{"created":"2023-07-27T05:18:55.009394+00:00","id":108511,"links":{},"metadata":{"_buckets":{"deposit":"f779c136-f3c9-40ea-ad33-2db0f7e6eda9"},"_deposit":{"created_by":3,"id":"108511","owners":[3],"pid":{"revision_id":0,"type":"depid","value":"108511"},"status":"published"},"_oai":{"id":"oai:tohoku.repo.nii.ac.jp:00108511","sets":["91:860"]},"author_link":["227408"],"item_23_biblio_info_12":{"attribute_name":"書誌情報","attribute_value_mlt":[{"bibliographicIssueDates":{"bibliographicIssueDate":"2004-09-01","bibliographicIssueDateType":"Issued"},"bibliographicIssueNumber":"3","bibliographicPageEnd":"340","bibliographicPageStart":"327","bibliographicVolumeNumber":"56","bibliographic_titles":[{"bibliographic_title":"東北數學雜誌. Second series"},{"bibliographic_title":"Tohoku mathematical journal. Second series","bibliographic_titleLang":"en"}]}]},"item_23_description_11":{"attribute_name":"抄録(英)","attribute_value_mlt":[{"subitem_description":"In the context of a strongly local Dirichlet space we show that if a function mapping the real line to itself (and fixing the origin) operates by composition on the left to map the Dirichlet space into itself, then the function is necessarily locally Lipschitz continuous. If, in addition, the Dirichlet space contains unbounded elements, then the function must be globally Lipschitz continuous. The proofs rely on a co-area formula for condenser potentials.","subitem_description_type":"Other"}]},"item_23_description_9":{"attribute_name":"記事種別(英)","attribute_value_mlt":[{"subitem_description":"Article","subitem_description_type":"Other"}]},"item_23_identifier_14":{"attribute_name":"URL","attribute_value_mlt":[{"subitem_identifier_type":"URI","subitem_identifier_uri":"J-STAGE | https://www.jstage.jst.go.jp/article/tmj/56/3/56_3_327/_article/-char/ja"}]},"item_23_source_id_1":{"attribute_name":"雑誌書誌ID","attribute_value_mlt":[{"subitem_source_identifier":"AA00863953","subitem_source_identifier_type":"NCID"}]},"item_23_source_id_19":{"attribute_name":"ISSN","attribute_value_mlt":[{"subitem_source_identifier":"00408735","subitem_source_identifier_type":"ISSN"}]},"item_23_text_7":{"attribute_name":"著者所属(英)","attribute_value_mlt":[{"subitem_text_language":"en","subitem_text_value":"Department of Mathematics, University of California, San Diego"}]},"item_23_title_3":{"attribute_name":"論文名よみ","attribute_value_mlt":[{"subitem_title":"Superposition operators on Dirichlet spaces"}]},"item_access_right":{"attribute_name":"アクセス権","attribute_value_mlt":[{"subitem_access_right":"metadata only access","subitem_access_right_uri":"http://purl.org/coar/access_right/c_14cb"}]},"item_creator":{"attribute_name":"著者","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"Fitzsimmons, Patrick J.","creatorNameLang":"en"}],"nameIdentifiers":[{"nameIdentifier":"227408","nameIdentifierScheme":"WEKO"}]}]},"item_language":{"attribute_name":"言語","attribute_value_mlt":[{"subitem_language":"eng"}]},"item_resource_type":{"attribute_name":"資源タイプ","attribute_value_mlt":[{"resourcetype":"departmental bulletin paper","resourceuri":"http://purl.org/coar/resource_type/c_6501"}]},"item_title":"Superposition operators on Dirichlet spaces","item_titles":{"attribute_name":"タイトル","attribute_value_mlt":[{"subitem_title":"Superposition operators on Dirichlet spaces"}]},"item_type_id":"23","owner":"3","path":["860"],"pubdate":{"attribute_name":"公開日","attribute_value":"2017-04-07"},"publish_date":"2017-04-07","publish_status":"0","recid":"108511","relation_version_is_last":true,"title":["Superposition operators on Dirichlet spaces"],"weko_creator_id":"3","weko_shared_id":3},"updated":"2023-07-27T19:00:02.262442+00:00"}