{"created":"2023-07-27T05:18:59.489560+00:00","id":108606,"links":{},"metadata":{"_buckets":{"deposit":"a5b0b949-c4df-4110-96af-b988ccc3d268"},"_deposit":{"created_by":3,"id":"108606","owners":[3],"pid":{"revision_id":0,"type":"depid","value":"108606"},"status":"published"},"_oai":{"id":"oai:tohoku.repo.nii.ac.jp:00108606","sets":["91:860"]},"author_link":["227567"],"item_23_biblio_info_12":{"attribute_name":"書誌情報","attribute_value_mlt":[{"bibliographicIssueDates":{"bibliographicIssueDate":"2007-06-01","bibliographicIssueDateType":"Issued"},"bibliographicIssueNumber":"2","bibliographicPageEnd":"291","bibliographicPageStart":"259","bibliographicVolumeNumber":"59","bibliographic_titles":[{"bibliographic_title":"東北數學雜誌. Second series"},{"bibliographic_title":"Tohoku mathematical journal. Second series","bibliographic_titleLang":"en"}]}]},"item_23_description_11":{"attribute_name":"抄録(英)","attribute_value_mlt":[{"subitem_description":"We study, for any prime number $p$, the triviality of certain primary components of the ideal class group of the $\\boldsymbol{Z}_p$-extension over the rational field. Among others, we prove that if $p$ is $2$ or $3$ and $l$ is a prime number not congruent to $1$ or $-1$ modulo $2p^2$, then $l$ does not divide the class number of the cyclotomic field of $p^u$th roots of unity for any positive integer $u$.","subitem_description_type":"Other"}]},"item_23_description_9":{"attribute_name":"記事種別(英)","attribute_value_mlt":[{"subitem_description":"Article","subitem_description_type":"Other"}]},"item_23_identifier_14":{"attribute_name":"URL","attribute_value_mlt":[{"subitem_identifier_type":"URI","subitem_identifier_uri":"J-STAGE | https://www.jstage.jst.go.jp/article/tmj/59/2/59_2_259/_article/-char/ja"}]},"item_23_source_id_1":{"attribute_name":"雑誌書誌ID","attribute_value_mlt":[{"subitem_source_identifier":"AA00863953","subitem_source_identifier_type":"NCID"}]},"item_23_source_id_19":{"attribute_name":"ISSN","attribute_value_mlt":[{"subitem_source_identifier":"00408735","subitem_source_identifier_type":"ISSN"}]},"item_23_text_7":{"attribute_name":"著者所属(英)","attribute_value_mlt":[{"subitem_text_language":"en","subitem_text_value":"Department of Mathematics, Tokai University"}]},"item_23_title_3":{"attribute_name":"論文名よみ","attribute_value_mlt":[{"subitem_title":"Certain primary components of the ideal class group of the $\\boldsymbol{Z}_p$-extension over the rationals"}]},"item_access_right":{"attribute_name":"アクセス権","attribute_value_mlt":[{"subitem_access_right":"metadata only access","subitem_access_right_uri":"http://purl.org/coar/access_right/c_14cb"}]},"item_creator":{"attribute_name":"著者","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"Horie, Kuniaki","creatorNameLang":"en"}],"nameIdentifiers":[{"nameIdentifier":"227567","nameIdentifierScheme":"WEKO"}]}]},"item_language":{"attribute_name":"言語","attribute_value_mlt":[{"subitem_language":"eng"}]},"item_resource_type":{"attribute_name":"資源タイプ","attribute_value_mlt":[{"resourcetype":"departmental bulletin paper","resourceuri":"http://purl.org/coar/resource_type/c_6501"}]},"item_title":"Certain primary components of the ideal class group of the $\\\\boldsymbol{Z}_p$-extension over the rationals","item_titles":{"attribute_name":"タイトル","attribute_value_mlt":[{"subitem_title":"Certain primary components of the ideal class group of the $\\\\boldsymbol{Z}_p$-extension over the rationals"}]},"item_type_id":"23","owner":"3","path":["860"],"pubdate":{"attribute_name":"公開日","attribute_value":"2017-04-07"},"publish_date":"2017-04-07","publish_status":"0","recid":"108606","relation_version_is_last":true,"title":["Certain primary components of the ideal class group of the $\\\\boldsymbol{Z}_p$-extension over the rationals"],"weko_creator_id":"3","weko_shared_id":3},"updated":"2023-07-27T19:01:10.238697+00:00"}