{R}\right)$.

Proof. Reasoning within ACA_{0}, we show the contraposition of the statement. Letting $r \in R$ not satisfy the condition $(\forall a \in R)(\exists b \in R)\left(\left(r a-1_{R}\right) b=1_{R}\right)$, we have $a \in R$ such that $r a-1_{R}$ is not a unit of R. By ACA A_{0}, there exists a maximal ideal $M \subset R$ such that $r a-1_{R} \in M$. If $r \in M$ then $1_{R}=r a-\left(r a-1_{R}\right) \in M$, a contradiction. It follows that $r \notin M$. This completes the proof.

Theorem 6.19. The following are equivalent over RCA_{0}.

1. $A C A_{0}$.
2. If R is a countable commutative ring and $r \in R$ belongs to every maximal ideal of R, then r satisfies the condition $(\forall a \in R)(\exists b \in R)\left(\left(r a-1_{R}\right) b=\right.$ 1_{R}).

Proof. The implication $1 \rightarrow 2$ is the previous proposition. It remains to show that 2 implies 1. By Theorem 3.5.5 of Simpson [61], it is enough to show that for any commutative ring R which is not a field there exists a maximal ideal of R. Since $1_{R} \cdot 1_{R}-1_{R}=0_{R}$ and 0_{R} is not a unit, 1_{R} does not satisfy the condition $(\forall a \in R)(\exists b \in R)\left(\left(r a-1_{R}\right) b=1_{R}\right)$. Using our assumption 2, there exists a maximal ideal $M \subset R$ such that $1_{R} \notin M$. This completes the proof.

Recall that a countable commutative ring is said to be local if the ring has at most one maximal ideal. The locality of a commutative ring is characterized as the property that all elements of units have the property of ideals. Note that this statement is of the form $(\forall R)(\varphi(R) \leftrightarrow \psi(R))$ where R ranges countable commutative rings, φ is Π_{2}^{0}, and ψ is Π_{1}^{1}. Such argument can be developed within ACA_{0}. The reversal is not known.

Proposition 6.20. RCA_{0} proves the following. Let R be a countable commutative ring. If
$(\forall a, b, r \in R)\left(a\right.$ is not a unit $\wedge b$ is not a unit $\rightarrow a+_{R} b$ is not a unit $\wedge r a$ is not a unit)
holds then R is local.
Proof. We reason within RCA_{0}. Let M be any maximal ideal of R. It follows that $a \in M$ if and only if a is not a unit for any $a \in R$. Thus any two maximal ideal of R are equal to each other. This completes the proof.

Proposition 6.21. ACA A_{0} proves the following. Let R be a countable commutative ring. If R is local then
$(\forall a, b, r \in R)\left(a\right.$ is not a unit $\wedge b$ is not a unit $\rightarrow a+_{R} b$ is not a unit $\wedge r a$ is not a unit)
holds.
Proof. We reason within ACA_{0}. We may assume that R is not a field. Take a maximal ideal M of R. It is enough to show that $a \in M$ if and only if a is not a unit for any $a \in R$. If $a \in M$ then clearly a is not a unit. Suppose that a is not a unit. Take a maximal ideal M^{\prime} such that $a \in M^{\prime}$. By our assumption we have $M=M^{\prime}$. Therefore it follows that $a \in M$. This completes the proof.

Question 6.22. Does the statement of the previous proposition imply $A C A_{0}$ over RCA_{0} ?

Thirdly, we end this section by showing that arithmetical comprehension is just strong enough to guarantee various ideal operations.

Theorem 6.23. The following are equivalent over $R C A_{0}$.

1. $A C A_{0}$.
2. $I+J=\left\{a+{ }_{R} b: a \in I, b \in J\right\}$, the sum of I and J exists for any ideals I, J of any countable commutative ring.
3. $I \cdot J=\left\{\sum_{i} a_{i} b_{i}: a_{i} \in I, b_{i} \in J\right\}$, the product of I and J exists for any ideals I, J of any countable commutative ring.
4. $I^{k}=\left\{\sum_{i} a_{i_{1}} a_{i_{2}} \ldots a_{i_{k}}: a_{i_{0}}, \ldots, a_{i_{k}} \in I\right\}$, the power of I exists for any ideal I of any countable commutative ring, $2 \leq k \in \omega$.
5. $\bigcap_{k=0}^{\infty} I^{k}$ exists for any ideal I of any countable commutative ring.
6. $I: J=\{r \in R:(\forall a \in J)(r a \in I)\}$, the ideal quotient of I by J exists for any ideal I of any countable commutative ring.
7. $\sqrt{I}=\left\{r \in R:(\exists n>0)\left(r^{n} \in I\right)\right\}$, the radical of I exists for any ideal I of any countable commutative ring.

Proof. The implications from 1 to the other items are trivial. We show reversals via Lemma 1.9.
$(2 \rightarrow 1)$. We reason within RCA_{0}. Let $\alpha: \mathbb{N} \rightarrow \mathbb{N}$ be a one-to-one function. Let

$$
R=\mathbb{Z}\left[x_{i}: i \in \mathbb{N}\right] /\left(\left\{x_{i} x_{j}: i, j \in \mathbb{N}\right\}\right)
$$

$I=\left(\left\{(j+1) x_{\alpha(j)}: j \in \mathbb{N}\right\}\right)$, and $J=\left(\left\{(j+2) x_{\alpha(j)}: j \in \mathbb{N}\right\}\right)$. By $2, I+J$ exists. It follows that $i \in \operatorname{Im} \alpha$ if and only if $x_{i} \in I+J$. Thus $\operatorname{Im} \alpha$ exists by Δ_{1}^{0} comprehension. This completes the proof of $2 \rightarrow 1$.
$(3 \rightarrow 1)$. We reason within RCA_{0}. Let $\alpha: \mathbb{N} \rightarrow \mathbb{N}$ be a one-to-one function. Let $R=\mathbb{Z}\left[x_{i}, y: i \in \mathbb{N}\right]$. Let

$$
I=\left(\left\{\prod_{k=0}^{j} p_{2 k} x_{\alpha(j)}, y: j \in \mathbb{N}\right\}\right) \text { and } J=\left(\left\{\prod_{k=0}^{j} p_{2 k+1} x_{\alpha(j)}, y: j \in \mathbb{N}\right\}\right)
$$

where p_{k} is the k th prime. By $3, I \cdot J$ exists. If $i \notin \operatorname{Im} \alpha$ then $x_{i} y \notin I \cdot J$. Suppose that $\alpha(j)=i$. Since $\prod_{k=0}^{j} p_{2 k}$ and $\prod_{k=0}^{j} p_{2 k+1}$ are relatively prime, there exists two integers l and m such that $l \prod_{k=0}^{j} p_{2 k}+m \prod_{k=0}^{j} p_{2 k+1}=1$ by Bézout's lemma. Therefore $x_{i} y=l \prod_{k=0}^{j} p_{2 k} x_{i} y+m \prod_{k=0}^{j} p_{2 k+1} x_{i} y \in I \cdot J$. Thus $i \in \operatorname{Im} \alpha \leftrightarrow x_{i} y \in I \cdot J$ holds and hence by Δ_{1}^{0} comprehension the image of α exists. This completes the proof of $3 \rightarrow 1$.
$(4 \rightarrow 1)$. Let $k \in \omega$. We reason within RCA_{0}. Let $\alpha: \mathbb{N} \rightarrow \mathbb{N}$ be a one-to-one function. Let

$$
R=\mathbb{Z}\left[x_{i}, y_{i}: i \in \mathbb{N}\right] /\left(\left\{x_{\alpha(j)}^{k(j+1)}-y_{\alpha(j)}: j \in \mathbb{N}\right\}\right)
$$

and $I=\left(\left\{x_{i}, y_{i}: i \in \mathbb{N}\right\}\right)$. By $4, I^{k}$ exists. It follows that $i \in \operatorname{Im} \alpha$ if and only if $y_{i} \in I^{k}$. Thus $\operatorname{Im} \alpha$ exists by Δ_{1}^{0} comprehension. This completes the proof of $4 \rightarrow 1$.
$(5 \rightarrow 1)$. We reason within RCA_{0}. Let $\alpha: \mathbb{N} \rightarrow \mathbb{N}$ be a one-to-one function. Let

$$
R=\mathbb{Z}\left[x_{i, k}, y_{i}: i \in \mathbb{N}, 2 \leq k \in \mathbb{N}\right] /\left(\left\{x_{\alpha(j), k}^{k(j+1)}-y_{\alpha(j)}: j \in \mathbb{N}\right\}\right)
$$

and $I=\left(\left\{x_{i, k}, y_{i}: i \in \mathbb{N}, 2 \leq k \in \mathbb{N}\right\}\right)$. By $5, \bigcap_{k=0}^{\infty} I^{k}$ exists. If $i \notin \operatorname{Im} \alpha$ then $y_{i} \notin I^{2}$ and hence $y_{i} \notin \bigcap_{k=0}^{\infty} I^{k}$. Suppose that $\alpha(j)=i$ and we have

$$
y_{i}=x_{i, 2}^{2(j+1)}=x_{i, 3}^{3(j+1)}=\cdots \in \bigcap_{k=0}^{\infty} I^{k} .
$$

Thus $i \in \operatorname{Im} \alpha \leftrightarrow y_{i} \in \bigcap_{k=0}^{\infty} I^{k}$ holds and hence by Δ_{1}^{0} comprehension the image of α exists. This completes the proof of $5 \rightarrow 1$.
$(6 \rightarrow 1)$. Note that in the proof of $4 \rightarrow 1$ of Theorem $6.12, J$ is an ideal of R and $\operatorname{Ann}_{R}(J)=\left\{0_{R}\right\}: J$. Thus 6 implies 1.
$(7 \rightarrow 1)$. Note that $\operatorname{Nil}(R)=\sqrt{\left\{0_{R}\right\}}$. Thus by $2 \rightarrow 1$ of Theorem 6.127 implies 1.

The proof that 3 implies 1 is redundant for 3 implies 4 with $k=2$. Moreover, the same countable commutative ring as in the proof of $5 \rightarrow 1$ serves to prove $4 \rightarrow 1$. However the author leaves these proofs to express the idea.

6.3 Polynomial Rings

In this section we study the property of polynomial rings over countable fields. A part of the content is based on Friedman, Simpson and Smith [16]. Here we give detailed proofs. The following division algorithm is suggested in the proof of Lemma 2.3 of [16].

Proposition 6.24. RCA $_{0}$ proves the following. Let R be a countable commutative ring, $f \in R[x]$ be a nonzero polynomial, and $g \in R[x]$ be a monic polynomial. Then $(\exists q, r \in R[x])(f=q g+r \wedge \operatorname{deg} r<\operatorname{deg} g)$.

Proof. If $\operatorname{deg} f<\operatorname{deg} g$ then the desired statement holds trivially. Sot let $\operatorname{deg} f=n+i, \operatorname{deg} g=n(n, i \in \mathbb{N})$. We show

$$
(\forall l)(l \leq i+1 \rightarrow(\exists q, r \in R[x])(f=q g+r \wedge \operatorname{deg} r \leq n+i-l))
$$

via Σ_{1}^{0} induction on l. If $l=0$ then we have $f=0_{R[x]} \cdot g+f \wedge \operatorname{deg} f=n+i-0$, hence the statement holds. Assume that the statement holds for $l=k$ and let $k+1 \leq i+1$. By the induction hypothesis we have $q, r \in R[x]$ such that $f=q g+r \wedge \operatorname{deg} r \leq n+i-k$. If $\operatorname{deg} r<n+i-k$ then the statement holds for $l=k+1$. So let $\operatorname{deg} r=n+i-k$. Let $a\left(0_{R} \neq a \in R\right)$ be the leading coefficient of r. We have $\operatorname{deg}\left(r-a x^{i-k} \cdot g\right) \leq n+i-(k+1)$ and $f=q g+r=\left(q+a x^{i-k}\right) g+\left(r-a x^{i-k} \cdot g\right)$. Thus the statement holds for $l=k+1$. Finally let $l=i+1$ and we have the desired statement. This completes the proof.

A proof in some literature shows $(\forall m)(\forall f \in R[x])(\operatorname{deg} f=m \rightarrow(\exists q, r \in$ $R[x])(f=q g+r \wedge \operatorname{deg} r<\operatorname{deg} g))$ by the induction on m. We can not take this way because we lack Π_{2}^{0} induction.

Next proposition is on factorization of polynomials.
Proposition 6.25. RCA $_{0}$ proves the following. Let K be a countable field which is algebraic closed.

1. Let $f \in K[x]$ be a polynomial with degree n. Then there exists elements $a_{1}, \ldots, a_{n} \in K$ such that $f=\prod_{i=1}^{n}\left(x-a_{i}\right)$. Moreover, the elements are unique up to orders.
2. There exists a function $\alpha: K[x] \rightarrow K^{<\mathbb{N}}$ such that $\alpha(f)=\left\langle a_{1}, \ldots, a_{n}\right\rangle$ satisfies the condition $f=\prod_{i=1}^{n}\left(x-a_{i}\right)$ for all $f \in K[x]$.

Proof. 1. First we prove the existence of $a_{1}, \ldots a_{n}$. Define Σ_{1}^{0} formula by $\varphi(j) \equiv\left(j \leq \operatorname{deg}(f) \rightarrow\left(\exists a_{1}, \ldots, a_{j+1} \in K\right)(\exists g \in K[x])\left(f=g \prod_{i=1}^{j+1}(x-\right.\right.$ $\left.a_{i}\right)$). By Σ_{1}^{0} induction we have $(\forall j) \varphi(j)$ in paticular $\varphi(n)$.
Next we show the uniqueness. Suppose that we have two factorization $f=\prod_{i=1}^{n}\left(x-a_{i}\right)=\prod_{i=1}^{n}\left(x-b_{i}\right)$. Let $\psi(j)$ say that if $j \leq n$ then there exists a permutation σ of $\{1,2,3, \ldots, j\}$ such that $a_{i}=b_{\sigma(i)}$ for all $i \leq j$. Observing that $\psi(j)$ is Σ_{0}^{0}, we have $(\forall j) \psi(j)$ in particular $\psi(n)$ by Σ_{0}^{0} induction.
2. Notice that we have $(\forall f \in K[x])\left(\exists\left\langle a_{1}, \ldots, a_{n}\right\rangle \in K^{<\mathbb{N}}\right)\left(f=\prod_{i=1}^{n}\left(x-a_{i}\right)\right)$ and $f=\prod_{i=1}^{n}\left(x-a_{i}\right)$ is Σ_{0}^{0}.

Next we provide the notion of minimal polynomials.
Definition 6.26. Let F be a countable field and K be an algebraic closure of F. For each $a \in K$, a monic polynomial $f \in F[x]$ of the least degree such that $f(a)=0_{K}$ is called the minimal polynomial of a.

Proposition 6.27. RCA_{0} proves the following.
Let F be a countable field with its algebraic closure K. For each $a \in K$,

1. there exists the unique minimal polynomial $f \in F[x]$ of a.
2. the minimal polynomial of a is irreducible.
3. if $g \in F[x]$ satisfies these clauses

- g is irreducible,
- g is monic,
- $g(a)=0_{K}$,
then g is the minimal polynomial of a.

Proof. 1. First we show the existence. Let $\varphi(k) \equiv(\exists f \in F[x])(\operatorname{deg}(f)=$ $k \wedge f(a)=0)$. By Σ_{1}^{0} least number principle, there exists the least k satisfying $\varphi(k)$. If $\operatorname{deg} f=k$ and $f(a)=0$, then, dividing by the first coefficient if necessary, f is a minimal polynomial of a.
Next we show the uniqueness. If a has two distinct minimal polynomials f and f^{\prime}, then we have $\left(f-f^{\prime}\right)(a)=f(a)-f^{\prime}(a)=0_{K}$ and $0<\operatorname{deg}\left(f-f^{\prime}\right)<$ $\operatorname{deg} f$, a contradiction.
2. $f=g h$ and $f(a)=0_{K}$ implies $g(a)=0_{K}$ or $h(a)=0_{K}$. If f is the minimal polynomial of a, either g or h is constant by the minimality. This concludes that f is irreducible.
3. Let f be a minimal polynomial of a and g satisfy the condition above. Dividing f by g, we have $g=q f+r(q, r \in F[x], \operatorname{deg} r<\operatorname{deg} f) . f(a)=$ $g(a)=0_{K}$ implies $r(a)=0_{K}$ and we have $r=0_{F[x]}$ by the minimality. Since g is irreducible and monic, it follows that $q=1_{F[x]}$. This leads to $g=f$.

Note that RCA_{0} does not prove the existence of a function which takes $a \in K$ to the minimal polynomial of a in general. The following theorem explains this situation.

Lemma 6.28. RCA_{0} proves the following. Let F be a countable field and (K, h) be an algebraic closure of F. The following are equivalent.

1. The set of all irreducible elements $\operatorname{IRR}(F[x])$ of $F[x]$ exists.
2. The function which takes $a \in K$ to the minimal polynomial of a exists.
3. The image $h(F)$ of F under h exists.

Proof. The equivalence between 1 and 3 is Lemma 2.7 of [16]. Here we give a detailed proof for convenience.
$(1 \rightarrow 2)$. By the previous proposition we have $(\forall a \in K)(\exists f)(f \in \operatorname{IRR}(F[x]) \wedge$ $f(a)=0_{K}$). By Σ_{0}^{0} axiom choice of numbers we have a desired function.
$(2 \rightarrow 3)$. Notice that for given $a \in K a \in h(F)$ if and only if the degree of the minimal polynomial of a is 1 .
$(3 \rightarrow 1)$. For given $f \in F[x]$, by Proposition 6.25 let $h f=\prod_{i=0}^{n}(x-$ $\left.a_{i}\right)\left(a_{i} \in K, n=\operatorname{deg} f\right) . f$ is reducible if and only if there exists a proper subset $S \subset\{1,2,3, \ldots, n\}$ such that all coefficients of $\prod_{i \in S}\left(x-a_{i}\right)$ are in $h(F)$ (in this case $h^{-1} \prod_{i \in S}\left(x-a_{i}\right)$ is a divisor of $\left.f\right)$. Since the latter condition is Δ_{1}^{0}, $\operatorname{IRR}(F[x])$ exists by Δ_{1}^{0} comprehension.

Theorem 6.29. The following are equivalent over RCA_{0}.

1. $A C A_{0}$.
2. For any countable field F, there exists $\operatorname{IRR}(F[x])$, a set of all irreducible element of $F[x]$.
3. For any countable field F, a function which takes $f \in F[x]$ to an irreducible divisor of f exists.
4. For any countable field F,

$$
\left(\forall\left\langle f_{i}: i \in \mathbb{N}\right\rangle \subset F[x]\right)\left(\exists\left\langle g_{i}: i \in \mathbb{N}\right\rangle \subset F[x]\right)(\forall i)\left(g_{i} \in \operatorname{IRR}(F[x]) \wedge g_{i} \mid f_{i}\right)
$$

5. For any countable field F with its algebraic closure K, a function which takes $a \in K$ to the minimal polynomial $f \in F[x]$ of a exists.
6. For any field F with its algebraic closure K,
$\left(\forall\left\langle a_{i}: i \in \mathbb{N}\right\rangle \subset K\right)\left(\exists\left\langle f_{i}: i \in \mathbb{N}\right\rangle \subset F[x]\right)(\forall i)\left(f_{i}\right.$ is the minimal polynomial of $\left.a\right)$.
7. For any countable field F with its algebraic closure (K, h), the image $h(F)$ of F exists.

Note that 4 and 7 are the sequential version of Lemma 2.4 of [16] and Proposition 6.27 .1 respectively.

Proof. The equivalence between 1 and 2 is Theorem 4.1 of [16]. The equivalences between 2,3 , and 4 is trivial. The equivalence between 5 and 6 is also trivial. The equivalence between 2,5 , and 7 follows from the previous lemma.

We end this section by giving a detailed proof of Lemma 2.8.(1) of [16].
Definition 6.30. Let R be a countable commutative ring. A polynomial $f=$ $\sum_{i=0}^{n} a_{i} x^{i} \in R[x]$ is primitive if the greatest common divisor of $\left\langle a_{i}: i \leq n\right\rangle$ equals 1_{R}.

Proposition 6.31. RCA_{0} proves the following.

1. There exists a function α which take a polynomial $f \in \mathbb{Q}[x]$ to a primitive polynomial $f_{0} \in \mathbb{Z}[x]$ such that $(\exists c \in \mathbb{Q})\left(f=c f_{0}\right)$.
2. Let α be the function in the clause 1. f is irreducible in $\mathbb{Q}[x]$ if and only if $\alpha(f)$ is irreducible in $\mathbb{Z}[x]$ for all $f \in \mathbb{Q}[x]$.
3. $\operatorname{IRR}(\mathbb{Z}[x])$ exists, so $\operatorname{IRR}(\mathbb{Q}[x])$ does.

Proof. We show the existence of $\operatorname{IRR}(\mathbb{Z}[x])$. It is enough to show that the number of divisors of a given polynomial $f \in \mathbb{Z}[x]$ is finite. If g divides f (in $\mathbb{Z}[x]$) then $g(i)$ divides $f(i)$ (in \mathbb{Z}) for all $1 \leq i \leq n$ where n is the degree of f.

6.4 Euclidean Domains and Principal Ideal Domains (PIDs)

Definition 6.32 (Euclidean domains). The following definition is made in RCA_{0}. Let R be a countable commutative domain. A function $|*|: R \rightarrow \mathbb{N}$ is said to be norm function if

1. $(\forall a \in R)\left(a \neq 0_{R} \rightarrow|a|>\left|0_{R}\right|\right)$,
2. $(\forall a, b \in R)\left(b \neq 0_{R} \rightarrow(\exists q, r \in R)(a=q b+r \wedge|r|<|b|)\right.$.

A countable commutative domain together with a norm function is said to be Euclidean domain. The range of a norm function can be replaced by any wellordered set X. However, we require the Σ_{1}^{0} least number principle along the order of X for technical reasons.
\mathbb{Z} with the ordinary absolute value function $|*|: \mathbb{Z} \rightarrow \mathbb{N}$ is one of the simplest example of an Euclidean domain. By Proposition 6.24, the ring of polynomials $F[x]$ for any countable field F with the degree function deg : $F[x] \rightarrow \mathbb{N} \cup\{-\infty\}$ forms an Euclidean domain.

Definition 6.33 (relatively prime). The following definitions are made in RCA_{0}. Let R be a countable commutative ring. Recall that we write $(\exists c \in R)(a=b c)$ as $b \mid a$ for $a, b \in R$. Elements $a_{0}, \ldots, a_{n} \in R$ are said to be relatively prime if $(\forall b \in R)\left((\forall i \leq n)\left(b \mid a_{i} \rightarrow b\right.\right.$ is a unit $)$.

Now we prove Bézout's lemma for Euclidean domains within RCA R_{0}.
Theorem 6.34 (Bézout's lemma). RCA proves the following. Let R be an Euclidean domain and $a_{1}, a_{2}, \ldots, a_{n} \in R$ be a finite sequence of nonzero elements. Then the following are equivalent.

1. $a_{1}, a_{2}, \ldots, a_{n}$ are relatively prime.
2. $\left(\exists t_{1}, t_{2}, \ldots, t_{n} \in R\right)\left(\sum_{i=1}^{n} t_{i} a_{i}=1_{R}\right)$.

Proof. The implication $2 \rightarrow 1$ is trivial. (This is true for a general countable commutative ring R.) We show the converse. Let

$$
\varphi(x) \equiv\left(\exists s_{1}, \ldots, s_{n} \in R\right)\left(\sum_{i=1}^{n} s_{i} a_{i} \neq 0_{R} \wedge\left|\sum_{i=1}^{n} s_{i} a_{i}\right|=x\right) .
$$

By Σ_{1}^{0} least number principle, take the least x and such $s_{1}, \ldots, s_{n} \in R$. Let $u=\sum_{i=1}^{n} s_{i} a_{i}$ and $a_{k}=q u+r,|r|<|u|$ for $1 \leq k \leq n$. It follows that $r=\sum_{i=1}^{n} s_{i}^{\prime} a_{i}$ where $s_{i}^{\prime}=-q s_{i}(i \neq k), 1_{R}-q s_{i}(i=k)$ and $\varphi(|r|)$. By the minimality of x, we have $r=0_{R}$. Therefore, by our assumption $1, u$ is a unit. Thus $\sum_{i=1}^{n}\left(u^{-1} s_{i}\right) a_{i}=1_{R}$. This completes the proof.

The rest of this section discusses Σ_{1}^{0} PIDs.

Definition 6.35 (Σ_{1}^{0} PIDs). The following definitions are made in RCA_{0}. Let R be a countable commutative ring. A sequence $\mathcal{I}=\left\langle r_{i}: i \in \mathbb{N}\right\rangle$ of elements of R is said to be a Σ_{1}^{0} ideal if $(\forall i, j)(\exists k)\left(r_{i}+r_{j}=r_{k}\right)$ and $(\forall i)(\forall s \in R)(\exists j)\left(r_{i} s=r_{j}\right)$, cf. Remark 2.2 of Simpson [60]. A sequence of Σ_{1}^{0} ideals is defined similarly. A countable commutative domain R is said to be Σ_{1}^{0} PID if $(\exists i)(\forall j)(\exists s \in R)\left(r_{j}=\right.$ $\left.r_{i} s\right)$ for any Σ_{1}^{0} ideal $\mathcal{I}=\left\langle r_{i}: i \in \mathbb{N}\right\rangle$ of $R . r_{i}$ is said to be a generator of the Σ_{1}^{0} ideal.
\mathbb{Z} is a Σ_{1}^{0} PID. $\mathbb{Z}[x]$ is not a Σ_{1}^{0} PID for the Σ_{1}^{0} ideal generated by $\{x, 2\}$ does not have a single generator. If F is a countable field then $F[x]$ is a Σ_{1}^{0} PID. This fact follows from the following proposition.

Proposition 6.36. RCA A_{0} proves that every Euclidean domain is a Σ_{1}^{0} PID.
Proof. We reason within RCA_{0}. Let R be an Euclidean domain and $\left\langle r_{i}: i \in \mathbb{N}\right\rangle$ be a Σ_{1}^{0} ideal of R. We may assume that $(\exists k)\left(r_{k} \neq 0_{R}\right)$. Let $\varphi(x) \equiv(\exists k)\left(r_{k} \neq\right.$ $\left.0_{R} \wedge\left|r_{k}\right|=x\right)$ and take the least x and k by Σ_{1}^{0} least number principle. For any j we have $r_{j}=q r_{k}+r\left(q, r \in R,|r|<\left|r_{k}\right|\right)$. If $r \neq 0_{R}$ then we have $\varphi(|r|)$, a contradiction to the minimality of x. Therefore we have $r=0_{R}$ and hence r_{k} is a generator of $\left\langle r_{i}: i \in \mathbb{N}\right\rangle$. This completes the proof.

A kind of sequential version of Proposition 6.36 is not provable in RCA_{0}. In fact, we have

Theorem 6.37. The following are equivalent over $R C A_{0}$.

1. $A C A_{0}$.
2. Let R be an Euclidean domain and $\left\langle\left\langle r_{i j}: j \in \mathbb{N}\right\rangle: i \in \mathbb{N}\right\rangle$ be a sequence of Σ_{1}^{0} ideals of R. Then there exists a sequence $\left\langle k_{i}: i \in \mathbb{N}\right\rangle$ such that $r_{i k_{i}}$ is a generator of $\left\langle r_{i j}: j \in \mathbb{N}\right\rangle$ for all i.
3. Let R be an Euclidean domain and $\left\langle I_{i}: i \in \mathbb{N}\right\rangle$ be a sequence of ideals of R. Then there exists a sequence $\left\langle r_{i}: i \in \mathbb{N}\right\rangle$ of elements of R such that r_{i} is a generator of I_{i} for all i.

Proof. Reasoning in ACA_{0}, we show the implication $1 \rightarrow 2$. By the proof of the previous proposition, we have $(\forall i)(\exists k)\left(r_{k}\right.$ generates $\left.\left\langle r_{i j}: j \in \mathbb{N}\right\rangle\right)$. Thus there exists a desired sequence by axiom choice of numbers for arithmetical formulae. The implication $2 \rightarrow 3$ is trivial. Reasoning in RCA_{0}, we show the implication $3 \rightarrow 1$ via Lemma 1.9. Let α be a one-to-one function. Define a sequence $\left\langle I_{i}: i \in \mathbb{N}\right\rangle$ of ideals of \mathbb{Z} by letting

$$
k \in I_{i} \leftrightarrow k=0_{\mathbb{Z}} \vee(\exists j \leq|k|)(\alpha(j)=i \wedge(\exists l \leq|k|)((j+1) l=|k|)) .
$$

By our assumption 3, let $\left\langle r_{i}: i \in \mathbb{N}\right\rangle$ a sequence of generators of $\left\langle I_{i}: i \in \mathbb{N}\right\rangle$. It follows that $i \in \operatorname{Im} \alpha$ if and only if $r_{i} \neq 0_{\mathbb{Z}}$. Thus the image of α exists by Δ_{1}^{0} comprehension. This completes the proof.

Proposition 6.38. RCA A_{0} proves that every irreducible element of a $\Sigma_{1}^{0} \mathrm{PID}$ is a prime element.
Proof. A standard proof can be carried out in RCA_{0}. In this proof, ($a_{0}, a_{1}, \ldots, a_{n}$) denotes the Σ_{1}^{0} ideal generated by $a_{0}, a_{1}, \ldots, a_{n} \in R$. Let R be a Σ_{1}^{0} PID and $a \in R$ be an irreducible element. Let $a \mid b_{0} b_{1}\left(b_{0}, b_{1} \in R\right)$. Let c_{i} be a generator of $\left(a, b_{i}\right)$ and $a=r_{i} c_{i}\left(r_{i} \in R\right)$ for $i=0,1$. It follows that r_{i} or c_{i} is a unit. If both c_{0} and c_{1} are units, we have $1_{R}=s_{0} a+{ }_{R} t_{0} b_{0}=s_{1} a+{ }_{R} t_{1} b_{1}\left(s_{0}, s_{1}, t_{0}, t_{1} \in R\right)$ and $a \mid\left(s_{0} a+{ }_{R} t_{0} b_{0}\right)\left(s_{1} a+{ }_{R} t_{1} b_{1}\right)=1_{R}$. It follows that a is a unit, a contradiction. Therefore either r_{0} or r_{1} is a unit. If r_{i} is a unit then $b_{i}=u c_{i}=u r_{i}^{-1} a(u \in R)$ and hence $a \mid b_{i}$. Thus a is a prime element. This completes the proof.

Proposition 6.39. RCA_{0} proves the following. Let R be a Σ_{1}^{0} PID and $a \in R$ be an irreducible element. Then the ideal generated by a exists. Moreover, the ideal is a maximal ideal.

Proof. Reasoning within RCA_{0}, we show that $a \mid b \leftrightarrow \neg(\exists r, s \in R)\left(r a+s b=1_{R}\right)$ for any $b \in R$. First we show the implication \rightarrow. (This is true for a general countable commutative ring R.) Let $a \mid b$ and $b=t a(t \in R)$. If $r a+s b=1_{R}$ then $a(r+s t)=1_{R}$. Therefore a is a unit, a contradiction to the assumption that a is irreducible. Thus $\neg(\exists r, s \in R)\left(r a+s b=1_{R}\right)$. Second we show the implication \leftarrow. Let c be a generator of the Σ_{1}^{0} ideal generated by a and b. Let $a=r c, b=s c, c=t a+u b(r, s, t, u \in R)$. By our assumption that a is irreducible, either r or c is a unit. If c is a unit then $1_{R}=c^{-1} t a+c^{-1} u b$, a contradiction. Therefore r is a unit and we have $r^{-1} a=c, b=s r^{-1} a$, and hence $a \mid b$. Thus we have the desired equivalence. By Δ_{1}^{0} comprehension the ideal generated by a exists. It is easily verified that the ideal is maximal. This completes the proof.
Corollary 6.40. WKL L_{0} proves that every Σ_{1}^{0} PID which is not a field have a maximal ideal.

Proof. Reasoning within WKL_{0}, let P be a prime ideal of a Σ_{1}^{0} PID, cf. Theorem 6.10. A generator of P is prime and hence irreducible. Thus by Proposition 6.39 P is maximal.

It is not known that whether the previous corollary implies $W_{K} L_{0}$ over $R C A_{0}$ or not.

6.5 Noetherian Rings

It is a worrisome question to define Noetherian rings within a weak base theory. Letting R be a countable commutative ring, we consider the following conditions.

1. There exists a non finitely generated ideal I of R.
2. There exists an irredundant ascending chain of ideals $I_{0} \subsetneq I_{1} \subsetneq \cdots$ of R.
3. There exists an ascending chain of ideals $I_{0} \subset I_{1} \subset \cdots$ of R such that $(\forall i)(\exists j \geq i)\left(I_{j} \subsetneq I_{j+1}\right)$.
4. There exists a sequence $\left\langle a_{i}: i \in \mathbb{N}\right\rangle$ of elements of R such that $(\forall i)\left(a_{i+1} \notin\right.$ $\left.\left(a_{0}, \ldots a_{i}\right)\right)$.
5. There exists a sequence $\left\langle a_{i}: i \in \mathbb{N}\right\rangle$ of elements of R such that $(\forall i)(\exists j \geq$ $i)\left(a_{j+1} \notin\left(a_{0}, \ldots, a_{j}\right)\right)$.
6. There exists an irredundant ascending chain of Σ_{1}^{0} ideals $\mathcal{I}_{0} \subsetneq \mathcal{I}_{1} \subsetneq \cdots$ of R.
7. There exists an ascending chain of Σ_{1}^{0} ideals $\mathcal{I}_{0} \subset \mathcal{I}_{1} \subset \cdots$ of R such that $(\forall i)(\exists j \geq i)\left(\mathcal{I}_{j} \subsetneq \mathcal{I}_{j+1}\right)$.
8. There exists a non finitely generated Σ_{1}^{0} ideal \mathcal{I} of R.
9. There exists a sequence $\left\langle a_{i}: i \in \mathbb{N}\right\rangle$ of elements of R such that $\left(a_{0}\right) \subsetneq$ $\left(a_{1}\right) \subsetneq \cdots$.
10. There exists a sequence $\left\langle a_{i}: i \in \mathbb{N}\right\rangle$ of elements of R such that $\left(a_{0}\right) \subset$ $\left(a_{1}\right) \subset \cdots$ and $(\forall i)(\exists j \geq i)\left(\left(a_{j}\right) \subsetneq\left(a_{j+1}\right)\right)$.

Clearly ACA_{0} proves that all the conditions except 9 and 10 are equivalent, that the conditions 9 and 10 are equivalent, and that one of conditions 9 or 10 implies one of conditions from 1 to 8 . More precisely, RCA_{0} proves $2 \rightarrow 3,3 \rightarrow 2,2 \rightarrow 4$, $4 \rightarrow 5,4 \rightarrow 6,6 \rightarrow 7,7 \rightarrow 8,8 \rightarrow 7,9 \rightarrow 10,9 \rightarrow 4$, and $10 \rightarrow 5$. WKL_{0} proves $4 \rightarrow 2$ and $5 \rightarrow 3$. We give proofs for nontrivial implications.

Proof. $(1 \rightarrow 4)$. By arithmetical comprehension, define a sequence $\left\langle a_{i}: i \in \mathbb{N}\right\rangle$ of elements of I by $a_{i+1}=\mu y\left\{y \in I: y \notin\left(a_{0}, a_{1}, \ldots, a_{i}\right) \wedge\left(a_{0}, a_{1}, \ldots a_{i}, y\right) \neq I\right\}$.
$(3 \rightarrow 1)$. Reasoning within ACA $_{0}$, we show the contraposition. Assume $\neg 1$. Let $\left\langle I_{i}: i \in \mathbb{N}\right\rangle$ be an ascending chain of ideals of R such that $I_{i} \subset I_{i+1}$ for all $i \in \mathbb{N}$. By arithmetical comprehension let $I=\bigcup_{i \in \mathbb{N}} I_{i}=\left\{a \in R: \exists i\left(a \in I_{i}\right)\right\}$. By our assumption, let $a_{0}, a_{1}, \ldots, a_{n} \in I$ be a generators of I. Since $I \subset \bigcup_{i \in \mathbb{N}} I_{i}$ we have $(\forall i \leq n)(\exists m)\left(a_{i} \in I_{m}\right)$ and this imply $\left(\exists m_{0}\right)(\forall i \leq n)\left(a_{i} \in I_{m_{0}}\right)$ by Σ_{0}^{0} bounding. Then it follows that $I \subset I_{m_{0}}$. On the other hand, since $\bigcup_{i \in \mathbb{N}} I_{i} \subset I$ we have $I_{m_{0}} \subset I_{l} \subset I \subset I_{m_{0}}$ i.e., $I_{l}=I_{m_{0}}$ for all $l \geq m_{0}$. Thus we have $\neg 3$.
$(2 \rightarrow 4)$. We reason within RCA_{0}. Since $(\forall i)(\exists a)\left(a \in I_{i+1} \backslash I_{i}\right)$ holds, so does $(\exists f)(\forall i)\left(f(i) \in I_{i+1} \backslash I_{i}\right)$ by Σ_{0}^{0} axiom choice of numbers. Put $a_{i}=f(i)$ and we have a desired sequence $\left\langle a_{i}: i \in \mathbb{N}\right\rangle$ of elements of R.
$(4 \rightarrow 2)$. Via weak König's lemma, we can construct a sequence $\left\langle I_{i}: i \in \mathbb{N}\right\rangle$ of ideals with following Π_{1}^{0} properties.

- I_{i} is an ideal of R for all $i \in \mathbb{N}$,
- $a_{0}, a_{1}, \ldots a_{i} \in I_{i}$ for all $i \in \mathbb{N}$,
- $a_{i+1} \notin I_{i}$ for all $i \in \mathbb{N}$.
$(8 \rightarrow 7)$. Let $\mathcal{I}=\left\langle a_{i}: i \in \mathbb{N}\right\rangle$. Let $\varphi(\langle n, r\rangle)$ say that $r \in R$ is generated by a_{0}, \ldots, a_{n}. Observing that φ is Σ_{1}^{0}, by Lemma 1.3 , let $\left\langle\mathcal{I}_{n}: n \in \mathbb{N}\right\rangle$ be an enumeration of elements that satisfies φ. Clearly $\left\langle\mathcal{I}_{n}\right\rangle$ is a desired ascending chain of Σ_{1}^{0} ideals.

The idea of proof of $3 \rightarrow 1$ requires that I must include $\bigcup_{i \in \mathbb{N}} I_{i}$ and be included by $\bigcup_{i \in \mathbb{N}} I_{i}$, i.e., I must equal $\bigcup_{i \in \mathbb{N}} I_{i}$. On the other hand, the assertion that $\bigcup_{i \in \mathbb{N}} I_{i}$ exists for any ascending chain of ideals $\left\langle I_{i}: i \in \mathbb{N}\right\rangle$ is equivalent to ACA_{0} over RCA_{0}.

Proposition 6.41. The following is equivalent over $R C A_{0}$.

1. $A C A_{0}$
2. Let $\left\langle I_{n}: n \in \mathbb{N}\right\rangle$ be an ascending chain of ideals of a countable commutative ring. Then the ideal $\bigcup_{n \in \mathbb{N}} I_{n}=\left\{a \in R:(\exists n)\left(a \in I_{n}\right)\right\}$ exists.
Proof. The implication $1 \rightarrow 2$ is trivial. Reasoning within RCA_{0} we show $2 \rightarrow 1$ via Lemma 1.9. Let $\alpha: \mathbb{N} \rightarrow \mathbb{N}$ be a one-to-one function. Let $R=\mathbb{Q}\left[x_{0}, x_{1}, \ldots\right]$ be the polynomial ring over the rational field \mathbb{Q} with countably infinitely many indeterminates. Define an ascending chain of ideals $\left\langle I_{i}: i \in \mathbb{N}\right\rangle$ as $p \in I_{n}$ if and only if every monomial $q x_{m_{0}}^{e_{0}} x_{m_{1}}^{e_{1}} \ldots x_{m_{l}}^{e_{l}}$ of p contains at least one $i \leq l$ such that $(\exists j<n)\left(\alpha(j)=m_{i}\right)$. By our assumption $2, \bigcup_{n \in \mathbb{N}} I_{n}$ exists. It follows that $(\exists j)(\alpha(j)=i) \leftrightarrow x_{i} \in \bigcup_{n \in \mathbb{N}} I_{n}$ for all $i \in \mathbb{N}$. Thus by Δ_{1}^{0} comprehension the image of α exists. This completes the proof.

Definition 6.42. The following definitions are made in RCA_{0}. Let R be a countable commutative ring.

1. R is said to satisfy the ascending chain condition on ideals if every ascending chain $I_{0} \subset I_{1} \subset \cdots$ of ideals of R is stationary i.e., $(\exists n)\left(I_{n}=\right.$ $\left.I_{n+1}=\cdots\right)$.
2. R is said to satisfy the ascending chain condition on principal ideals if every sequence $\left\langle a_{i}: i \in \mathbb{N}\right\rangle$ such that $\left(a_{0}\right) \subset\left(a_{1}\right) \subset \cdots$ of elements of R is stationary i.e., $(\exists n)\left(\left(a_{n}\right)=\left(a_{n+1}\right)=\cdots\right)$.
In the rest of this section we prove the decomposition theorems for countable Noetherian rings within ACA_{0}.
Proposition 6.43. The following is provable in ACA_{0}. Let R be a countable commutative ring with the ascending chain condition on principal ideals. If an element $a \in R$ is not 0_{R} nor a unit then there exists a sequence of irreducible elements $\left\langle b_{i}: i<n\right\rangle$ of finite length such that $a=\prod_{i<n} b_{i}$.
Proof. We reason within ACA_{0}. Let the arithmetical formula $\varphi(x, y)$ say that if $x \in R$ and x is not a product of any finite sequence of irreducible elements then $y \in R, y \mid x, x \quad \backslash y$, and y is not a product of any finite sequence of irreducible elements. It follows that $(\forall x)(\exists y) \varphi(x, y)$ and by arithmetical comprehension we have $(\exists f)(\forall x) \varphi(x, f(x))$. We show the contraposition of the statement. Let $a \in R$ not be 0_{R} nor a unit and suppose that a is not a product of any finite sequence of irreducible elements. Then we have an ascending chain

$$
\left(a_{0}\right) \subsetneq\left(a_{1}\right) \subsetneq \cdots
$$

of principal ideals by primitive recursion by putting $a_{0}=a$ and $a_{i+1}=f\left(a_{i}\right)$. This complete the proof.

Moreover, RCA_{0} proves that if R is a Σ_{1}^{0} PID then the decomposition is unique up to order and units. Thus RCA proves that every Σ_{1}^{0} PID is a UFD.

Proposition 6.44. The following is provable in ACA_{0}. Let R be a countable commutative ring with the ascending chain condition on ideals. If $I \subset R$ is an ideal then there exists a sequence of irreducible ideals $\left\langle J_{i}: i<n\right\rangle$ of finite length such that $I=\bigcap_{i<n} J_{i}$.

Proof. We reason within ACA_{0}. Assume for a contradiction that there does not exist a sequence of irreducible ideals $\left\langle J_{i}: i<n\right\rangle$ of finite length such that $I=\bigcap_{i<n} J_{i}$. Let the formula $\varphi(x, y)$ say that if x is finite sequence of elements of R and the ideal generated by $I \cup\left\{x_{0}, \ldots, x_{\operatorname{lh}(\mathrm{x})-1}\right\}$ is not expressive as an intersection of finite number of irreducible ideals then y is an extension of x of the form $x^{\frown}\langle r\rangle(r \in R)$ such that $r \notin\left(I \cup\left\{x_{0}, \ldots, x_{\mathrm{lh}(\mathrm{x})-1}\right\}\right)$ and the ideal generated by $I \cup\left\{x_{0}, \ldots, x_{\operatorname{lh}(\mathrm{x})-1}, r\right\}$ is not also expressive as an intersection of finite number of irreducible ideals. Since every ideal of R is finitely generated, φ can be taken as an arithmetical formula. We have $(\forall x)(\exists y) \varphi(x, y)$ and by arithmetical comprehension $(\exists f)(\forall x) \varphi(x, f(x))$. Define $\left\langle s_{i}: i \in \mathbb{N}\right\rangle$ by primitive recursion by putting $s_{0}=$ the empty sequence and $s_{i+1}=f\left(s_{i}\right)$. Define $\left\langle a_{i}: i \in \mathbb{N}\right\rangle$ by putting $a_{i}=$ the last component of s_{i+1}. It follows that $\left(a_{0}\right) \subsetneq\left(a_{0}, a_{1}\right) \subsetneq \cdots$ is a strict ascending chain of ideals, a contradiction with the ascending chain condition. This completes the proof.

Proposition 6.45. RCA_{0} proves that every irreducible ideal of a countable commutative ring with the ascending chain condition on ideals is a primary ideal.

Proof. We reason within RCA_{0}. Let I be an irreducible ideal of a countable commutative ring R with the ascending chain condition. Let $a, b \in R$ be such that $a b \in I$ and $(\forall i \geq 1)\left(b^{i} \notin I\right)$. It is enough to show that $a \in I$. By Δ_{1}^{0} comprehension let $\left\langle J_{i}: i \in \mathbb{N}\right\rangle$ be an ascending chain of ideals such that $J_{i}=I:\left(b^{i}\right)$. By the assumption let n be such that $(\forall i \geq n)\left(J_{i}=J_{n}\right)$. We shall show that $I=(I \cup\{a\}) \cap\left(I \cup\left\{b^{n}\right\}\right)$. Let $r=s+t b^{n} \in(I \cup\{a\}) \cap\left(I \cup\left\{b^{n}\right\}\right)(s \in$ $I, t \in R)$. Since $r \in(I \cup\{a\})$ and $a b \in I$ we have $r b \in I$. Therefore we have $t b^{n+1}=r b-s b \in I$ and hence $t \in I:\left(b^{n+1}\right)=J_{n+1}=J_{n}=I:\left(b^{n}\right)$. Therefore $t b^{n} \in I$ and hence $r=s+t b^{n} \in I$. Thus $I=(I \cup\{a\}) \cap\left(I \cup\left\{b^{n}\right\}\right)$ and since I is irreducible we have $a \in I$. This completes the proof.

By the previous two proposition it follows that ACA_{0} proves the LaskerNoether primary decomposition theorem for a countable commutative rings. Moreover, RCA_{0} proves the uniqueness of the primary decomposition. The exploration for reversals will be quite interesting work.

6.6 Other Topics

Simpson [60] showed that Hilbert basis theorem is equivalent over RCA_{0} to the assertion $\mathrm{WO}\left(\omega^{\omega}\right)$ that the ordinal number ω^{ω} is well ordered. Here Hilbert basis theorem is formalized as for any countable field K and any $m \in \mathbb{N}$, every Σ_{1}^{0}
ideal of $K\left[x_{0}, \ldots, x_{m}\right]$ is finitely generated. It is known that $\mathrm{I} \Sigma_{1}^{0}$ does not imply $\mathrm{WO}\left(\omega^{\omega}\right)$, that $\mathrm{WO}\left(\omega^{\omega}\right)$ is implied by $\mathrm{I} \Sigma_{2}^{0}$, that $\mathrm{WO}\left(\omega^{\omega}\right)$ does not imply $\mathrm{B} \Sigma_{2}^{0}$, and that $\mathrm{WO}\left(\omega^{\omega}\right)+\mathrm{B} \Sigma_{2}^{0}$ does not imply $I \Sigma_{2}^{0}$ over $\mathrm{RCA}_{0}[62]$. This is an example of Reverse Mathematics which is not classified into "big five" systems. The theorem remains valid if we replace K by any countable commutative Noetherian ring. The logical strength of the replaced version is not known.

Hatzikiriakou [27] showed that $A C A_{0}$ is equivalent over $R C A_{0}$ to the existence of the integral closure of a countable commutative ring. He also developed the theory of prime ideals including Lying Over, Going Down, and Going Up theorem within $W_{K L}$. The reversals remain open.

Conidis $[8,9]$ developed the theory of Artinian rings within $W_{K L}$ with Reverse Mathematics results. One possible reason why $W_{K L} L_{0}$ suffices is that every prime ideal of an Artinian ring is maximal. Especially he showed that WKL_{0} is equivalent over $\mathrm{RCA}_{0}+I \Sigma_{2}^{0}$ to the Akizuki-Hopkins theorem which asserts that every countable commutative Artinian ring is Noetherian. He also showed that $W K L_{0}$ is equivalent over $R C A_{0}$ to the structural theorem which asserts that every countable commutative Artinian ring is isomorphic to a finite direct product of local Artinian rings. In connection with this result, we can consider the Artin-Wedderburn theorem for (not necessarily commutative) rings.

Definition 6.46. The following definitions are made within RCA_{0}. Note that a countable ring in this definition is not necessarily commutative. A countable ring R is said to be simple if

$$
(\forall a \in R)\left(\forall b \in R \backslash\left\{0_{R}\right\}\right)(\exists x, y \in R)(a=x b y)
$$

Note that if a countable ring R is simple then R does not have any nontrivial proper ideal. A countable ring R is said to be semisimple if R is isomorphic to the finite product of simple rings. A ring R is said to be left Artinian if there does not exists an infinite strictly descending chain of left ideals

$$
I_{0} \supsetneq I_{1} \supsetneq \cdots \supsetneq I_{n} \supsetneq \cdots
$$

The Artin-Wedderburn theorem for countable rings is formalized within RCA_{0} as follows. The following are equivalent for any countable ring R.

1. R is left Artinian and $\operatorname{Jac}(R)=\left\{0_{R}\right\}$.
2. R is semisimple, i.e., there exists simple rings $R_{0}, R_{1}, \ldots, R_{n}$ such that

$$
R \cong R_{0} \oplus R_{1} \oplus \cdots \oplus R_{n} .
$$

3. R is isomorphic to the finite product of matrix rings over division rings, i.e., there exists division rings $D_{0}, D_{1}, \ldots, D_{n}$ and positive integers $m_{0}, m_{1}, \ldots, m_{n}$ such that

$$
R \cong M_{m_{0}}\left(D_{0}\right) \oplus M_{m_{1}}\left(D_{1}\right) \oplus \cdots \oplus M_{m_{n}}\left(D_{n}\right)
$$

Wedderburn's part is $2 \leftrightarrow 3$ and Artin's part is $1 \leftrightarrow 2$. By routine inspection, we see that Wedderburn's part is provable within RCA_{0}. On the other hand, Artin's part implies the structural theorem above and hence $W_{K L}$ over $R C A_{0}$. It is expected that $W_{K L}$ proves Artin's part extending Conidis' method to the noncommutative case.

References

[1] Abian, S. and Brown, A. A theorem on partially ordered sets, with applications to fixed point theorems. Canadian Journal of Mathematics, 13, 78-82, 1961.
[2] Arslanov, M. M. Some generalizations of a fixed-point theorem. Izv. Vyssh. Uchebn. Zaved. Mat. 25, number 5, 9-16, translated in: Soviet Math. (Iz. VUZ) 25, number 5, 1-10, 1981.
[3] Bernays, P. and Hilbert, D. Grundlagen der Mathematik volume I. Springer, 1934.
[4] Birkhoff, G. Lattice Theory. American Mathematical Society Colloquium Publications, 1940.
[5] Bourbaki, N. Sur le théorème de Zorns. Archiv der Mathematik 2:6, 434437, 1949.
[6] Chandler, B. and Magnus, W. The History of Combinatorial Group Theory: A Case Study in the History of Ideas. Springer-Verlag, New York, 1982.
[7] Chubb, J., Hirst, J. L., and McNicholl, T. H. Reverse mathematics, computability, and partitions of trees. The Journal of Symbolic Logic, volume 74, number 1, March, 2009.
[8] Conidis, C. J. Chain conditions in computable rings. Transactions of the American Mathematical Society, volume 362(12) 6523-6550, 2010.
[9] Conidis, C. J. A new proof that Artinian implies Noetherian via weak König's lemma. Preprint, 2012.
[10] Cook, S. and Nguyen, P. Logical Foundations of Proof Complexity. Cambridge University Press, 2010.
[11] Davey, B. A. and Priestley, H. A. Introduction to Lattices and Order (second edition). Cambridge University Press, 2002.
[12] Davis, A. A characterization of complete lattices. Pacific Journal of Mathematics, 5, 311-319, 1955.
[13] Downey, R. , Hirschfeldt, D. R. , Kach, A. M. , Lempp, S. , Mileti, J. R. , and Montálban, A. Subspaces of computable vector spaces. Journal of Algebra 314, 888-894, 2007.
[14] Downey, R., Lempp, S. , and Mileti, J. R. Ideals in computable rings. Journal of Algebra 314, 872-887, 2007.
[15] Friedman, H. Some systems of second order arithmetic and their use, in Proceedings of the International Congress of Mathematicians (Vancouver, 1974), volume 1. Canadian Math. Congress, 235-242, 1975.
[16] Friedman, H., Simpson, S. G., and Smith, R. Countable algebra and set existence axioms. Annals of Pure and Applied Logic 25, 141-181, 1983.
[17] Friedman, H., Simpson, S. G., and Smith, R. Addendum to: "Countable algebra and set existence axioms". Annals of Pure and Applied Logic 28, 319-320, 1985.
[18] Frittaion, E. and Marcone, A. Linear extensions of partial orders and reverse mathematics. Mathematical Logic Quarterly 58, 417-423, 2012.
[19] Fuchs, L. Abelian Groups. Publishing House of the Hungarian Academy of Science, Budapest Mathematics, 1958.
[20] Fuchs, L. Infinite Abelian Groups: volume 1. Academic Press, New York, 1970.
[21] Fujiwara, M. and Sato, T. Note on total and partial functions in second order arithmetic. Kyoto University RIMS Kokyuroku 1950, 2015.
[22] Gödel, K. The Incompleteness Theorem (Japanese translation by Hayashi, S. and Yasugi, M.). Iwanami Shoten, 2006.
[23] Granas, A. and Dugundji, J. Fixed Point Theory. PWN-Polish Scientific Publishers, 1982.
[24] Granas, A. and Dugundji, J. Fixed Point Theory. Springer, 2003.
[25] Hájek, P. and Pudlák, P. Metamathematics of First-Order Arithmetic. Springer-Verlag, Berlin, Heidelberg, New York, 1993.
[26] Hatzikiriakou, K. Algebraic disguises of Σ_{1}^{0} induction. Archives of Mathematical Logic 29, 47-51, 1989.
[27] Hatzikiriakou, K. Extensions of commutative rings in subsystems of second order arithmetic. 5th Panhellenic Logic Symposium, 2005.
[28] Higgins, P. M. Techniques of Semigroup Theory. Oxford University Press, 1992.
[29] Hirschfeldt, D. R. Slicing the Truth: On the Computability Theoretic and Reverse Mathematical Analysis of Combinatorial Principles. to appear, 2010.
[30] Hirst, J. L. Combinatorics in subsystems of second order arithmetic. PhD thesis, Pennsylvania State University, 1987.
[31] Hirst, J. L. Connected components of graphs and reverse mathematics. Archives of Mathematical Logic 31, 183-192, 1992.
[32] Hoffman, P. A proof of Isbell's zigzag theorem. Journal of the Australian Mathematical Society volume 84, issue 02, April, 229-232, 2008.
[33] Honda, K. Realism in the theory of abelian groups I. Commentarii Mathematici Universitatis Sancti Pauli 5, 37-75, 1956.
[34] Honda, K. and Nagata, M. Abelian Groups and Algebraic Groups (in Japanese). Kyoritsu Shuppan, 1969.
[35] Hotta, R. Introduction to Algebra Groups, Rings and Modules (in Japanese). Syokabo, 1987.
[36] Howie, J. M. Fundamentals of Semigroup Theory. Oxford University Press, 1996.
[37] Ishihara, H. Constructive reverse mathematics: compactness properties (in Crosilla, L. and Schuster, P., editors, From Sets and Types to Analysis and Topology, Oxford Logic Guides 48, pages 245?267). Oxford University Press, 2005.
[38] Jockusch, Jr., C. G. Ramsey's theorem and recursion theory. The Journal of Symbolic Logic volume 37, 268-280, 1972.
[39] Kantorovitch, L. The method of successive approximations for functional equations. Acta Mathematica 71, 63-97, 1939.
[40] Kirby, L. A. S. and Paris, J. B. Σ_{n}-collection schemas in arithmetic. Logic Colloquium '77, Stud, Logic Foundations Math. 96, North-Holland, Amsterdam-New York, 199-209, 1975.
[41] Knaster, B. Un théorème sur les fonctions d'ensembles. Ann. Soc. Polon. Math. 6, 133-134, 1927.
[42] Kohlenbach, U. Applied Proof Theory: Proof Interpretations and Their Use in Mathematics. Springer-Verlag Berlin Heidelberg, 2008.
[43] Lerman, M., Solomon, R., and Towsner, H. Separating principles below Ramsey's theorem for pairs. Preprint, 2013.
[44] Liu, J. RT_{2}^{2} does not imply WKL_{0}. The Journal of Symbolic Logic volume 77 number 2, 609-620, 2012.
[45] Magnus, W., Karrass, A., and Solitar, D. Combinatorial Group Theory: Presentations of Groups in Terms of Generators and Relations (second revised edition). Dover Publications, 1976.
[46] Markowsky, G. Chain-complete posets and directed sets with applications. Algebra Universalis 6, 53-68, 1976.
[47] Miller, C. F. Decision problems for groups: survey and reflections. Algorithms and Classification in Combinatorial Group Theory (eds. Baumslag, G. and Miller III, C. F.), MSRI Publications number 23, Springer-Verlag, 1-59, 1992.
[48] Morita, Y. Introduction to Algebra (in Japanese). Shokabo, 1987.
[49] Nagao, H. Algebra (in Japanese). Asakura Shoten, 1983.
[50] Nielsen, J. Om regning med ikke kommutative faktorer og dens anvendelse i gruppeteorien. Matematisk Tidsskrift B, 77-94. English translation: Math. Scientist 6, 73-85 (1981). I. 6. D. II. 2,5,7, 1921.
[51] Rangaswamy, K. M. Characterization of intersections of neat subgroups of abelian groups. Journal of Indian Mathematical Society 29, 31-36, 1965.
[52] Reid, M. Undergraduate Commutative Algebra. Cambridge University Press, 1995.
[53] Roman, S. Lattices and Ordered Sets. Springer, 2008.
[54] Sato, T. Reverse mathematics and Isbell's zig-zag theorem. Mathematical Logic Quarterly, volume 60, issue 4-5, August 2014, 348-353, 2014.
[55] Schröder, B. Ordered Sets An Introduction. Birkhäuser, 2002.
[56] Seetapum, D. and Slaman, T. A. On the strength of Ramsey's theorem. Notre Dame Journal for Formal Logic 36, 570-582, 1995.
[57] Shinoda, J. Recursive Functions and Predicates (in Japanese). Kawai bunka kyouiku kenkyujo, 1997.
[58] Shioji, N. and Tanaka, K. Fixed point theory in weak second-order arithmetic. Annals of Pure and Applied Logic, 47, 167-188., 1990.
[59] Shore, R. A. and Hirschfeldt, D. R. Combinatorial principles weaker than Ramsey's theorem for pairs. The Journal of Symbolic Logic volume 72, issue 1, 171-206, 2007.
[60] Simpson, S. G. Ordinal numbers and the Hilbert basis theorem. The Journal of Symbolic Logic volume 53 number 3, September, 1988.
[61] Simpson, S. G. Subsystems of Second Order Arithmetic (second edition). Cambridge University Press, 2009.
[62] Simpson, S. G. Comparing $\mathrm{WO}\left(\omega^{\omega}\right)$ with Σ_{2}^{0} induction. arXiv, 2015.
[63] Simpson, S. G. and Smith, R. L. Factorization of polynomials and Σ_{1}^{0} induction. Annals of Pure and Applied Logic 31, 289-306, 1986.
[64] Soare, R. I. Recursively Enumerable Sets and Degrees: A Study of Computable Functions and Computably Generated Sets. Springer-Verlag, Berlin, Heidelberg, 1987.
[65] Solomon, R. Reverse mathematics and ordered groups. PhD thesis, Cornell University, 1998.
[66] Solomon, R. Ordered groups: a case study in reverse mathematics. The Bulletin of Symbolic Logic volume 5, number 1, March, 1999.
[67] Specker, E. Ramsey's theorem does not hold in recursive set theory. Logic Colloauium '69, Stud. Logic Found. Math., North-Holloand, Amsterdam, 1971.
[68] Tamura, T. Semigroup Theory (in Japanese). Kyoritsu Shuppan, 1972.
[69] Tanaka, K. Reverse Mathematics and Second Order Arithmetic (in Japanese). Kawai bunka kyouiku kenkyujo, 1997.
[70] Tarski, A. A lattice-theoretical fixpoint theorem and its applications. Pacific Journal of Mathematics, 5, 285-309, 1955.
[71] Taskovic, M. R. New equivalents of the axiom of choice and consequences. Mathematica Moravica volume 13-1, 77-94, 2009.
[72] van der Waerden, B. L. Modern Algebra volume I. Frederick Ungar Publishing Company, 1949.
[73] Weyl, H. Das Kontinuum. Leipzig, Verlag von Veit and Comp., 1918.
[74] Witt, E. Beweisstudien zum satz von M. Zorns. Mathematische Nachrichten 4, 434-438, 1951.

[^0]: ${ }^{1}$ Details are following: Let $Q=\left\{x \in L: x \leq_{L} F(x)\right\}$ and $a=\inf \left\{x \in L: x \leq_{L} F(x)\right\}$. Note that Q is not empty since it contains the bottom. For any $x \in Q$ we have $x \leq_{L} a$ and hence $x \leq_{L} F(x) \leq_{L} F(a)$. Therefore $F(a)$ is an upper bound of Q and hence $a \leq_{L} F(a)$. Since $F(a) \leq_{L} F(F(a))$ we have $F(a) \in Q$ and hence $F(a) \leq_{L} a$. Thus we have $F(a)=a$.

[^1]: ${ }^{2} x \leq a, x \leq F(x) \leq F(a)(\forall x \in X)$, i.e., $F(a)$ is an upper bound for X, thus $a \leq F(a)$. $b \leq y, F(b) \leq \bar{F}(y) \leq y(\forall y \in Y)$, i.e., $F(b)$ is a lower bound for Y, thus $F(b) \leq b . x \leq a \leq$ $y(\forall x \in X, \forall y \in Y)$, then x is a lower bound for Y, thus $x \leq b$, then b is an upper bound for X, thus $a \leq b$. It follows that $a \leq F(a) \leq F(b) \leq b, F(F(b)) \leq F(b), F(b) \in Y, b \leq F(b)$, $b=F(b), b \in P$. For any upper bound $u \in P$ of X, since $a \leq u$ and $F(u)=u, u \in Y$. Thus $b \leq u$.

[^2]: ${ }^{3}$ Assume that $b_{n} \in U$. Take $i \in \mathbb{N}$ arbitrary. Since $a_{i} \leq_{L} b_{n}$ and $a_{i} \leq u_{n+1} a_{i} \leq_{L}$ $\inf _{L}\left(b_{n}, u_{n+1}\right)=b_{n+1}$. Thus, $b_{n+1} \in U$.

[^3]: ${ }^{4}$ There is a CPO P and an inflationary self-map on P with no least (or even minimal) fixed point; $P=\left\{\perp \leq \cdots \leq a_{n} \leq \cdots \leq a_{1} \leq a_{0}\right\}, F\left(a_{i}\right)=a_{i}, F(\perp)=a_{0}$. This is a counter example of Davey [11, 8.23].

[^4]: ${ }^{5}$ The proof is essentially by Fumiya Nakashima.

